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For real-time acoustic source localization applications, one of the primary challenges is the considerable growth in computational
complexity associated with the emergence of ever larger, active or passive, distributed sensor networks. These sensors rely heavily
on battery-operated system components to achieve highly functional automation in signal and information processing. In order
to keep communication requirements minimal, it is desirable to perform as much processing on the receiver platforms as possible.
However, the complexity of the calculations needed to achieve accurate source localization increases dramatically with the size of
sensor arrays, resulting in substantial growth of computational requirements that cannot be readily met with standard hardware.
One option to meet this challenge builds upon the emergence of digital optical-core devices. The objective of this work was to
explore the implementation of key building block algorithms used in underwater source localization on the optical-core digital
processing platform recently introduced by Lenslet Inc. This demonstration of considerably faster signal processing capability
should be of substantial significance to the design and innovation of future generations of distributed sensor networks.
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1. Introduction

Acoustic source localization by means of distributed sensor
networks requires very accurate time delay estimation. Also,
due to phenomenon like reverberation or environmental
additive noise, the intrasensor distance cannot be made very
large without reducing the coherence between the signals
whose mutual delay has to be estimated. The use of passive
sensor arrays for estimating the position of a generic acoustic
source represents an old and well-investigated area. Time
delay estimation techniques have been applied extensively
to this area. Many of these techniques are specific to
the geometrical configuration adopted for array placement
thus imposing heavy restrictions on the choice of sensor
configuration. For example, in the area of naval surveillance,
much attention has focused on adaptive beam-forming, pri-
marily in the context of rigid-geometry towed arrays [1-4].
Recently, however, a great deal of effort has been devoted to
the extraction of spatiotemporal information from a matrix

of spatially distributed sensors [5]. Some very innovative
schemes for the deployment and efficient performance of
distributed sensor networks have surfaced. The concept of
vector hydrophone was introduced to capture the vector
characteristics of impinging underwater acoustic fields [6].
In contradistinction to conventional arrays, where the Time
Difference of Arrival (TDOA) is embedded in the spatial
phase offsets of the sensors, here the TDOA is captured
through the intrinsic directionality of each component of the
vector hydrophone. Consequently, this technology requires
no a priori information on the signal frequency, and avoids
complications related to possible near-field curvature effects.
Another example is the spatiotemporal inverse filter [7], a
focusing technique developed primarily for medical imaging
but with clear underwater acoustics applicability, in which
the space and time propagation operator relating the signal
source to the sensor array is inverted in the Fourier domain.
Notwithstanding the considerable progress reported over
the years, today’s leading paradigms for acoustic source
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FiGure 1: A distributed sensor network detecting a submarine
lurking underwater.

localization still face substantial degradation in the presence
of realistic ambient noise and clutter [8]. Consequently,
researchers have started focusing on previously unexplored
areas to pose novel solutions for signal processing in
distributed sensor networks. Some promising new ideas of
relevance to distributed sensor-nets are emerging from the
field of source localization in multimedia applications [5].
There has also been a rapidly growing interest in near-real-
time remote detection and localization of underwater threats
using information provided by dynamically evolving sensor
networks. This interest has been driven by the requirement
to improve detection performance against much stealthier
targets using ever larger distributed sensor arrays under
a variety of operational and environmental conditions.
Figure 1 illustrates a typical distributed sensor network
employed for submerged threat detection. The sensor matrix
is comprised of randomly placed GPS-capable sonobuoys.
The buoys are passive omnidirectional sensors that provide
sound pressure measurements of the ambient conditions
and of the signal emitted/reflected from the target. A
self-localizing sonobuoy field provides a unique mode of
underwater target detection in terms of its deployment
flexibility, signal acquisition speed, focused ranging, and
capability for net-centric information fusion. Once the buoys
are placed, the aircraft monitors their transmissions and
processes the data to detect, classify, and localize the threat.
However, demanding calculations need to be performed to
achieve source localization, and the computational complex-
ity is known to increase significantly with the size of the
sensor array. This increase in complexity may be attributed,
for example, to the increasing number of sensor pairs
for which correlation functions have to be computed for
TDOA estimation. In fact, the development and deployment
of acoustic sensors are considered to be less challenging
than identifying and implementing the appropriate signal
processing algorithms and computing hardware that do
not stress the limited power budget of distributed sensor
networks. Without the simplifying assumption of regularly
placed sensors, a substantial processing power requirement
is necessary that cannot readily be met with standard, off-
the-shelf computing hardware.
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The Center for Engineering Science Advanced Research
(CESAR) at the Oak Ridge National Laboratory is involved
in the development and demonstration of exciting uncon-
ventional technologies for Distributed Sensor Signal (DSS)
processing. The CESAR efforts in the area of DSS processing
are driven by the emergence of powerful new processors such
as the IBM CELL [9], and the EnLight processing platform
recently introduced by Lenslet Inc. The latter, a tera-scale
digital optical-core device, is optimized for array operations,
which it performs in fixed-point arithmetic at 8-bit precision
(per clock cycle). Its peak performance is at least two orders
of magnitude faster than the fastest Digital Signal Processor
(DSP) available today. The primary objective of this article is
to introduce this revolutionary new processor, and to illus-
trate the utilization of the hardware on a typical algorithm
that might be useful in distributed sensor networks. For
illustrative purposes, we consider a methodology for locating
underwater threat sources from uncertain sensor data, which
assumes the availability of wavefront TDOA measurements
at each array element of a distributed sensor network. A
novel paradigm for implementing the TDOA calculation on
an EnLight device is also discussed. The specific goals of
this proof-of-concept effort were to demonstrate the ability
to achieve required accuracy in the computations and to
quantify the speedup achieved per EnLight processor as
compared to a leading-edge conventional processor (Intel-
Xeon or DSP). A successful demonstration of such ultra-
fast signal processing capability will enable the design of
building blocks for other processing-heavy distributed sensor
applications such as underwater communication and large
array beamforming.

