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We propose alternative forms of the Boussinesq equations which extend the equations of Madsen and Schäffer by introducing
extra nonlinear terms during enhancement.Theoretical analysis shows that nonlinear characteristics are considerably improved. A
numerical implementation of one-dimensional equations is described. Three tests involving strongly nonlinear evolution, namely,
regular waves propagating over an elevated bar feature in a tank with an otherwise constant depth, wave group transformation over
constant water depth, and nonlinear shoaling of unsteady waves over a sloping beach, are simulated by the model. The model is
found to be effective.

1. Introduction

In the past 3 decades, great strides have brought Boussinesq-
type equations into the family of operational coastal wave
prediction models because they possess both dispersion and
nonlinear properties and require relatively little computation
effort. The development of variants of the theory was trigged
by improving linear and nonlinear properties of the model.
Extensive reviews have been provided in [1, 2].

Earlier works have concentrated on improving linear
dispersion of classical Boussinesq equations (which are accu-
rate only for weakly dispersive and mildly nonlinear water
waves), thus allowing the model to treat a wider range of
water depths. Extensive research results (e.g., [3–8]) have
been published, and applicability range of the equations has
been greatly improved. In [9], nonlinear shallow water equa-
tions are extended to include dispersion using an original
approach based on hyperbolic approximation. The resulting
equations have attractive hyperbolic characteristics and can
be solved efficiently using the finite volume method [10].
Among these studies, one of the notable procedures was
provided by Madsen et al. [3], who established a procedure
for optimizing model performance through rearrangement

of dispersive terms. This procedure has been extensively
utilized to improve dispersion of Boussinesq equations, for
example, [6, 11]. Other linear properties, such as shoaling
property and Bragg reflection, cannot be ignored considering
the applicable range of water depth to be enlarged for a
large number of new forms of Boussinesq-type equations. In
numerous improved models, attention has also been given to
the aforementioned properties [4, 6, 11, 12].

Subsequent to the initial work on improved linear prop-
erties, the next topic to draw attention is the problem of
improving model’s nonlinear accuracy. One of the critical
steps in this process is to develop equations with fully
nonlinear characteristics [9, 13–15]. Wei et al. first pre-
sented such equations with second-order accuracy [13]. The
fourth-order Boussinesq-type equations with fully nonlin-
ear characteristic were lately presented [2, 14, 15]. All the
aforementioned studies show that fully nonlinear models
can present better numerical results than weak nonlinear
models. However, a huge inaccuracy in second- and third-
order transfer functions and amplitude dispersion still exists
for deep water. This limitation has inspired further effort
to develop other formulas, such as that of Agnon et al.
[16] and Madsen et al. [17]. These models exhibit excellent
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linear and nonlinear performances even for extremely deep
water. However, fourth-order nonlinear equations, as well as
highly dispersive and fully nonlinear models, usually involve
complicated formulas, thus creating a challenge for numerical
implementation. Hence, developing a model with improved
nonlinear performance and a relatively simple formula is
necessary.

Efforts have been made to address this issue within
second-order Boussinesq equations. Zou [7] added a con-
stant coefficient in a second nonlinear term in the derived
Boussinesq equation to improve the accuracy of the super
harmonic transfer function. A similar technique was adopted
in [18]; however, a variable coefficient was used instead of
a constant coefficient. Yao et al. [19] further extended the
aforementioned method by developing a parameter-adaptive
version of Zou’s equations, wherein the introduced parameter
is a function of space and time which locally optimizes
second-order solutions throughout the simulation domain.
In [20], the reference elevation concept in the equation of
Wei et al. [13] (a fully nonlinear version of Nwogu’s equa-
tions [5]) is generalized by considering the contribution of
instantaneous-free surface elevation, and thus, considerably
improving theoretical and practical nonlinear performances.
These previous studies are very constructive; however, they
provide no explanation on the accuracy of adding terms the-
oretically. In this study, we attempt to improve the nonlinear
properties of a set of second-order Boussinesq equations with
full nonlinearity in alternative way.

