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This paper deals with nonlinear stochastic pantograph equations. For solving the equations, a class of extended Milstein methods
are suggested. Amean-square stability criterion for this type of equations is presented. It is proved that under the suitable conditions
the Milstein methods preserve the mean-square stability. Numerical examples further illustrate the obtained theoretical results.

1. Introduction

Stochastic delay differential equations (SDDEs) are often used
to model some problems with aftereffect in many scientific
fields such as physics, biology, mechanics, finance, and con-
trol theory. Generally speaking, it is hard to obtain the ana-
lytical solutions of SDDEs. Hence, recently, many researchers
began to study their numerical solutions, and hence, some
significant results have been achieved.

The stability analysis plays an important role in construc-
tion of excellent numerical algorithms for SDDEs. Hence, it
has received wide attention of researchers. The early related
results can be found in Mao [1, 2], Baker and Buckwar [3],
Buckwar [4, 5], Küchler and Platen [6], and the references
therein.More recently, for the linear SDDEs, Cao et al. [7], Liu
et al. [8], and Wang and Zhang [9] studied mean-square sta-
bility (MS-stability) of Euler-Maruyama, semi-implicit Euler-
Maruyama, andMilsteinmethods, respectively. Taking use of
the Halanay inequality, Baker and Buckwar [10] extended the
MS-stability analysis of Euler-Maruyamamethods to nonlin-
ear SDDEs. Moreover, Wang and Zhang [11] also dealt with
nonlinear MS-stability of Milstein methods.

We note that the above numerical stability investigations
were mainly devoted to the case of constant delay. Although
the deterministic delay differential equations with variable
delays have been widely studied (see, e.g., [12, 13] and the
references therein), the case of variable delay of SDDEs was

rarely concerned. Fan and Liu [14] first studied linear stochas-
tic pantograph equations and gave MS-stability criteria of
semi-implicit Euler methods. Also, by taking use of the
analytical and discrete Razumikhin theorems, they dealt with
𝛼-moment stability of linear stochastic pantograph equations
and their semi-implicit Eulermethod (cf. [15]). Recently, Xiao
et al. [16, 17] gave sufficient MS-stability conditions of back-
ward Euler method and semi-implicit Euler method with
variable stepsize for linear stochastic pantograph differential
equations. In the present paper, we will investigate the MS-
stability of nonlinear stochastic pantograph equations and
their Milstein methods. Some criteria for MS-stability of the
analytical and numerical solutions will be derived. Numerical
experiments will be used to illustrate the obtained theoretical
results.

2. MS-Stability of the Analytical Solutions

Let (Ω,A, 𝑃) be a complete probability space with a filtration
(A
𝑡
)
𝑡≥0

, which is right-continuous and satisfies that each
A
𝑡
(𝑡 ≥ 0) contains all𝑃-null sets inA, and𝑤 is a one-dimen-

sional Brownian motion defined on the probability space.
Moreover, we introduce the following notations:

|⋅| : |𝐴| = √trace (𝐴𝑇𝐴) (the trace norm of matrix 𝐴) ;
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𝐿
𝑝
(Ω, 𝑅
𝑑
) : the family of 𝑅𝑑-value random variable 𝑥

with 𝐸|𝑥|
𝑝
< ∞;

L
𝑝
([𝑎, 𝑏] , 𝑅

𝑑
) : the family of 𝑅𝑑-value A

𝑡
-adapted

processes {𝑥 (𝑡)}
𝑎≤𝑡≤𝑏

with∫
𝑏

𝑎

|𝑥 (𝑡)|
𝑝
𝑑𝑡 < ∞ a.s.;

M
𝑝
([𝑎, 𝑏] , 𝑅

𝑑
) : the family of processes {𝑥 (𝑡)}

𝑡≥0

∈ L
𝑝
([𝑎, 𝑏] , 𝑅

𝑑
)

with 𝐸∫

𝑏

𝑎

|𝑥 (𝑡)|
𝑝
𝑑𝑡 < ∞;

L
𝑝
(𝑅
+
, 𝑅
𝑑
) : the family of processes {𝑥 (𝑡)}

𝑡≥0

with {𝑥 (𝑡)}
0≤𝑡≤𝑇

∈ L
𝑝
([0, 𝑇] , 𝑅

𝑑
)

∀𝑇 > 0;

M
𝑝
(𝑅
+
, 𝑅
𝑑
) : the family of processes {𝑥 (𝑡)}

𝑡≥0

with {𝑥 (𝑡)}
0≤𝑡≤𝑇

∈ M
𝑝
([0, 𝑇] , 𝑅

𝑑
)

∀𝑇 > 0.

