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Abstract. Phylogenetic inference is considered a grand challenge in Bioinformatics due to its immense computational require-
ments. The increasing popularity and availability of large multi-gene alignments as well as comprehensive datasets of single
nucleotide polymorphisms (SNPs) in current biological studies, coupled with rapid accumulation of sequence data in general,
pose new challenges for high performance computing. By example of RAxML, which is currently among the fastest and most
accurate programs for phylogenetic inference under the Maximum Likelihood (ML) criterion, we demonstrate how the phylo-
genetic ML function can be efficiently scaled to current supercomputer architectures like the IBM BlueGene/L (BG/L) and SGI
Altix. This is achieved by simultaneous exploitation of coarse- and fine-grained parallelism which is inherent to every ML-based
biological analysis. Performance is assessed using datasets consisting of 270 sequences and 566,470 base pairs (haplotype map
dataset), and 2,182 sequences and 51,089 base pairs, respectively. To the best of our knowledge, these are the largest datasets
analyzed under ML to date. Experimental results indicate that the fine-grained parallelization scales well up to 1,024 processors.
Moreover, a larger number of processors can be efficiently exploited by a combination of coarse- and fine-grained parallelism.
We also demonstrate that our parallelization scales equally well on an AMD Opteron cluster with a less favorable network latency
to processor speed ratio. Finally, we underline the practical relevance of our approach by including a biological discussion of the
results from the haplotype map dataset analysis, which revealed novel biological insights via phylogenetic inference.
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1. Introduction

Phylogenetic trees are used to represent the evolu-
tionary history of a set of n organisms. A multiple
alignment of DNA and/or protein sequences that rep-
resent these n organisms can be used as input for phy-
logenetic inference. In a phylogeny the organisms of
the input dataset are located at the tips (leaves) of a
binary tree and the inner nodes represent extinct com-
mon ancestors. Evolutionary events such as mutations
of molecular sequences are modeled to occur along the
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branches of the tree, between ancestor and descendant.
Phylogenetic trees have many important applications
in medical and biological research (see [1] for a sum-
mary) ranging from mapping of the emergence of in-
fectious diseases [17] to the tests of whether Caribbean
frogs have a common origin or represent multiple in-
dependent invasions of the islands [16].

Due to the continuously accelerating accumulation
of sequence data, caused, e.g., by the recent introduc-
tion of new massively parallel sequencing technolo-
gies such as found in the 454 pyrosequencing machine
(http://www.454.com/), there is an increasing demand
to compute large trees which often comprise thousands
of organisms, each represented by data from several
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genes, thousands of SNPs, or whole genomes. Since
alignment matrices continuously grow in both dimen-
sions (number of organisms and alignment length),
efficient parallel phylogeny programs are required to
handle memory demands (which are primarily a func-
tion of alignment length) and growing inference times
(which are primarily a function of the number of or-
ganisms).

The main algorithmic problem computational phy-
logeneticists face consists in the huge number of po-
tential alternative tree topologies for a given set of
n sequences. In fact, it has recently been shown that
the Maximum Likelihood (ML) phylogeny problem
is NP-hard [6]. The algorithmic complexity of this
problem is due to the vast number of alternative tree
topologies which grows exponentially with the num-
ber of organisms n, e.g. for n = 50 there already ex-
ist 2.84 × 1076 alternative trees. In the worst case, in
order to find the Maximum Likelihood tree, all poten-
tial alternative trees would need to be constructed and
evaluated under ML. Thus, for trees containing more
than 20–25 sequences, efficient heuristic tree search al-
gorithms are required to reduce the size of the search
space, since the problem cannot be solved any more.

Significant progress in the field of heuristic ML
search algorithms has been achieved over the last
5 years with the release of algorithms implemented in
programs such as IQPNNI [20], PHYML [14], GARLI
[32] and RAxML [25,27], to name but a few. Note
that, none of these heuristic search algorithms are
guaranteed to find the ML tree, and will hence only
yield a best-known ML tree. In order to explore the
search space more thoroughly, some algorithms such
as RAxML offer the possibility to initiate multiple tree
searches from distinct starting points (starting trees),
i.e. to conduct multiple ML tree searches.

In addition to the algorithmic difficulty, ML-based
inference of phylogenies is memory- and floating
point-intensive. In fact, both memory consumption as
well as inference times grow linearly with the num-
ber of alignment columns (see Section 3.1). Due to the
continuous accumulation of sequence data, the appli-
cation of high performance computing techniques is
becoming a crucial factor for the reconstruction of ever
larger phylogenies and the success of phyloinformat-
ics.

RAxML-7.0.0 [25] (Randomized Axelerated Max-
imum Likelihood version 7) is an open-source code
for large-scale ML-based [11] inference of evolution-
ary trees using multiple alignments of DNA and/or AA
(Amino Acid/Protein) sequences. It is becoming in-

creasingly popular in real-world biological studies and
forms an integral component of the CIPRES (Cyber-
Infrastructure for Phylogenetic RESearch, www.phylo.
org) project and the greengenes workbench [9] (green-
genes.lbl.gov).