This paper begins with a presentation of the key concepts
of threat-detection algorithms such as TDOA estimation via
sensor data correlation in both time and frequency domains.
A brief overview of the EnLight device is also presented
along with the above mentioned fundamental concepts.
Next, the implementation of TDOA calculations on the
EnLight platform is presented with the aid of numerical
simulation and actual optical hardware runs. The paper
concludes by highlighting the major accomplishments of this
research in terms of computational speedup and numerical
accuracy achieved via the deployment of optical processing
technology in a distributed sensor framework. This paper
omits discussions of the statistical nature and hypothesis
testing associated with target detection decision. The theory
assumes that the received signals are cross-correlated for
an estimation of the TDOA which provides a starting
point for target-tracking in time, velocity, and space. The
algorithm is designed for a single sound source localization
using a distributed array of acoustic sensors. Conventional
TDOA estimation procedures are used. The major focus of
this paper is the time-domain implementation of TDOA
estimation although the frequency domain analysis is briefly
discussed. The frequency domain counterpart of the analysis,
complete with matched filter bank simulation for active
sonar platforms detecting both target range and velocity
via Doppler-sensitive waveform synthesis and generation, is
presented in previous publications by the authors [10, 11]. A
shorter version of this paper appeared in [12].
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2. Technical Background

2.1. Source Localization in a Moving Sensor Field. Locat-
ing/tracking an acoustic target involves the estimation of
mutual time delays between the direct-path wavefront
arrivals at the sensors. Using an array of multiple sensors,
the TDOAs of the received signals are measured. The TDOAs
are proportional to the differences in sensor-source range,
called range differences. In order to reduce analytical and
computational complexity, it is common practice to make a
number of critical assumptions for TDOA calculations. Far-
field geometry is usually assumed concerning the location of
the target, which is justified by the nominally small aperture
of the sensor array. This, in turn, allows the use of the plane
wave approximation in the design of TDOA algorithms. For
intrasensor spacing, a regular grid is considered with a grid
resolution in excess of Asound/2 of the target transmission,
thus limiting the localization of sources emitting at higher
frequencies. In a moving sensor field as depicted in Figure 1,
where each individual sensor is subject to random motion,
such design assumptions are no longer valid. For dynamically
evolving distributed sensor-nets, the sensors may have
arbitrary spacing between them, and the aperture of the
distributed array may be comparable to the distance to the
source. Several acoustic source localization methodologies
based on TDOA estimation in distributed sensor-nets are
available [13-15]. In [14], an estimate for the source location
is found given the TDOAs and the distributed sensor
positions using Maximum Likelihood (ML) procedures. The
algorithm of Ajdler et al., as presented in [14], consists of two
steps. In the first step, TDOAs are estimated and in the sec-
ond step ML estimation for the source position is performed.
After evaluating the Cramer-Rao bound on the variance of
the location estimation, and comparison with simulation
and experimental results, Ajdler et al. demonstrated that a
general purpose distributed computing platform presents an
attractive alternative to conventional rigid-geometry sensor
networks. In an alternative strategy to the ML method, an
attempt is made to directly obtain a closed-form solution of
the source location [16]. Conventionally, the source location
is estimated from the intersection of a set of hyperboloids
defined by the range difference measurements and the
known sensor locations. The conventional methodologies for