(1)

Consider the following nonlinear stochastic pantograph
equations:

𝑑𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑝𝑡)) 𝑑𝑡

+ 𝑔 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑝𝑡)) 𝑑𝑤 (𝑡) , 𝑡 > 0,

𝑥 (0) = 𝜉,

(2)

where 𝑥(𝑡) is a 𝑅𝑑-value random process, 𝑝 ∈ (0, 1) denotes a
given constant,𝑓 : 𝑅

+
×𝑅
𝑑
×𝑅
𝑑
→ 𝑅
𝑑 and𝑔 : 𝑅

+
×𝑅
𝑑
×𝑅
𝑑
→

𝑅
𝑑 are two given Borel-measurable functions, 𝜉 is an A

0
-

measurable 𝑅𝑑-value random variable, and 𝜉 ∈ 𝐿
2
(Ω, 𝑅
𝑑
).

Throughout this paper, we always assume that (2) has a
unique solution 𝑥(𝑡) ∈ M2(𝑅

+
, 𝑅
𝑑
).

Definition 1. The solution of (2) is said to be MS-stable if

lim
𝑡→+∞

𝐸|𝑥 (𝑡)|
2
= 0. (3)

Theorem 2. Assume that there exist constants 𝛼 > 0, 𝛽 ≥ 0,
and 𝛾 ≥ 0 such that

𝑥
𝑇
𝑓 (𝑡, 𝑥, 𝑢) ≤ −𝛼|𝑥|

2
+ 𝛽|𝑢|

2
, ∀𝑥, 𝑢 ∈ 𝑅

𝑑
, (4)

󵄨
󵄨
󵄨
󵄨
𝑔 (𝑡, 𝑥, 𝑢)

󵄨
󵄨
󵄨
󵄨

2

≤ 𝛾 (|𝑥|
2
+ |𝑢|
2
) , ∀𝑥, 𝑢 ∈ 𝑅

𝑑
. (5)

Then, the solution of (2) is MS-stable whenever

𝛾 − 2𝛼 +

𝛾 + 2𝛽

𝑝

< 0. (6)

Proof. By the Itô formula (cf. [1]), we have

𝑑|𝑥 (𝑡)|
2

= [2𝑥
𝑇
(𝑡) 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑝𝑡)) +

󵄨
󵄨
󵄨
󵄨
𝑔 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑝𝑡))

󵄨
󵄨
󵄨
󵄨

2

] 𝑑𝑡

+ 2𝑥
𝑇
(𝑡) 𝑔 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑝𝑡)) 𝑑𝑤 (𝑡) .

(7)

Integrating from 0 to 𝑡 on both sides of the equality (7) and
then taking expectation yield that

𝐸|𝑥 (𝑡)|
2
= 𝐸

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

+ 𝐸∫

𝑡

0

[2𝑥
𝑇
(𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑝𝑠))

+
󵄨
󵄨
󵄨
󵄨
𝑔 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑝𝑠))

󵄨
󵄨
󵄨
󵄨

2

] 𝑑𝑠

+ 𝐸∫

𝑡

0

2𝑥
𝑇
(𝑠) 𝑔 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑝𝑠)) 𝑑𝑤 (𝑠) .

(8)

Since 𝑥(𝑡) ∈ M2(𝑅
+
, 𝑅
𝑑
), we further have

𝐸|𝑥 (𝑡)|
2
= 𝐸

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

+ 𝐸∫

𝑡

0

[2𝑥
𝑇
(𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑝𝑠))

+
󵄨
󵄨
󵄨
󵄨
𝑔 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑝𝑠))

󵄨
󵄨
󵄨
󵄨

2

] 𝑑𝑠.