Alternative forms of Boussinesq equations with second-
order full nonlinearity are presented. The model is based on
the equations of Madsen and Schäffer [6]. Nonlinear per-
formance is improved by introducing extra nonlinear terms
during the enhancement. The improved model is presented
in Section 2, including its governing equations, theoretical
analysis, and numerical implementation. In Section 3, three
numerical simulations for nonlinear dispersive waves are
conducted. Finally, conclusions are drawn in Section 4.

2. Mathematical Model

2.1. Governing Equations Fully Nonlinear to O(𝜇2). A set of
governing equations with second-order full nonlinearity was
presented in [6]. In nondimensional form, these equations
can be expressed as
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In the previous equations, h is still water depth, 𝜂 is surface
elevation, and u is depth-averaged velocity. ∇ = (𝜕/𝜕𝑥, 𝜕/𝜕𝑦)
is the two-dimensional gradient operator. 𝜀 = 𝐴

0
/ℎ
0
and

𝜇 = ℎ
0
/𝐿
0
are parameters that denote nonlinearity and

dispersion of equations, 𝐴
0
, ℎ
0
, and 𝐿

0
are the characteristic

wave amplitude, water depth, and wave length, respectively.

2.2. Technique of Madsen and Schäffer for Improving Linear
Dispersion and Shoaling. The dispersion contained in (1)-(2)
is the same as that in classical Boussinesq equations, and thus
these are only applicable in shallow water region. To improve
dispersion characteristic, an enhancement technique is intro-
duced and applied to (1)-(2) in [6]. The rationale of the
enhancement technique is summarized as the following three
steps.

The first step in the procedure is to apply the operator∇∇⋅
to (2) and multiply the result by 𝛽
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The second step is to multiply (2) by h and apply the operator
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Equations (5) and (6) are correct up to the same order as the
original equation (2), which consequently can be consistently
modified by the use of these equations. Finally, by adding
(5) and (6) to (2), the enhanced versions of the governing
equations are obtained [6].The two coefficients 𝛽

1
and 𝛽

2
are

yet to be determined.
All the terms introduced in (5)-(6) have similar expres-

sion to those inΛ
20
andΛ

21
in original equation (2). As such,

the aforementioned procedure actually amounts to rearrange
second-order (O(𝜇2)) terms, as reviewed in [17–20]. This
finding implies that the manipulation is not unique, and that
we can rearrange terms in an alternative manner, as shown in
the next section.
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2.3. Enhanced Equations with Improved Nonlinearity. Only
linear properties, that is, dispersion and shoaling, are consid-
ered for optimization in the previously discussed method. In
this section, we focus instead on improving model’s ((1)–(6))
nonlinearity using a similar technique.This procedure is akin
to the manipulation approach described in Section 2.2, but
in a nonlinear sense. To carry out this technique, a reference
variable ℎ+𝛾ℎ (𝛾 is free parameter) is used instead of h in the
procedure for obtaining (5) and (6); thus, we get
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When (7) are inserted into the left of (2), the final governing
momentum equations become
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Λ
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, Λ
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, and Λ

23
are defined in (3). Hereafter, (1) and

(2) (with (5) and (6) added to the left side) are referred
to as the original equations, whereas (1) and (8) are called
enhanced equations. Note that both original and enhanced
equations remain as second-order formulas (O(𝜇2)) with full
nonlinearity; however, their nonlinear characteristics will be
different, as will be shown in Section 2.4.

Compared with (5)-(6), (7) introduce extra nonlinear
terms at orders 𝜀𝜇2, 𝜀2𝜇2, 𝜀3𝜇2, which contribute to nonlinear

performance of the model. Equations (7) are still correct up
to the same order as the original equation (2), hence, the
rationale behind the method retained.