the emitter location problem usually include iterative least
squares and/or ML estimates as described above. However,
closed-form noniterative solutions can be derived that are
usually less computationally burdensome than iterative least
squares or ML methods. Recently reported results indicate
that excellent accuracy can be achieved under minimal
operational constraints of sensor noncollinearity using this
paradigm [17]. Source localization algorithms based on max-
imizing the Steered Response Power (SRP) of an array and
different variations of SRP such as the SRP-PHAT (PHAse
Transform), where a phase transform weight function is used
to prefilter noise and reverberation interference, also deserve
to be mentioned [18].

Explicitly accounting for uncertainties in model param-
eters and sensor measurements has been found critical in
many areas of science and engineering. Here, the source
localization problem could be addressed by adapting the
recently developed Nonlinear Optimization Generalized
Adjustments (NOGA) methodology [19] that has proven to
be highly successful in modeling and uncertainty analysis
of complex nonlinear systems. The novelty of the NOGA
methodology for threat source localization resides in the
fact that it enables simultaneous estimation of uncertain
TDOAs and the target location. In order to simultaneously
estimate the TDOAs and the threat source coordinates,
a Lagrangian optimization of a generalized Bayesian loss
function is carried out that simultaneously minimizes the
differences between (i) the best estimate responses and the
sensor based responses and (ii) the best estimates and the
calculated parameters. It is important to note that the NOGA
methodology is entirely based on matrix-matrix or matrix-
vector multiplication operations. This makes it ideally suited
for implementation on array processors such as the EnLight
platforms to be described in the following subsection. It is
interesting to observe (Figure 2) that most methodologies
mentioned above require, as a necessary first step, accurate
estimates of TDOAs for each combination of sensor/target to
be obtained. Thus, for this proof-of-concept demonstration,
effort has focused on TDOA computations.

A signal s(f) emanating from a remote source is atten-
uated and corrupted by noise as it travels through the
propagation medium. Signal s(t) is received as x(¢) and y(t)



at two spatially distributed sensors. The received signals can
be mathematically modeled as

x(t) = s(t) +m (1),

y(t) = as(t + 1) + ny(1). W
Here the signal s(¢) and noises n;(t) and n,(t) are assumed
to be uncorrelated and « is the attenuation constant. In
distributed sensor networks, it is of interest to estimate the
delay, 7. The arrival angle of signal s(t) relative to the sensor
axis may be determined from the time delay 7 [20]. One
common method of determining the time delay 7 is to
compute the cross-correlation function

Rx,y(T) = E[x(f))’(t - T)]) (2)

where E denotes expectation. The argument 7 that maxi-
mizes (2) provides an estimate of time delay. Because of finite
observation time, however, R, ,(7) can only be estimated. For
example, an estimate of the correlation for ergodic processes
is given by [21]

Reyl) = 72— [ sto)pte - e 3)

It is also possible to extract the time domain function Ry,
from its frequency domain counterpart, the cross power
spectral density Gy, (f). The cross-correlation between x(t)
and y(t) is related to the cross power spectral density Gy, (f)
by the following well-known equation [13]:

Ryy(1) = _[iooon,y(f)eXPﬂﬂdef- (4)

For some applications, it may be necessary to include a
frequency weighing filter in the above equation for noise can-
celation. In practice, an estimate of Gy ,(f) can be obtained
to yield an estimate of IAZX,},(T) =%, éx,},(f)expﬂ”ffdf. This
is of interest, because (A?X,},( f) can be computed very fast by
the optical-core processor introduced in the sequel. For the
purpose of this research, a Generalized Cross Correlation
(GCC) method in the frequency domain was implemented
on the EnLight device. A time domain analysis, calculating
the correlation function R, ;, directly from the sliding sum of
the discrete-time sampled data sequences x and yi, was also
implemented. These results are presented and discussed in
the following sections.