(9)

Applying the conditions (4) and (5) to (9), it follows that

𝐸|𝑥 (𝑡)|
2
≤ 𝐸

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

+ (𝛾 − 2𝛼) 𝐸∫

𝑡

0

|𝑥 (𝑠)|
2
𝑑𝑠

+ (𝛾 + 2𝛽) 𝐸∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑝𝑠)

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑠

≤ 𝐸
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

+ (𝛾 − 2𝛼 +

𝛾 + 2𝛽

𝑝

)𝐸∫

𝑡

0

|𝑥 (𝑠)|
2
𝑑𝑠,

(10)

which gives

−(𝛾 − 2𝛼 +

𝛾 + 2𝛽

𝑝

)𝐸∫

𝑡

0

|𝑥 (𝑠)|
2
𝑑𝑠 ≤ 𝐸

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

, ∀𝑡 > 0. (11)

This, together with (6), implies lim
𝑡→∞

𝐸|𝑥(𝑡)|
2
= 0. There-

fore, the theorem is proven.

3. MS-Stability of the Numerical Solutions

For the stability analysis, we introduce the following nota-
tional conventions:

𝑔
󸀠

1
(𝑡, 𝑥, 𝑢) =

𝜕𝑔 (𝑡, 𝑥, 𝑢)

𝜕𝑥

, 𝑔
󸀠

2
(𝑡, 𝑥, 𝑢) =

𝜕𝑔 (𝑡, 𝑥, 𝑢)

𝜕𝑢

,

𝐼
1
= ∫

𝑡
𝑛+1

𝑡
𝑛

∫

𝑠

𝑡
𝑛

𝑑𝑤 (𝑟) 𝑑𝑤 (𝑠) =

(Δ𝑤
𝑛
)
2

− ℎ

2

,

𝐼
2
= ∫

𝑡
𝑛+1

𝑡
𝑛

∫

𝑠

𝑡
𝑛

𝑑𝑤 (𝑝𝑟) 𝑑𝑤 (𝑠) ,

(12)

where Δ𝑤
𝑛

:= ∫

𝑡
𝑛+1

𝑡
𝑛

𝑑𝑤(𝑠) = 𝑤(𝑡
𝑛+1

) − 𝑤(𝑡
𝑛
), denoting

independent𝑁(0, ℎ)-distributed Gaussian random variables.
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Moreover, on space 𝑅𝑑, we define an inner product ⟨⋅, ⋅⟩ and
the corresponding induced norm | ⋅ | as follows:

⟨𝑈, 𝑉⟩ =

𝑑

∑

𝑖=1

𝑢
𝑖
V
𝑖
, |𝑈| = √

𝑑

∑

𝑖=1

𝑢
2

𝑖
, (13)

where 𝑈 = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑑
)
𝑇, 𝑉 = (V

1
, V
2
, . . . , V

𝑑
)
𝑇
∈ 𝑅
𝑑.

Applying theMilsteinmethod to (2) derives the following
numerical scheme:

𝑥
𝑛+1

= 𝑥
𝑛
+ ℎ𝑓 (𝑡

𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) + 𝑔 (𝑡

𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) Δ𝑤
𝑛

+ 𝑔
󸀠

1
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝐼
1

+ 𝑔
󸀠

2
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝐼
2
, 𝑛 ≥ 0,

𝑥
0
= 𝜉,

(14)

where ℎ > 0 is the computational stepsize, Δ𝑤
𝑛
= 𝑤 (𝑡

𝑛+1
) −

𝑤 (𝑡
𝑛
), and𝑥

𝑛
,𝑥
𝑛
, and𝑥

𝑛
are approximations to𝑥 (𝑡

𝑛
),𝑥 (𝑝𝑡

𝑛
),

and 𝑥 (𝑝2𝑡
𝑛
), respectively. When set

𝑝𝑡
𝑛
= (𝑛 − ]

𝑛
) ℎ + 𝛿

𝑛
ℎ, 𝑝

2
𝑡
𝑛
= (𝑛 − ]

𝑛
) ℎ + 𝛿

𝑛
ℎ, (15)

where ]
𝑛
, ]
𝑛
∈ N and 𝛿

𝑛
, 𝛿
𝑛
∈ [0, 1), the approximations of

𝑥(𝑝𝑡
𝑛
) and 𝑥(𝑝2𝑡

𝑛
) can be defined as follows:

𝑥
𝑛
= 𝛿
𝑛
𝑥
𝑛−]
𝑛
+1
+ (1 − 𝛿

𝑛
) 𝑥
𝑛−]
𝑛

,

𝑥
𝑛
= 𝛿
𝑛
𝑥
𝑛−]
𝑛
+1
+ (1 − 𝛿

𝑛
) 𝑥
𝑛−]
𝑛

, 𝑛 ≥ 0.