2.4. Theoretical Analysis. In this section, we conduct Fourier
analysis of enhanced equations (1) and (8) on a horizontal
bottom. The coefficients 𝛽

1
, 𝛽
2
, and 𝛾 will be determined

thereby. The following Stokes-type expansions [6] are intro-
duced for this purpose:
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where 𝜃 = 𝑘𝑥 − 𝜔𝑡. After substituting these expansions
into the one-dimensional (1-D) version of the equations
and collecting terms of order 𝑂(1), O(𝜀), O(𝜀2), governing
equations for the first-, second-, and third-order problems
can be obtained (see Appendix for details).

Solving the first-order problem yields the dispersion
relation of the model ((A.4) in the Appendix), and the value
of 𝛽
1
+ 𝛽
2
can be determined by matching C to the exact

solution 𝐶Stokes
= ℎ tanh(𝜅)/𝜅. Setting 𝛽

1
+ 𝛽
2
= −1/15 leads

to a Padé [2, 2] approximation of the exact dispersion, thus
creating a match with Stokes solution up to approximately
𝜅 = 𝑘ℎ = 𝜋 [6]. As stated in [21], the parameter can be
alternatively optimized tominimize phase and group velocity
errors over the entire dispersive range of 0 < 𝜅 < 𝜋. This
process can be achieved by introducing the following form
for the joint error (joint root mean square error) [21]:
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where 𝐶
𝑔
is group velocity and superscript “Stokes” repre-

sents analytical solutions from Stokes theory. The optimiza-
tion process aims to find theminimumvalue of error function
(11). Finally, 𝛽

1
+ 𝛽
2
= −0.0533 is found to be the optimum

value with a minimum error of 1.66% over 0 < 𝜅 < 𝜋.
Phase celerity and group velocity of the model with this value
are shown in Figure 1. The agreement between the modeled
dispersion relation and the theoretical one is relatively good
over the range 0 < 𝜅 < 𝜋. Larger discrepancies are found for
the group velocity; however, maximum error remains below
10% for all the physical wavelengths that the model is able
to describe. Nevertheless, the error in group velocities starts
to increase rapidly when 𝜅 > 2.5, thus showing that this
property will be overestimated in this range. Corresponding
results from Padé [2, 2] expansion are also shown in Figure 1
for comparison. Overall accuracy of phase celerity and group
velocity is improved over 0 < 𝜅 < 𝜋 by using (11) as the
control criterion.

Specific values of 𝛽
1
and 𝛽

2
cannot be determined yet

by this process, which should be completed by analyzing
shoaling property of the model. Following the same proce-
dure in [6], 𝛽

2
can be determined by finding the minimum



4 Mathematical Problems in Engineering

1.2

1.1

1

0.9

0.8
0 1 2 3 4

𝑘ℎ

𝐶
/𝐶

St
ok

es

(a)

0 1 2 3 4
𝑘ℎ

1.1

1

0.9

1.2

0.8

𝐶
𝑔
/𝐶

St
ok

es
𝑔

(b)

Figure 1: Comparisons of phase celerity (a) and group velocity (b) between equations (solid line) and Padé [2, 2] approximation (dashed
line).
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Figure 2: Comparisons of shoaling gradient between the equations
(solid line) and the analytical solution (dashed line).
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𝑑𝜅 (here, 𝛼

𝑠
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shoaling coefficient, and the superscript “Stokes” represents
the analytical solution), and 𝛽

2
= −0.0645 is found to

give optimum shoaling performance. Figure 2 presents the
comparisons between the shoaling coefficient for the present
model and the analytical reference.They are generally in good
agreements over the range 0 < 𝜅 < 𝜋.