2.2. EnLight Optical-Core Processor. Research efforts at Oak
Ridge National Laboratory include the feasibility demon-
stration of high-precision computations for grand chal-
lenge scientific problems using the novel, Lenslet-developed,
EnLight™256 processing platform. EnLight ™ 256 is a small
factor signal-processing chip (5.5 cm?) with an optical core.
The optical core performs the Matrix-Vector Multiplications
(MVM), where the nominal matrix size is 256 X 256. The
system clock is 125 MHz. At each clock cycle, 128 K multiply-
and-add Operations Per Second (OPS) are carried out, which
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F1GUre 3: The EnLight optical device. The architecture of this device
provides a strong rationale for using it in matrix-based applications.

yields a peak performance of 16 trillion operations per sec-
ond (or TeraOPS). The architecture of such a device provides
a strong rationale for using it in matrix-based applications.
Due to the inherent parallelism of the architecture, the
computational speed increases with the scale of the problem.
The scaling penalty of the optical chip is relatively small
compared to standard DSP electronics. The TDOA algorithm
discussed in this paper was implemented on both the
existing EnLight™ 64« prototype hardware and the scaled-
up EnLight™256 simulator. The EnLight™64a prototype
board is a proof-of-concept demonstration hardware for the
optical processor technology with a reduced size optical core.
The EnLight™256 hardware is in the development process
while the EnLight™?256 simulator provides the opportunity
to examine DSS implementation on this faster platform.
Subsequent demonstrations will be carried out on the
EnLight™256 implementation platform. EnLight™64a has
an operating clock of 60 MHz. The optical core has 64 input
channels, comprised from 256 vertical cavity surface emitting
lasers that are configured in groups of 4 per channel. The size
of the active matrix is 64 X 64, which is embedded in a larger
Multiple Quantum Well (MQW) spatial light modulator of
size 264 x 288. Sixty-four light detectors, integrated with an
array of analog-to-digital converters, comprise the 64 output
channels. The optical core performs the MVM function at
the rate of 60 X 10° x 642 x 2 = 492 Giga operations per
second. Each of the 64 data components in the input and
output channels has an 8-bit accuracy, which results in a data
stream of 60 X 10° X 64 X 8 bits/s = 30.7 Giga bits per second.
Figure 3 shows the EnLight™64a prototype board.

3. Numerical Simulation

In mobile target detection schemes, such as active sonar
systems, the accurate estimation of TDOA by filtering
through severely noisy data is crucial for tracking and target
parameter (such as velocity) estimation. To benchmark the
EnLight performance, three computer codes were written,
one using the Intel Visual FORTRAN-95 compiler, one using
the EnLightTM 256 simulator, and the other in MATLAB. The
former was needed to enable the fastest possible execution
on an Intel IA-32 dual Xeon processor system and to serve
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FiGURE 4: The distributed sensor-net and target coordinates.

as a benchmark for numerical accuracy. The MATLAB code
readily interfaces with the software of the EnLight™256
simulator, which is used to design the actual algorithm
that either runs on the existing EnLight™64a hardware
platform or is used to project the scaled performance for the
EnLight™?256. In that framework, a number of operational
simplifications are made. In particular, the following is
assumed: only a single target is present during the TDOA
estimation process, the same speed of sound is experienced
at each sensor location, each sonobuoy position is known
exactly (via GPS) as it drifts, and the measurement errors
for TDOAs are zero-mean Gaussian and independent for
each sonobuoy. For the TDOA calculation, a set of synthetic
data was generated. The sensor-net comprises 10 sonobuoys.
Figure 4 shows the projections on the x-y and the x-z planes
of the 10 sensor locations (in red) and the target position
(in blue) used to generate the synthetic data for the TDOA
estimation process. It is assumed that only 7 sensors are able
to detect the signal emanating from the target. The issue of
detection accuracy as a function of the number of sensors
is not considered in this article. It is assumed that both the
optical processor and the conventional processor use the
same number of sensors, and therefore have to calculate
the same number of correlations. Moreover, the issue of
whether correlations for all sensor pairs or only for a selected
subset should be used is not considered as that issue would
face both processors. However, as the optical processor is so
much faster (as demonstrated in subsequent sections), the
user would have the option of considering (if warranted) a
larger number of sensors without including a time-penalty
compared to the conventional processor.