(16)

In this way, an extended Milstein method, composed by (14)
and (16), is obtained.

Definition 3. An extended Milstein method (14)–(16) is said
to be MS-stable if there exists an ℎ

0
> 0 such that

lim
𝑛→+∞

𝐸
󵄨
󵄨
󵄨
󵄨
𝑥
𝑛

󵄨
󵄨
󵄨
󵄨

2

= 0, ℎ ∈ (0, ℎ
0
] . (17)

Lemma 4. The Itô-type double integrals 𝐼
1
, 𝐼
2
have the follow-

ing properties:

𝐸 [𝐼
1
] = 𝐸 [𝐼

2
] = 0, 𝐸

󵄨
󵄨
󵄨
󵄨
𝐼
1

󵄨
󵄨
󵄨
󵄨

2

=

ℎ
2

2

, 𝐸
󵄨
󵄨
󵄨
󵄨
𝐼
2

󵄨
󵄨
󵄨
󵄨

2

=

𝑝ℎ
2

2

.

(18)

Proof. The equalities 𝐸[𝐼
1
] = 𝐸[𝐼

2
] = 0 can be derived

directly from the properties of martingales. Moreover, by the
equality 𝐼

1
= [(Δ𝑤)

2
− ℎ]/2, we have

𝐸
󵄨
󵄨
󵄨
󵄨
𝐼
1

󵄨
󵄨
󵄨
󵄨

2

=

1

4

𝐸[(Δ𝑤
𝑛
)
2

− ℎ]

2

=

ℎ
2

2

. (19)

Also, it follows from the properties of Itô integral that

𝐸
󵄨
󵄨
󵄨
󵄨
𝐼
2

󵄨
󵄨
󵄨
󵄨

2

= 𝐸[∫

𝑡
𝑛+1

𝑡
𝑛

∫

𝑠

𝑡
𝑛

𝑑𝑤(𝑝𝑟)𝑑𝑤(𝑠)]

2

= ∫

𝑡
𝑛+1

𝑡
𝑛

𝐸[∫

𝑠

𝑡
𝑛

𝑑𝑤 (𝑝𝑟)]

2

𝑑𝑠

= ∫

𝑡
𝑛+1

𝑡
𝑛

∫

𝑠

𝑡
𝑛

𝑑 (𝑝𝑟) 𝑑𝑠 =

𝑝ℎ
2

2

.

(20)

This completes the proof.

Let 𝑞 = 1 − 𝑝. Then, we have the following lemma.

Lemma 5. Assume that there exist positive integers 𝑟, ]
𝑖
and

𝛿
𝑖
∈ [0, 1) such that

𝑟 ≤

1

𝑞

< 𝑟 + 1, 𝑖𝑞 = ]
𝑖
− 𝛿
𝑖
, 𝑖 = 0, 1, 2, . . . . (21)

Then, the sequence {]
𝑖
} is monoincreasing and has at most 𝑟+1

equal components.

Proof. It follows from 𝑖𝑞 = ]
𝑖
− 𝛿
𝑖
that

]
𝑖+1

+ 𝛿
𝑖
= ]
𝑖
+ 𝛿
𝑖+1

+ 𝑞, 𝑖 = 0, 1, 2, . . . . (22)

Let ⌊⋅⌋ denote the integer part of a real number. Then, by
𝑞, 𝛿
𝑖
∈ [0, 1) and ]

𝑖
∈ N, we have for all 𝑖 that

⌊]
𝑖+1

+ 𝛿
𝑖
⌋ = ]
𝑖+1
, ⌊]

𝑖
+ 𝛿
𝑖+1

+ 𝑞⌋ ≥ ]
𝑖
. (23)

Hence, it holds that

]
𝑖+1

≥ ]
𝑖
, 𝑖 = 0, 1, 2, . . . , (24)

This shows that the sequence {]
𝑖
} is monoincreasing.