Nonlinear property is analyzed by solving second- and
third-order problems. Parameter 𝛾 is found to contribute
to second-(𝑎

2
), third-order (𝑎

33
) transfer functions, as well

as amplitude dispersion 𝜔
3
. In this process, the joint error

(defined by (11)) of the second-order transfer function (𝑎
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)

and amplitude dispersion (𝜔
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) is chosen as the criterion to

determine 𝛾. 𝜔
3
is chosen as the criterion instead of 𝑎

33

because the amplitude dispersion is more important than 𝑎
33

for nonlinear wave evolution. 𝜔
3
is the factor that controls

the nonlinear process of amplitude dispersion, whereas 𝑎
33

is a smaller nonlinear quantity compared with 𝑎
2
, as argued

in [22]. 𝛾 = 2.521 is determined as the final value. Corre-
sponding results with this value are given in Figure 3. This
figure shows that the accuracy of the transfer functions and
amplitude dispersion are significantly improved, which is
apparently caused by retaining extra nonlinear terms during
enhancement.

2.5. Numerical Implementation. The numerical scheme
mainly follows procedures presented in FUNWAVE [23];
however, several modifications are made. The main proce-
dures are summarized as follows.

Governing equations are discretized using a staggered
grid (by contrast, a uniform grid is adopted in [23]) because
recent studies suggest that discretizing Boussinesq equations
on a staggered grid can achieve better stability [24, 25] than
those on a uniform grid. Derivatives are approximated by
a higher-order finite difference formula, and a composite
fourth-order predictor-corrector Adams-Bashforth-Moulton
integration scheme is adopted in the model to perform
time marching. The independent variable wave surface 𝜂 can
be directly determined by solving the continuity equation,
whereas the independent variable 𝑢 is obtained by solving a
tridiagonal linear system from the momentum equation.

The entire computation domain is enclosed by imper-
meable walls, wherein the horizontal velocity is set to zero.
Sponger layers are placed in front of the solid walls to
absorb wave energy propagating out of the computational
domain. The incident waves are internally generated in the
computational domain by adding a source function into the
mass equation. The implicit filter [21] is used sparsely to
remove higher frequency oscillations. The details of numeri-
cal implementations are referred to [23].

3. Numerical Results and Discussions

To validate the proposedmodel, three tests involving strongly
nonlinear evolution of waves are chosen for the simulation,
including (a) 1-D regular wave trains propagating over trape-
zoidal bar feature in an otherwise constant depth tank, (b)
nonlinear evolution of 1-D wave groups over constantly deep
water, and (c) nonlinear shoaling of unsteady waves up to the
breaking point over a mildly sloping beach. Both enhanced
and original models will be used in the simulations, and the
computed results will be compared. Available experimental
data or analytical solutions will be adopted as reference.
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Figure 3: Comparisons of second-order (a), third-order (b) transfer functions, and amplitude dispersion (c) between the enhanced equations
(solid line) and the original equations (dashed line).
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Figure 4: The experimental setup of Luth et al. [26]. All dimensions are in (m).

3.1. Propagation of 1-D Regular Wave Trains over Sub-
merged Bars. Wave propagation over a submerged bar is
an extremely complicated process. Nonlinear interactions
transfer energy from the leading wave component to higher
harmonics as waves propagate onto the front slope of the bar
and begin to become steep. At the leeside of the bar, water
becomes deep and nonlinear coupling of higher harmonics
with the fundamental wave becomes progressively weaker.
Therefore, each of the Fourier components is released as
free waves with their own bound higher harmonics. Each
component travels with a different speed, thus resulting in
a fairly complicated process. Numerical prediction of this
process requires higher-order linear and nonlinear accuracies
of the model. Such prediction has been widely used as a
benchmark test for validating Boussinesq-type models [14,
15].

Here, Case (a) of Luth et al. experiments [26] is simulated,
and the corresponding experimental setup is shown in
Figure 4. Regular wave trains with period 𝑇 = 2.02 s and
height𝐻 = 0.02m (𝑘ℎ = 0.67) are internally generated in the
computation domain. Time and spatial size for the simulation
are 0.01 s and 0.02m, respectively. Numerical results from

the original and enhanced models are shown in Figure 5
and compared with the experimental data. At the first gauge
(𝑥 = 10.5m), both models exhibit similar performances
and present good agreements with the experimental data.
Differences begin to appear on top of the bar (𝑥 = 13.5) and
downstream of the bar slope (𝑥 = 15.7m). At these locations,
the enhanced model obtains slightly better numerical results
than the originalmodel. A large discrepancy between numer-
ical results and measurements is expected at the rear part of
the wave tank (𝑥 = 19.0m), where higher harmonics already
exceeds the application range of the model. Such result is also
found and argued in the previous literature for second-order
Boussinesq-type models [14, 15].