For assessing the accuracy of the EnLight computations,
a very simple model is considered. It is assumed that the
target emits a periodic pulsed signal with unit nominal
amplitude. Pulse duration is 1SI (Sample Interval) and
interpulse period is 25 SIs. The size of one sampling interval
is 0.08 seconds. Noise and interference are taken as Gaussian
processes with varying power levels (typically up to unity).
Each sensor stores sequences of measured signal samples.
Sequence lengths can range from 1K to 80K samples.
The signature from the threat source becomes harder to
distinguish as the noise and interference level rises. This

contributes to the rationale for using correlation techniques
in the source localization process.

3.1. Numerical Simulation via Frequency Domain Analysis.
The simulation comprised of two approaches. For the first
scenario, calculations were done in the frequency domain
and the cross-power spectrum for each pair of sensors
was computed from the corresponding finite-length data
sequences following the methodology described in (4).
Cross Correlations (CC) were calculated in terms of the
inverse Fourier transform of the cross-power spectra. The
maximum of each CC provided an estimate of the associated
TDOA. The required algorithms were implemented both
in 64-bit Visual FORTRAN and at 8-bit precision for the
EnLight™256 simulator. It was assumed that only 7 of the
10 sensors were able to detect a signal emanating from the
acoustic source. Since synthetic data were available, the exact
results can be calculated from the definition of the TDOAs
according to the relation

_IIR™ =R IR = Rl
B c c ’

(5)

mn

Here R™, R", and R® are the spatial coordinates of sensor
m, sensor n, and the source, respectively. The quantity ¢
is the sonic speed (assumed to be identical at all sensor
locations). Calculations were carried out using Intel Visual
FORTRAN in 64-bit precision. In Figures 5 and 6, the
corresponding TDOA values (5) are colored in blue. Sensor
pairs are ordered lexicographically on the ordinates, that is,
1 = (1,2); 2 = (1,3),...21 = (6,7). Next, the TDOAs
were estimated from noise-corrupted data samples collected
at each sensor. The correlations were calculated in terms of
Fourier transforms and the computations were again carried
out using 64-bit Intel Visual FORTRAN. The values of the
corresponding TDOAs (4) are colored in brown in Figures
5(a) and 6(a). Next, the distributed sensor data processing
was implemented on the EnLight™256 simulator (4). The
TDOA values obtained from the simulator are colored in
yellow in Figures 5(b) and 6(b). For benchmark purposes,
two sets of data were used. Each set corresponds to a different
SNR level. These levels were selected to show the break-
point of correct TDOA estimation for signals buried in ever
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FIGURE 5: (a) TDOA magnitude (in units of sampling intervals) versus sensor pairs (ordered lexicographically) for 7 active sensors. Exact
results are in blue; sensor-inferred results (computed using 64-bit floating-point FORTRAN) are in brown, SNR = —24dB. (b) TDOA
magnitude (in units of sampling intervals) versus sensor pairs (ordered lexicographically) for 7 active sensors. Exact results are in blue;
sensor-inferred results (computed using EnLight™256) are in yellow; SNR = —24 dB.
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FIGURE 6: (a) TDOA magnitude (in units of sampling intervals) versus sensor pairs (ordered lexicographically) for 7 active sensors. Exact
results are in blue; sensor-inferred results (computed using Intel Visual FORTRAN) are in brown, SNR = —28dB. (b) TDOA magnitude
(in units of sampling intervals) versus sensor pairs (ordered lexicographically) for 7 active sensors. Exact results are in blue; sensor-inferred

results (computed using EnLight™256) are in yellow; SNR = —28 dB.

stronger noise, when calculations are performed in high
precision (floating point). This also illustrates the occurrence
of potential additional discrepancies introduced by the fixed
point limited precision EnLight architecture. As observed in
Figures 5(a) and 5(b), both the EnLight simulator and the
high-precision visual FORTRAN computations from sensor
data produce TDOA estimates that are identical to the exact
model results for SNR = —24dB. Similar quality results
were obtained for all sets of equal or higher SNR, and for
sequence lengths of at least 2 K samples. Next a target signal
embedded in noise at SNR = —28 dB was considered. Figures
6(a) and 6(b) illustrate the emergence of discrepancies
in the calculated values of correlation peaks due to the