For proving the second part of this lemma, we use reduc-
tion to absurdity. If the sequence {]

𝑖
} has 𝑟 + 2 components

which satisfy that

]
𝑖
0

= ]
𝑖
1

= ⋅ ⋅ ⋅ = ]
𝑖
𝑟+1

, where 0 ≤ 𝑖
0
< 𝑖
1
< ⋅ ⋅ ⋅ < 𝑖

𝑟+1
, (25)

then, by ]
𝑖
𝑟+1

−]
𝑖
0

= 0, 𝛿
𝑖
𝑟+1

∈ [0, 1), and 𝑞 > 1/(𝑟+1), we have

𝛿
𝑖
0

= 𝛿
𝑖
𝑟+1

+ (𝑖
𝑟+1

− 𝑖
0
) 𝑞 ≥

𝑖
𝑟+1

− 𝑖
0

𝑟 + 1

≥ 1. (26)

This is contrary to𝛿
𝑖
0

∈ [0, 1). Hence, Lemma 5 is proven.

With the above lemmas, the main result can be stated as
follows.

Theorem 6. Assume that the conditions (4) and (5) hold and
that there exist constants 𝜅,𝑀, and𝑁 ≥ 0 such that

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑥, 𝑢)

󵄨
󵄨
󵄨
󵄨

2

≤ 𝜅 (|𝑥|
2
+ |𝑢|
2
) , 𝑥, 𝑢 ∈ 𝑅

𝑑
, (27)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
󸀠

1
(𝑡, 𝑥, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑀,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
󸀠

2
(𝑡, 𝑥, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑁, 𝑥, 𝑢 ∈ 𝑅

𝑑
. (28)

Then, the extended Milstein method (14)–(16) is MS-stable
whenever

𝑐
1
+ 2𝑐
2
(𝑟 + 1) + 2𝑐

3
(𝑟 + 1) < 0, (29)

where

𝑐
1
= −2 (𝛼 − 2𝛾 −𝑀

2
𝛾) ,

𝑐
2
= 2 (𝛽 + 2𝛾 +𝑀

2
𝛾 + 𝑁

2
𝛾𝑝) , 𝑐

3
= 2𝑁
2
𝛾𝑝.

(30)
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Proof. By (14), we have

󵄨
󵄨
󵄨
󵄨
𝑥
𝑛+1

󵄨
󵄨
󵄨
󵄨

2

≤
󵄨
󵄨
󵄨
󵄨
𝑥
𝑛

󵄨
󵄨
󵄨
󵄨

2

+ 2 ⟨𝑥
𝑛
, ℎ𝑓 (𝑡

𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) + 𝑔 (𝑡

𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) Δ𝑤
𝑛

+ 𝑔
󸀠

1
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝐼
1

+ 𝑔
󸀠

2
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝐼
2
⟩

+
󵄨
󵄨
󵄨
󵄨
ℎ𝑓 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) + 𝑔 (𝑡

𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) Δ𝑤
𝑛

+ 𝑔
󸀠

1
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝐼
1

+ 𝑔
󸀠

2
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝐼
2

󵄨
󵄨
󵄨
󵄨
󵄨

2

≤
󵄨
󵄨
󵄨
󵄨
𝑥
𝑛

󵄨
󵄨
󵄨
󵄨

2

+ 2ℎ𝑥
𝑇

𝑛
𝑓 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)

+ 2𝑥
𝑇

𝑛
[𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) Δ𝑤
𝑛
]

+ 2𝑥
𝑇

𝑛
[𝑔
󸀠

1
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝐼
1
]

+ 2𝑥
𝑇

𝑛
[𝑔
󸀠

2
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝐼
2
]

+ 4ℎ
2󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)
󵄨
󵄨
󵄨
󵄨

2

+ 4
󵄨
󵄨
󵄨
󵄨
𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)
󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
Δ𝑤
𝑛

󵄨
󵄨
󵄨
󵄨

2

+ 4

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
󸀠

1
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)

󵄨
󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)
󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
𝐼
1

󵄨
󵄨
󵄨
󵄨

2

+ 4

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
󸀠

2
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)

󵄨
󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)
󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
𝐼
2

󵄨
󵄨
󵄨
󵄨

2

.