The enhancement only improves the nonlinearity of the
model, whereas dispersion and shoaling remain unchanged.
As such, checking the spatial distribution of higher har-
monics for this case is more reasonable. The corresponding
numerical results for the two models are plotted in Figure 6
and compared with the experimental data. For the first
and second harmonics, numerical results from the two
models exhibit negligible difference and agree well with the
measurements. This outcome is expected because the second
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and the numerical results of the enhanced model (solid) and the
original model (dashed).

transfer functions 𝑎
2
for the two models are primarily the

same (Figure 3(a); 𝑘ℎ = 0.67). A discrepancy is expected for
third and fourth harmonics according to the analysis shown
in Figure 3(b) (𝑘ℎ = 0.67). Figure 6 shows that the enhanced
model indeed presents better results than the original model,
and the numerical results are in good agreement with the
measurements.

3.2. 1-DNonlinear Evolution of DeepWaves over a Flat Bottom.
Theexperiment for nonlinear evolution of wave groups over a
constant water depth [27] provides a good basis for checking
third-order nonlinearity of Boussinesq models. According
to Stokes wave theory, third-order nonlinearity enables the
amplitude to contribute to the dispersion relation, and thus,
large waves in an envelope travel faster than those with lower
amplitudes. As a result, wave envelopes become skew; that
is, the front part of a wave group is pressed and the back
part is stretched. New free-wave components will also be
generated during the process because of nonlinear resonant
interaction, and the wave spectrum is expected to become
wider during wave group evolution. Simulations for these

nonlinear properties require high accuracy in nonlinearity
and dispersion of a mathematical wave model [15, 22].

In the experiment, a wave maker is driven by the follow-
ing signal in a flume with a constant water depth of 0.6m:

𝑠 (𝑡) = s
0 |cos (Ωt)| cos (𝜔0𝑡) with (Ω =

𝜔
0

20
) , (12)

where 𝑠
0
is the forcing amplitude, 𝜔

0
is the carrier frequency,

and Ω is the modulation frequency. The spectrum of the
signal achieves its maximum at the carrier frequency 𝜔

0
, plus

several smaller peaks at discrete frequencies spaced by 𝜔
0
/10

with three dominant modes.The period of the carrier wave is
0.9 s and the corresponding value of kh is 3.0, thus denoting
that wave motions are within the deep water regime. In the
corresponding simulations, we set the spatial and temporal
steps to 0.02m and 0.01 s, respectively, and collected data
until a steady state is reached.

Numerical results from the enhanced and originalmodels
are presented in Figure 7 and compared with the measure-
ments. It can be seen that close to the wave maker (𝑥 =

0.24m), the two numerical results are almost identical and
agree with the measurements. As the wave propagates along
the flume, the results of the two models diverge. The original
model obtains a big phase error as the waves propagate
along the flume, whereas the enhanced model predicts the
correct phase, thus denoting that the accuracy of amplitude
dispersion has been improved greatly.However, the enhanced
model still fails to reproduce the details of the wave shape.
This finding may be ascribed to the fact that the motion
of carrier waves and higher harmonics almost exceeds the
application range of the equations.

Figure 8 shows Fourier amplitude spectra of the surface
elevation of the wave group at 𝑥 = 0.24m and 9.47m. In
the experimental spectra, amplitudes increase on the high-
frequency side when waves reach 𝑥 = 9.47m and the
spectrum becomes asymmetric. Computed results from the
enhanced and original models are plotted in the same figure.
The enhanced model produces amplitude spectra similar
to those of the experiments, whereas the original model
produces spectra which change insignificantly by the time
they reach the end of the flume.This finding shows that wave
components produced by themodel remain unchanged along
the flume.