increased noise level. The TDOA for the sensor pair (2,7)
is estimated incorrectly (wrong correlation peak selected as
result of noise). Figure 6(b) shows that two discrepancies
appear in the EnLight computations at —28 dB SNR. The
TDOA discrepancy for the sensor pair (2,7) corresponds to
the one noted in Figure 6(a) for the 64-bit Visual Fortran
calculations. Here another error (peak misclassification) is
introduced for the sensor pair (4,5). It is a direct consequence
of the limited precision used in EnLight. Although the overall
quality of the results is exceptional, the items discussed
above do provide some indication of the slight limitations
in precision exhibited by the EnLight processor.
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3.2. Numerical Simulation via Time Domain Analysis. For
the time domain analysis, the cross-correlation Ry, for two
discrete-time sequences [xx] and [yx] (each of length M) of
sensor data, is calculated as

k=M-1
Ryy(n) = corr([xi], [yx]) = D Xiyneko (6)
k=0
where n = 0,1,...M — 1. The correlation values obtained
from the above equation can be divided by the factor

M — n to obtain the estimated mean lagged product [22].
The correlation function was calculated for [x;] and [y]
sequences, both with length M = 1024 and heavily corrupted
by zero-mean Gaussian noise of SNR = -28dB. A 128
shift cross-correlation was calculated in MATLAB. Therefore,
for the current example, n = 0,1,...,L — 1, where L =
128 < M. These calculations were also implemented on the
actual optical hardware and compared with the MATLAB
simulation. Some loss of accuracy is evident due to conver-
sion to 8-bit fixed-point representation in EnLight™64a.
However, the same values of the TDOAs, as identified by
the cross-correlation peaks, were obtained as the MATLAB
simulations, even in the presence of significant noise signal.
The hardware implementation scheme, experimental results,
and simulation results from MATLAB are presented in the
next section and in Figures 7, 9(a), and 9(b).

4. Hardware Implementation

The EnLight processor is ideal for implementing large time
series correlation calculations in terms of matrix-vector
multiplication operations. The processor works as a matrix-
vector multiplier in which a complete MVM operation is
performed for each machine cycle (8 ns). Moreover, a new
vector can be presented for multiplication at every machine
cycle. For cases where a new vector is multiplied by the
same matrix, there is no Input/Output (I0) communication
latency in the processing time. Since a 30us IO time is
currently needed to reload an entire matrix memory, there
is a strong incentive to avoid algorithm constructs where
this would have to be done often, and would thereby create
an imbalance between IO and core computation. However,
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FIGURE 9: (a) The correlation function obtained via MATLAB simulation (blue) and EnLight™ 64« hardware (red, dotted) runs. Sensor pairs
Ri2, Ri3, Rys are shown. (b) The correlation function obtained via MATLAB simulation (blue) and EnLight™ 64« hardware (red, dotted)

runs. Sensor pairs Rys, Ry, Ry7 are shown.

TasLE 1: Comparison of the magnitudes of the cross-correlation functions obtained via MATLAB simulations and hardware runs for sensor

pairs (1,2), (1,3), (1,4), (1,5), (1,6), (1,7).

Ry Rys Ry Ris Ri6 Rz
k=1 k=3 k=5 k=6 k=7 k=38
MATLAB 79.1978 95.5889 80.3471 100.9231 123.0550 181.2274
EnLight 64 « 65.0842 103.5966 85.9405 91.9592 137.1272 185.1162
A 17.82% 8.38% 6.96% 8.88% 11.44% 2.15%

changing the entire matrix for every multiply operation
would be an extremely inefficient and relatively unlikely
event. Therefore, the matrix is prebuffered or loaded onto the
spatial light modulator (“local memory”) in order to achieve
the required processing speed. The algorithms employed
take this into account. The particular scheme for correlation
calculation on the EnLight platform depends on the length
of the two time series and the maximum correlation shift to
be calculated. The loading scheme for the matrix memory
and the vector register needs to be modified according to
the specifics of the data sets to be manipulated. A detailed
description of the hardware loading scheme for a correlation
calculation of M = 1024 is presented in Figure 7. As shown
in Figure 7, the initial step in the calculation is to build a
4 x 256 matrix M1 from time series [x;] where the sequence
length M = 1024. Next a 256 X 1024 matrix M2 is built
from time series [yx] where each row is shifted to the left
by one element with respect to the previous row. The end
elements are padded with zeros. This scheme is followed
for the first 128 rows, as a correlation for maximum shift
of 128 is performed for this example. Rows 129-256 are