(31)
Using conditions (4) and (27) generates

𝐸 [𝑥
𝑇

𝑛
𝑓 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)] ≤ −𝛼𝐸

󵄨
󵄨
󵄨
󵄨
𝑥
𝑛

󵄨
󵄨
󵄨
󵄨

2

+ 𝛽𝐸
󵄨
󵄨
󵄨
󵄨
𝑥
𝑛

󵄨
󵄨
󵄨
󵄨

2

, (32)

𝐸
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)
󵄨
󵄨
󵄨
󵄨

2

≤ 𝜅 (𝐸
󵄨
󵄨
󵄨
󵄨
𝑥
𝑛

󵄨
󵄨
󵄨
󵄨

2

+ 𝐸
󵄨
󵄨
󵄨
󵄨
𝑥
𝑛

󵄨
󵄨
󵄨
󵄨

2

) , (33)

respectively. Moreover, theA
𝑡
𝑛

-measurability implies that

𝐸 [𝑥
𝑇

𝑛
[𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) Δ𝑤
𝑛
]]

= 𝐸 [𝑥
𝑇

𝑛
[𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝐸 (Δ𝑤

𝑛
| A
𝑡
𝑛

)]] = 0,

𝐸 [
󵄨
󵄨
󵄨
󵄨
𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)
󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
Δ𝑤
𝑛

󵄨
󵄨
󵄨
󵄨

2

]

= 𝐸 [
󵄨
󵄨
󵄨
󵄨
𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)
󵄨
󵄨
󵄨
󵄨

2

𝐸 (
󵄨
󵄨
󵄨
󵄨
Δ𝑤
𝑛

󵄨
󵄨
󵄨
󵄨

2

| A
𝑡
𝑛

)]

≤ 𝛾ℎ (𝐸
󵄨
󵄨
󵄨
󵄨
𝑥
𝑛

󵄨
󵄨
󵄨
󵄨

2

+ 𝐸
󵄨
󵄨
󵄨
󵄨
𝑥
𝑛

󵄨
󵄨
󵄨
󵄨

2

) ,

𝐸 [𝑥
𝑇

𝑛
[𝑔
󸀠

1
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝐼
1
]]

= 𝐸 [𝑥
𝑇

𝑛
[𝑔
󸀠

1
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝐸 (𝐼
1
| A
𝑡
𝑛

)]] = 0,

𝐸 [𝑥
𝑇

𝑛
[𝑔
󸀠

2
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝐼
2
]]

= 𝐸 [𝑥
𝑇

𝑛
[𝑔
󸀠

2
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝐸 (𝐼
2
| A
𝑡
𝑛

)]] = 0,

(34)

and a combination of Lemma 4, (5), and (28) gives

𝐸 [

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
󸀠

1
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)

󵄨
󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)
󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
𝐼
1

󵄨
󵄨
󵄨
󵄨

2

]

= 𝐸 [

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
󸀠

1
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)

󵄨
󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)
󵄨
󵄨
󵄨
󵄨

2

𝐸 (
󵄨
󵄨
󵄨
󵄨
𝐼
1

󵄨
󵄨
󵄨
󵄨

2

| A
𝑡
𝑛

)]

≤

1

2

𝑀
2
𝛾ℎ (𝐸

󵄨
󵄨
󵄨
󵄨
𝑥
𝑛

󵄨
󵄨
󵄨
󵄨

2

+ 𝐸
󵄨
󵄨
󵄨
󵄨
𝑥
𝑛

󵄨
󵄨
󵄨
󵄨

2

) ,

(35)

𝐸 [

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
󸀠

2
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)

󵄨
󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)
󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
𝐼
2

󵄨
󵄨
󵄨
󵄨

2

]

= 𝐸 [

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
󸀠

2
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)

󵄨
󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)
󵄨
󵄨
󵄨
󵄨

2

𝐸 (
󵄨
󵄨
󵄨
󵄨
𝐼
2

󵄨
󵄨
󵄨
󵄨

2

| A
𝑡
𝑛

)]

≤

1

2

𝑁
2
𝛾𝑝ℎ (𝐸

󵄨
󵄨
󵄨
󵄨
𝑥
𝑛

󵄨
󵄨
󵄨
󵄨

2

+ 𝐸
󵄨
󵄨
󵄨
󵄨
𝑥
𝑛

󵄨
󵄨
󵄨
󵄨

2

) .