The asymmetric growth of the spectrum shown in the
figures presents another nonlinear characteristic of nonlinear
wave group evolution apart from the amplitude dispersion,
that is, the generation of new free-wave components due to
resonant wave-wave interaction.This is a third-order (O(𝜀3))
nonlinear effect which causes the energy transfer from one
frequency to another in a wave spectrum and is referred to as
four-wave resonant interaction [28, 29]. For the present case,
although there are only three free-wave modes for the signal
(12) near the wave maker (𝑥 = 0.24), the four-wave resonant
interactionwill inspire other new free-wavemodes to develop
as waves propagate along the tank.

3.3. Nonlinear Shoaling of Unsteady Waves. The unsteady
shoaling test is chosen to investigate the effect of the improve-
ments made to the original equations. In this procedure,
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the most nonlinear case from [20], wherein unsteady waves
are specified as the initial surface elevation and the sub-
sequent shoaling over a given topography, is simulated. By
normalizing all quantities with respect to the greatest depth,
ℎ
1
, the topography is specified as

ℎ

ℎ
1

=
ℎmin
ℎ
1

+ (1 −
ℎmin
ℎ
1

)[
1

cosh (tan (𝜋𝑥/2𝐿))
] ,

𝑥 ≤ 𝐿,
ℎ

ℎ
1

=
ℎmin
ℎ
1

, 𝐿 < 𝑥 ≤ 2𝐿,

(13)

where ℎmin/ℎ1 = 0.2 and 𝐿 = 50ℎ1. Initial surface elevation is
given as

𝜂

ℎ
1

=
𝑎
𝐼

ℎ
1

[
cos (2𝜋𝑁

𝑤
𝑥/𝐿)

cosh (tan (𝜋𝑥/2𝐿))
] ,

𝑥 ≤ 𝐿,
𝜂

ℎ
1

= 0, 𝐿 < 𝑥 ≤ 2𝐿,

(14)

where 𝑎
𝐼
/ℎ
1
is the initial amplitude, and the number of waves

𝑁
𝑤
= 10. In the simulation, ℎ

1
is set as 1.0m andΔ𝑥 = 0.05m,

while Δ𝑡 = 0.01 s. Figure 9 shows initial and final surface
and the topography. Using the initial value problem also helps
eliminate comparison difficulties that can arise fromdiffering
wave generation schemes [20], as also found in our numerical
experiments.

Both the original and enhanced equations are used for
simulation, and the numerical results are compared with
the numerical solution from the potential flow results [30]
(which could be regarded as the analytical solution to
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Figure 9: Initial (a) and final (b) surface elevations, with crest and trough envelopes and underlying bathymetry.

the problem). We discover that in deeper water (where
waves are weakly nonlinear) and in shallowwater, Boussinesq
envelopes are significantly similar to each other, and to
the potential flow results. However, in the highly nonlinear
shoaling zone near the front of the shelf, results differ
significantly, thus providing a good comparison of nonlinear
shoaling properties. Figure 10 shows the computed crest and
trough envelopes compared to the potential flow results for
40 < 𝑥/ℎ

1
< 60. The original equations underpredict crest

elevations significantly when wave heights are high. By
contrast, the enhanced equations obtain better numerical

results.The same trend is also exhibited for trough elevations;
however, the difference between the original and enhanced
equations is not very obvious.