Moreover, some of the largest published ML-based
phylogenetic analyses to date have been conducted
with RAxML [12,19,23]. A recent performance study
[25] on real world datasets with more than 1,000 se-
quences reveals that RAxML is able to find better
trees in less time and with lower memory consumption
than other current ML programs (IQPNNI, PHYML,
GARLI, MrBayes).

By example of RAxML we present a generally ap-
plicable parallelization strategy for ML-based phy-
logeny programs to current supercomputer architec-
tures like the IBM BLueGene/L or the SGI Altix as
well as common cluster architectures. We also devise
an efficient mechanism to distribute data structures
across nodes which removes memory requirements as
a limiting factor of large-scale phylogenetic analyses.
The performance of our parallelization is assessed un-
der the GTR+Γ model of evolution [31] using the two
largest datasets that have been analyzed under ML to
date, in terms of input matrix dimensions and memory
footprint:

• A multi-gene alignment of 2,182 mammalian se-
quences with 51,089 nucleotide positions.

• An alignment of non-redundant SNPs (Single Nu-
cleotide Polymorphisms) on the human chromo-
some 1 that consist of 270 sequences and 566,470
base pairs.

A full analysis on these datasets is currently not feasi-
ble on conventional machines.

The remainder of this paper is organized as fol-
lows: First, we review related work on parallelization
of ML programs (Section 2). In Section 3 we describe
a new parallelization strategy for such programs that
exploits fine-grained (Section 3.1) and coarse-grained
(Section 3.2) parallelism. Our experimental setup and
the performance analysis of the proposed paralleliza-
tion strategy are provided in Section 4. The biological
results and insights we obtained from our large-scale
phylogenetic analyses on HPC systems are presented
in Section 5. We conclude the paper with Section 6.

2. Related work and previous parallelizations
of RAxML

RAxML exploits two distinct levels of parallelism:
fine-grained loop-level parallelism and coarse-grained
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embarrassing parallelism. The program has been previ-
ously parallelized with OpenMP to exploit loop-level
parallelism.1 Like every ML-based program, RAxML
exhibits a source of loop-level parallelism in the like-
lihood functions which typically consume over 95%
of the overall computation time. The OpenMP imple-
mentation scales particularly well on large multi-gene
alignments due to increased cache efficiency [28]. Note
that loop-level parallelism can further be exploited at
two levels of granularity: at a comparatively coarse-
grained OpenMP level and at a fine-grained CPU level
via SIMD instructions. These two layers of loop-level
parallelism have been exploited in a recent RAxML
porting to the IBM CELL processor [4,5]. However,
the main focus of porting RAxML on Cell was on ex-
ploring programming and scheduling techniques for
this architecture, using a complex bioinformatics ap-
plication. In contrast to the current paper, the work
on Cell represents a proof-of-concept implementation,
rather than a parallelization for large-scale production
runs.

The MPI version of RAxML exploits the embarrass-
ing parallelism that is inherent to every real-world phy-
logenetic analysis. In order to conduct such an analysis
(see [12] for an example), about 20–200 distinct tree
searches (multiple inferences) to find a best-scoring
ML tree on the original alignment as well as a large
number of (100–1,000) bootstrap (BS) analyses have
to be conducted. Bootstrap Analyses are required to
assign confidence values ranging between 0.0 and 1.0
to the inner nodes of the best-known/best-found ML
tree. This allows one to determine how well-supported
certain parts of the tree (the hypothesis) are and is
important for the respective biological conclusions.
Bootstrapping is analogous to multiple inferences. The
only difference being, that inferences are conducted
on a randomly re-sampled alignment or BS replicate,
i.e., a certain number of alignment columns are re-
weighted for every bootstrap run. Phylogenetic boot-
strapping can be regarded as assessment of the topo-
logical stability of the tree under slight alterations of
the input data.

All those individual tree searches, be it bootstrap or
multiple inferences, are completely independent from
each other and can thus be exploited by a simple
master–worker scheme. If there is a sufficient amount
of memory per CPU and every CPU can be assigned
an inference job, this represents the most efficient ap-
proach to exploit HPC platforms for production runs.

1The latest release of RAxML uses Pthreads instead of OpenMP.

Most other parallel implementations of ML pro-
grams [10,20,26,29,32] have mainly focused on the
intermediate level of parallelism (inference/search al-
gorithm parallelism) which is situated between the
loop-level parallelism and coarse-grained parallelism
currently exploited in RAxML. The work on the ex-
ploitation of inference parallelism mainly deals with
highly algorithm-specific and mostly MPI-based paral-
lelization of various hill-climbing, genetic, as well as
divide-and-conquer search algorithms. Typically, such
parallelizations yield a lower parallel efficiency com-
pared to the embarrassing and loop-level types due to
hard-to-resolve dependencies in the respective search
algorithms. Moreover, these parallelizations are much
more program-specific and thus not generally applica-
ble. Minh et al. [21] recently implemented a hybrid
OpenMP/MPI version of IQPNNI which exploits loop-
level and inference parallelism.