(36)
Taking expectation on both sides of (31) and then substituting
(32)–(36) into the obtained inequality yield

𝐸
󵄨
󵄨
󵄨
󵄨
𝑥
𝑛+1

󵄨
󵄨
󵄨
󵄨

2

≤ 𝐸
󵄨
󵄨
󵄨
󵄨
𝑥
𝑛

󵄨
󵄨
󵄨
󵄨

2

+ (𝑐
1
+ 4𝜅ℎ) ℎ𝐸

󵄨
󵄨
󵄨
󵄨
𝑥
𝑛

󵄨
󵄨
󵄨
󵄨

2

+ (𝑐
2
+ 4𝜅ℎ) ℎ𝐸

󵄨
󵄨
󵄨
󵄨
𝑥
𝑛

󵄨
󵄨
󵄨
󵄨

2

+ 𝑐
3
ℎ𝐸
󵄨
󵄨
󵄨
󵄨
𝑥
𝑛

󵄨
󵄨
󵄨
󵄨

2

.

(37)

Combining (16) and (37) derives

𝐸
󵄨
󵄨
󵄨
󵄨
𝑥
𝑛+1

󵄨
󵄨
󵄨
󵄨

2

≤ 𝐸
󵄨
󵄨
󵄨
󵄨
𝑥
𝑛

󵄨
󵄨
󵄨
󵄨

2

+ (𝑐
1
+ 4𝜅ℎ) ℎ𝐸

󵄨
󵄨
󵄨
󵄨
𝑥
𝑛

󵄨
󵄨
󵄨
󵄨

2

+ (𝑐
2
+ 4𝜅ℎ) ℎ𝛿

𝑛
𝐸

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑛−]
𝑛
+1

󵄨
󵄨
󵄨
󵄨
󵄨

2

+ (𝑐
2
+ 4𝜅ℎ) × ℎ (1 − 𝛿

𝑛
) 𝐸

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑛−]
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨

2

+ 𝑐
3
ℎ𝛿
𝑛
𝐸

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑛−]
𝑛
+1

󵄨
󵄨
󵄨
󵄨
󵄨

2

+ 𝑐
3
ℎ (1 − 𝛿

𝑛
) 𝐸

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑛−]
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨

2

.

(38)
An induction to (38) yields

𝐸
󵄨
󵄨
󵄨
󵄨
𝑥
𝑛+1

󵄨
󵄨
󵄨
󵄨

2

≤ 𝐸
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

+ (𝑐
1
+ 4𝜅ℎ) ℎ

𝑛

∑

𝑖=1

𝐸
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖

󵄨
󵄨
󵄨
󵄨

2

+ (𝑐
2
+ 4𝜅ℎ) ℎ

𝑛

∑

𝑖=1

𝛿
𝑖
𝐸

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖−]
𝑖
+1

󵄨
󵄨
󵄨
󵄨
󵄨

2

+ (𝑐
2
+ 4𝜅ℎ) ℎ ×

𝑛

∑

𝑖=1

(1 − 𝛿
𝑖
) 𝐸

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖−]
𝑖

󵄨
󵄨
󵄨
󵄨
󵄨

2

+ 𝑐
3
ℎ

𝑛

∑

𝑖=1

𝛿
𝑖
𝐸

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖−]
𝑖
+1

󵄨
󵄨
󵄨
󵄨
󵄨

2

+ 𝑐
3
ℎ

𝑛

∑

𝑖=1

(1 − 𝛿
𝑖
) 𝐸

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖−]
𝑖

󵄨
󵄨
󵄨
󵄨
󵄨

2

.