4. Conclusions

An alternative form of the Boussinesq-type model, which
extends the equations in [6], is developed. By introducing
the contribution of time-varying component during the
enhancement, we develop a possible method for improving
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enhanced model, the original model, and the potential flow results.

nonlinear performance of the model. Theoretical analysis
shows that nonlinear performance of the enhanced equations
is considerably improved. To demonstrate the effect of the
improvement, three tests involving strong nonlinear charac-
teristics, that is, nonbreaking regular wave propagation over a
submerged bar, nonlinear evolution of deep water waves over
a flat bottom, andnonlinear shoaling of unsteadywaves over a
sloping beach, are simulated. Numerical results show that the
enhanced model demonstrates considerable improvements
over the original model, at least with regard to the tests
considered in this study, thus demonstrating the potential of
the proposed model in describing nonlinear processes up to
the breaking point.

Appendix

Analysis of the equations for monochromatic waves is as
follows.

In one dimension, and on a horizontal bottom, (1) and (8)
simplify to

𝜂
𝑡
+ ℎ𝑢
𝑥
+ 𝜀(𝜂𝑢)

𝑥
= 0,

𝑢
𝑡
+ 𝜀𝑢𝑢

𝑥
+ 𝜂
𝑥
+ 𝜇
2
[(𝛽
1
+ 𝛽
2
−
1

3
) ℎ
2
𝑢
𝑥𝑥𝑡

+ (𝛽
1
+ 𝛽
2
) ℎ
2
𝜂
𝑥𝑥𝑥
]

+ 𝜀𝜇
2
[(2𝛽
1
𝛾 −

2

3
) ℎ𝜂𝑢

𝑥𝑥𝑡
− ℎ𝜂
𝑥
𝑢
𝑥𝑡

+ (
1

3
+ 3𝛽
1
+ 3𝛽
2
) ℎ
2
𝑢
𝑥
𝑢
𝑥𝑥

+ (𝛽
1
+ 𝛽
2
−
1

3
) ℎ
2
𝑢𝑢
𝑥𝑥𝑥

+ 𝛽
2
𝛾ℎ(𝜂𝑢

𝑡
+ 𝜂𝜂
𝑥
)
𝑥𝑥

+2𝛽
1
𝛾ℎ𝜂𝜂
𝑥𝑥𝑥
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2
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+ 𝜀
2
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2
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+
1
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) 𝜂
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𝑢
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3
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𝑥
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3
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4
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(A.1)

Substituting the Stokes-type expansions (10) in the main text
into (A.1) and using the following notations

𝑚
(𝑛)

11
= 𝑛𝜔
0
, 𝑚

(𝑛)

21
= −𝑛𝑘 [1 − (𝛽

1
+ 𝛽
2
) (𝑛𝜅)

2
] ,

(𝜅 = 𝑘ℎ, 𝑛 = 1, 2, 3)

𝑚
(𝑛)

12
= −𝑛𝜅, 𝑚

(𝑛)

22
= 𝑛𝜔
0
[1 − (𝛽

1
+ 𝛽
2
−
1

3
) (𝑛𝜅)

2
]

(A.2)

leads to the following perturbation equations.
(i) First-order equations

(

𝑚
(1)

11
𝑚
(1)

12

𝑚
(1)

21
𝑚
(1)

22

)(
𝑎
1

𝑢
1

) = (
0

0
) . (A.3)

From (A.3), we obtain the amplitude of the first order velocity
𝑢
1
= 𝜔
0
𝑎
1
/𝜅 and the celerity

𝐶 =
𝜔
0

𝑘
= √ℎ

1 − (𝛽
1
+ 𝛽
2
) 𝜅
2

1 − (𝛽 + 𝛽
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−
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3
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(ii) Second-order equations

(
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(A.6)

From the equations, we obtain the amplitudes of the second-
order oscillating surface elevation and velocity

𝑎
2
=
𝐹
(2)
𝑚
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− 𝐺
(2)
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(A.7)



10 Mathematical Problems in Engineering

(iii) Third-order equations
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with

𝐹
(3)

3
=
3

2
𝑘 (𝑎
2
𝑢
1
+ 𝑎
1
𝑢
2
) ,

𝐺
(3)