padded with zeros. Next, M2 is partitioned into four matrices
each with dimension 256 x 256 as shown in Figure 7. After
the matrices M1 and M2 are constructed, they are loaded
into the optical hardware. First the submatrix M3 is loaded
into the EnLight matrix memory. Then the first row of
matrix M1 is loaded into the vector register. Matrix-vector
multiplication is performed as M3 X M; (row1). Steps 5-6 are
repeated three more times and the products are added at the
end to produce the 128 shift correlation. For the example in
hand, the data sequence length is 1024, EnLight matrix size
is 256 x 256, and the vector register size is 256 x 1. Four
machine cycles are needed to implement the calculations
(1024/256 = 4). Each matrix-vector multiplication in the
optical core takes 8ns. With one processing node, a total
of 8 Xx 4 = 32ns is required to complete the entire
128-shift correlation function. If multiple processing nodes
are used, then this time is further reduced. The reduced
computational complexity of the EnLight processor arises
from the fundamental innovation enabled by optics, namely,
that an MVM operation, the conventional complexity of
which is order N? (matrix dimension N X N), can now



Journal of Sensors

be performed in order 1. That is, the processor performs a
matrix-vector multiplication in a single clock cycle. This is
true if the data sequence fits within the matrix memory and
vector register. Otherwise more machine cycle is needed (4
in this example). As is evidenced by the previous example,
one has to be somewhat aware of hardware architecture
while programming in the EnLight device. The optimization
of the loading schemes for the matrix memory and vector
registers, as dictated by the details of the algorithm, is also
another area of intellectually stimulating research. The signal
processing flow diagram of Figure 8 outlines the hierarchical
structure of software interfaces with the EnLight processing
board, where the higher level programming languages such
as FORTRAN, C, or MATLAB (current implementation)
generate Hardware Description Language (HDL) files and
bit-streams via the use of Xilinx Sysgen blocks of the
MATLAB/Simulink module to program the FPGAs that
access the optical core. As shown in Figure9, excellent
results were obtained using simple data-scaling procedures,
without need to invoke (at this point) available [23], more
sophisticated techniques for high-accuracy computation
with low-precision devices.

5. Results and Discussion

The correlation functions R,,, were calculated for each
sensor pair in the time domain and implemented on the
hardware in order to demonstrate the loading scheme dis-
cussed in the previous section (also illustrated in Figure 7).
As the EnLight™256 device does not exist yet, the actual
hardware calculations were performed on the EnLight ™ 64«
prototype board. The extension of the loading scheme to
the o board is straight-forward but more machine cycles (4
times as many) are needed to perform the same calculations.
Figures 9(a) and 9(b) compare the MATLAB simulations
with the EnLightTM64(x hardware runs. As can be seen, the
numerical accuracy (with respect to the correct locations of
the cross-correlation peaks) of the hardware runs compares
very favorably with the high precision MATLAB simulations.
The red plots represent hardware runs and the blue plots
represent MATLAB simulations. The x—axes are expanded
for each plot for better visualization of the correlation
peaks. Some loss of accuracy in the magnitudes of the
correlation functions is evident due to the conversion to
an 8-bit precision scheme. This loss of accuracy is due
to quantization. However, the locations of the correlation
peaks coincide with the MATLAB results for Ry,, Ri3, Ry,
Ris, Ris, and Ry7. The simulation and hardware data sets
were further compared by calculating the percent difference
in the magnitudes of the cross-correlation function as
A= (RMATLAB - REnLight/RMATLAB) x 100. The A values were
calculated for the cross-correlation peaks that identify the
estimated time delay 7. Table 1 lists the various A values.
As can be seen, the A values range from 17% (Ri12) to 2%
(Ry7). For some applications, these deviations in numerical
values may be considered too high. There are many applica-
tions where inherent higher numerical precision is needed.