(39)
Applying Lemma 5 to (39), it follows that

𝐸
󵄨
󵄨
󵄨
󵄨
𝑥
𝑛+1

󵄨
󵄨
󵄨
󵄨

2

≤ 𝐸
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

+ (𝑐
1
+ 4𝜅ℎ) ℎ

𝑛

∑

𝑖=1

𝐸
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖

󵄨
󵄨
󵄨
󵄨

2

+ (𝑐
2
+ 4𝜅ℎ) (𝑟 + 1) ℎ

𝑛

∑

𝑖=1

𝐸
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖

󵄨
󵄨
󵄨
󵄨

2

+ (𝑐
2
+ 4𝜅ℎ) (𝑟 + 1) ℎ

𝑛

∑

𝑖=0

𝐸
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖

󵄨
󵄨
󵄨
󵄨

2

+ 𝑐
3
(𝑟 + 1) ℎ

𝑛

∑

𝑖=1

𝐸
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖

󵄨
󵄨
󵄨
󵄨

2

+ 𝑐
3
ℎ (𝑟 + 1)

𝑛

∑

𝑖=0

𝐸
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖

󵄨
󵄨
󵄨
󵄨

2
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Figure 1: Numerical solutions with stepsizes ℎ = 1/24, 1/25, 1/26, 1/27.

≤ [1 + (𝑐
2
+ 4𝜅) (𝑟 + 1) + 𝑐

3
(𝑟 + 1)] 𝐸

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

+ ℎ [𝑐
1
+ 2𝑐
2
(𝑟 + 1) + 2𝑐

3
(𝑟 + 1) + 4𝜅ℎ

+ 8𝜅 (𝑟 + 1) ℎ]

𝑛

∑

𝑖=1

𝐸
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖

󵄨
󵄨
󵄨
󵄨

2

.

(40)

This shows that the positive series ∑𝑛
𝑖=1

𝐸|𝑥
𝑖
|
2 is bounded

when (29) holds and ℎ ∈ (0, ℎ
0
), where

ℎ
0
= min{1,

−𝑐
1
− 2𝑐
2
(𝑟 + 1) − 2𝑐

3
(𝑟 + 1)

4𝜅 [1 + 2 (𝑟 + 1)]

} . (41)

Therefore, it holds that lim
𝑛→∞

𝐸|𝑥
𝑛
|
2
= 0. This completes

the proof.

4. Numerical Illustration

In this section, we give a numerical example to illustrate the
obtained theoretical results. Consider the following stochas-
tic pantograph equation:

𝑑𝑥 (𝑡) = −

1

4

𝑥 (𝑡) [1 + cos2𝑥( 𝑡
2

)] 𝑑𝑡

+

1

5

𝑥 (𝑡) 𝑥 (

𝑡

2

) 𝑑𝑤 (𝑡) , 𝑡 > 0,

𝑥 (0) = 2.

(42)

It is easy to verify that the conditions ofTheorems 2 and 6 can
be satisfied with parameters

𝛼 =

1

4

, 𝛽 = 0, 𝛾 =

1

50

, 𝜅 =

1

16

,
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Figure 2: Numerical solutions with stepsizes ℎ = 1/22, 1/23.

𝑟 = 1, 𝑀 = 𝑁 =

1

5

, ℎ
0
=

428

6250

>

1

2
4
.

(43)
Hence, both the solution of (42) and its solving method (14)
are all MS-stable.

Applying the extended Milstein method (14)–(16), with
stepsizes ℎ = 1/2

4
, 1/2
5
, 1/2
6
, 1/2
7
∈ (0, ℎ

0
], respectively, to

(42) on interval [0, 20], we can obtain four groups of numeri-
cal solutions (see Figure 1), where we take the average of 1000
block samples. Figure 1 shows that the numerical solutions
are all stable. However, if we take a larger stepsize, then
the numerical stability cannot be assured. This is shown in
Figure 2, where stepsizes ℎ = 1/2

2
, 1/2
3
∉ (0, ℎ

0
] are used,

which leads to two groups of unstable solutions.

5. Conclusions

In this paper, a class of extendedMilsteinmethods for solving
nonlinear stochastic pantograph equations are suggested. A
mean-square stability criterion for this type of equations is
presented. It is proved that, under the suitable conditions, if
the stepsize satisfies the sufficient condition ℎ ≤ ℎ

0
, where

ℎ
0
is given by (41), then the Milstein methods preserve the

mean-square stability. How does one obtain an exact critical
stepsize ̃ℎ

0
such that the method is stable for ℎ ∈ (0,

̃
ℎ
0
]

and unstable for ℎ ∈ (
̃
ℎ
0
, +∞)? This is a difficult problem

which keeps open at present. We will work on it in the future
research.
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