3
= − 𝛾

2
(
1

4
𝛽
1
+ 𝛽
2
) 𝑘
3
𝑎
3

1

+ ((
1

4
𝛽
1
+ 𝛽
2
) 𝛾
2

2
−
1

3
)𝜔
0
𝑘
2
𝑢
1
𝑎
2

1

− (
13

4
𝛽
2
+ 2𝛽
1
) 𝛾𝑘
3
ℎ𝑢
2

1
𝑎
1
− 9𝛾 (𝛽

1
+ 2𝛽
2
) 𝑘
3
ℎ𝑎
2
𝑎
1

+ ((13𝛽
2
+ 8𝛽
1
) 𝛾 −

14

3
)𝜔
0
𝑘
2
ℎ𝑢
2
𝑎
1

+ [((5𝛽
2
+ 𝛽
1
) 𝛾 −

4

3
)𝜔
0
𝑘
2
ℎ𝑎
2

+ (
1

2
(1 − 27 (𝛽

1
+ 𝛽
2
)) 𝜅
2
+
3

2
) 𝑘𝑢
2
] 𝑢
1
,

𝐹
(3)

1
=
1

2
𝑘 (𝑎
2
𝑢
1
+ 𝑎
1
𝑢
2
) ,

𝐺
(3)

1
= − (𝛽

2
+
1

4
𝛽
1
) 𝛾
2
𝑘
3
𝑎
3

1

+ ((𝛽
2
+
1

4
𝛽
1
) 𝛾
2
−
1

3
)𝜔
0
𝑘
2
𝑢
1
𝑎
2

1

− (4𝛽
2
+ 7𝛽
1
) 𝛾ℎ𝑘
3
𝑎
2
𝑎
1

+ ((
5

4
𝛽
2
− 2𝛽
1
) 𝛾 + 1) ℎ𝑘

3
𝑢
2

1
𝑎
1

− ((8𝛽
1
+ 5𝛽
2
) 𝛾 −

2

3
)𝜔
0
𝑘
2
ℎ𝑢
2
𝑎
1

− ((𝛽
1
+ 𝛽
2
) 𝛾 −

2

3
)𝜔
0
𝑘
2
ℎ𝑎
2
𝑢
1

+
1

2
((3 − 𝛽

1
− 𝛽
2
) 𝜅
2
+ 1) 𝑘𝑢

2
𝑢
1
.

(A.10)

From (A.8), we can obtain the solutions for 𝑎
33
and 𝑢

33
as
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(A.11)

When we eliminate 𝑢
31
from (A.9) to get the equation for 𝑎

31
,

the left hand side of the resulting equations will equate to zero
automatically due to the first-order equation (A.3); thus, the

right hand side of the resulting equation must also equate to
zero from the solvable condition.This yields the equation for
the amplitude dispersion 𝜔

3

𝜔
3
=
𝐹
(3)

1
𝑚
(1)

22
− 𝐺
(3)

1
𝑚
(1)

12

𝑚
(1)

22
𝑎
1
− 𝑚
(1)

12
𝑚
(1)

22
𝑢
1

. (A.12)

All the corresponding analytical solutions from Stokes theory
could be found in [6].
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type formulations for fully nonlinear and extremely dispersive
water waves: derivation and analysis,” Philosophical Transac-
tions of the Royal Society of London A, vol. 459, no. 2033, pp.
1075–1104, 2003.

[18] Z. B. Liu and Z. C. Sun, “Two sets of higher-order Boussinesq-
type equations for water waves,” Ocean Engineering, vol. 32, no.
11-12, pp. 1296–1310, 2005.

[19] Y. Yao, P. H. Taylor, and A. G. L. Borthwick, “Simplified
nonlinear Boussinesq modelling of waves-an enhancement of
higher order harmonics,” Coastal Engineering, vol. 1, pp. 14–23,
2006.

[20] A. B. Kennedy, J. T. Kirby, Q. Chen, and R. A. Dalrymple,
“Boussinesq-type equations with improved nonlinear perfor-
mance,”Wave Motion, vol. 33, no. 3, pp. 225–243, 2001.
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