These include computation involving relative orientations of
objects undergoing multiple translations and rotations, the
Gauss method in Linear Algebra, multiscale problems, and
so forth. However, for the benchmark source localization
problem discussed in this paper, the absolute magnitudes
of the cross-correlation functions are not important for
the accuracy of TDOA estimation. It is the locations of
the cross-correlation maxima and the relative ratios of
the magnitudes of the maxima that are crucial for the
determination of the quantity 7. The limited precision
EnLight optical-core processor correctly identifies the TDOA
values as does the high precision MATLAB simulation. In
order to take advantage of the processing speed of the
optical-core processor for DSS applications, one has to be
aware of the device architecture and its limitations. The
algorithm also needs to be adapted to circumvent the device
limitations. One such circumventing technique is to trade
higher precision (in bits) for added clock cycles of the
processor [24]. In [24], the authors present schemes to
enhance the bit resolution of a charge domain device MVM
processor by storing each bit of each matrix element as a
separate CCD (Charge Coupled Device) charge packet. The
bits of each input vector are separately multiplied by each
bit of each matrix element in massive parallelism and the
resulting products are combined appropriately to synthesize
the correct product. It is possible to extend the accuracy
of the EnLight calculations by employing similar advanced
parallel data processing techniques as discussed in [23].
However, as has been demonstrated, for properly structured
algorithms, the 8-bit native accuracy of the optical chip is not
an impediment to accurate underwater source localization.
On the other hand, the high processing speed of the
EnLight platform offers advantages for DSS applications that
are unparalleled by conventional processors. The research
presented in this paper identify optical-core computing
devices as ideal signal processing nodes for distributed
sensor networks performing real-time target/threat detection
and tracking. Research is also underway to improve the
native accuracy of optical-core platforms via improved
hardware design. The present work serves as a preliminary
investigation of the suitability of optical-core processors as
distributed sensor-net compute nodes. In terms of processing
speed, benchmark calculations were carried out for Fourier
transforms of long-signal sequences. In particular, the exe-
cution speed of the EnLight™64a was compared to that
of a computing platform using dual Intel Xeon processors
running at 2 GHz and having 1 GB RAM. The benchmark
involved the computation of 32 sets of 80 K complex samples
transforms. For each sample, both the forward and the
inverse Fourier transforms were calculated. The measured
times were 9, 626 ms on the dual Xeon system, versus 1.42 ms
on the EnLight. This corresponds to a speedup of over 13,000
on a per processor base. More details on these computations
can be found in [10, 11].

We have presented an example case where the correlation
lags (Figures 9(a) and 9(b)) are positive. However, (6) may be
easily modified to consider negative lags. We refer the reader
to [25] for a discussion of calculating negative lags using the
modification of the methodology presented here.
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6. Conclusion

Distributed sensors with optical computing platforms as
onboard devices present an attractive alternative to conven-
tional dedicated sensor arrays. Future advances in DSS signal
processing for improved target detection, tracking, and
classification in highly noise-corrupted environments can be
realized through the development of distributed systems that
combine superior sensors and highly efficient computational
nodes consisting of optical-core devices such as the EnLight
platform. Emerging classes of distributed sensors for naval
target detection algorithms employ data/information fusion
of diverse transmit waveforms such as Constant Frequency
(CF), Linear Frequency Modulation (LFM), and Sinusoidal
Frequency Modulation (SEM) [26]. The fusion scheme is not
only more robust, but also preferable in terms of detection
probability and estimation accuracy. Fusion algorithms
are, however, notoriously computationally intensive and
demand the use of highly efficient computational platforms.
The numerical simulations and hardware implementation
presented in this paper build the first stage in creating a
testbed for evaluating the performance of digital, optical-
core processors in facilitating DSS signal processing. Pre-
liminary estimates for the TDOA computation, the core of
many source localization algorithms, implemented on an
EnLight prototype processor indicate a speedup factor of the
order of 13,000 compared to a dual processor Xeon system.
Combined with its low power requirements (approximately
50W per processor), the projected tera-scale throughput
of optical-core processor technology can alleviate critical
signal processing bottlenecks of relevance to many dis-
tributed sensor-net programs. This, in turn, should enable
the efficient implementation of new classes of algorithms
not considered heretofore because of their inherent com-
putational complexity such as asynchronous, multisensor,
multitarget tracking under uncertainty of noise character-
istics and sensor spatial coordinates. Future research in
this area will focus on demonstrating the ability to achieve
the required speed and accuracy in probabilistic source
localization algorithms through the seamless integration
of optical-core processors in distributed sensor networks.
Efforts will also be made to further quantify the speedup
achieved per processor as compared to leading-edge DSP and
multicore processors over a broad range of applications, to
determine the scaling properties per processor as a function
of the number of sensors, and to characterize the SNR gain
and detection improvement as functions of various sensor
network parameters such as size and geometry.
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