3. A parallelization scheme for RAxML

Though there exist SMP-based supercomputers like
the SGI Altix where communication between several
threads or processes can be achieved via shared mem-
ory, we use MPI as programming paradigm for both
levels of parallelism (coarse- and fine-grained) for the
following reasons:

• Most parallel architectures (for example, Linux
clusters or the IBM BlueGene/L) are non-SMP
systems, a generally applicable approach cannot
rely on the availability of a pure SMP system.

• Using message-passing on SMP systems is tech-
nically feasible and exhibits good performance
since messages between processes are exchanged
via shared memory.

• Parallelizations for shared memory systems based
on OpenMP frequently exhibit suboptimal scala-
bility because the required data locality – which
is particularly important on NUMA systems – is
hard to achieve and control [22]. Given the fact
that MPI-processes do not share common mem-
ory regions, data locality for each process is in-
duced by the programming paradigm.

Thus, a hybrid MPI/MPI-based coarse-/fine-grained
parallelization provides a sufficient degree of flexibil-
ity to either simultaneously compute many jobs on
a relatively short alignment or to orchestrate a large
number of processors for the joint computation of the
likelihood function on very long and memory-intensive
alignments on a broad variety of HPC architectures.
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3.1. Fine-grained parallelism

As already mentioned the computation of the like-
lihood function consumes over 90–95% of total ex-
ecution time in all current ML and Bayesian imple-
mentations. Due to their intrinsic fine-grained paral-
lelism coupled with a low number of dependencies, the
ML functions thus represent ideal candidates for paral-
lelization at a low level of granularity.

To compute the likelihood of a fixed unrooted tree
topology with given branch lengths one needs to com-
pute the entries for all likelihood vectors, which are lo-
cated at the inner nodes of the tree, bottom-up towards
a virtual root that can be located at any branch of the
tree. For DNA data each of the m entries, where m is
the alignment length, of an inner likelihood vector con-
sists of 4 double values (20 double values for amino
acids). These double values contain the probabilities of
observing an A, C, G or T, the 4 DNA-bases adenine,
guanine, cytosine and thymine, at this specific inner
node. If in addition, as in the present case, the discrete
Γ model of rate heterogeneity [31] with 4 discrete rates
is used, each entry of the likelihood vector consists of
4 · 4 = 16 (4 · 20 = 80 for AA) double values, 4 (20)
for each discrete rate. The sequences of the alignment
are located at the tips of the tree topology and are rep-
resented by tip vectors which consist of simple char*
arrays of length m to which the AA or DNA alphabet
is mapped (see [2] for more implementation details).

The data-structures required to store these n se-
quences at the tips and the n − 2 likelihood vectors at
the inner nodes account for more than 90% of the to-
tal memory footprint of RAxML. In fact, the memory
consumption of all ML and Bayesian implementations
is largely dominated by these data structures.

Once the likelihood vectors have been computed, the
log likelihood value of the tree topology can be eval-
uated by summing up over the likelihood vector val-
ues to the left and right of the virtual root. Moreover,
in order to just obtain the Maximum Likelihood value
for a single fixed tree topology, all individual branch
lengths must be optimized with respect to the overall
likelihood score. For a more detailed description please
refer to [11] and [24]. Note that, most current search
algorithms such as GARLI, RAxML, or PHYML, do
not re-optimize all branch lengths after a change in the
tree topology but carry out local optimizations in that
neighborhood of the tree which is most affected by the
change. The main bulk of these computations consists
of for-loops over the length m of the alignment. The
individual iterations of the for-loops over tip and like-

lihood vectors are independent from each other. This
property is due to one of the fundamental assumptions
of the ML model which states that individual columns
evolve independently from each other [11].

We now summarize the three basic operations at
an abstract level and provide their approximate contri-
butions to overall run-time. All operations essentially
consist in combining the values of two or three likeli-
hood and/or tip vectors via a relatively large number of
floating point operations:

1. Computation of partial likelihood vectors (ap-
proximately 55–60% of run-time): This operation
computes the entries of a likelihood vector lo-
cated at an inner node p by combining the values
of the likelihood or tip vectors and branch lengths
of its two descendants. Thus, this function oper-
ates on 3 likelihood/tip vectors but does not re-
quire any reduction operations.

2. Log likelihood value computation (approximate-
ly 5% of run-time): This function just combines
the values of two likelihood/tip vectors at the
nodes located at either end of the branch where
the virtual root has been placed and computes the
log likelihood score. It requires a global reduc-
tion operation.

3. Branch length optimization (approximately
30–35% of run-time): This operation optimizes
a specific branch between two nodes of the tree
(two likelihood/tip vectors) via a Newton–Raph-
son procedure. In order to perform this operation,
synchronization between each individual itera-
tion of the Newton–Raphson method is required
as well as respective reduction operations to com-
pute the derivatives of the likelihood function.

In the following we describe how the fine-grained
parallelism which is typically exploited with OpenMP
(with Pthreads in the most recent RAxML release)
on SMP systems [21,28] can be mapped to appro-
priate MPI collective communication operations. We
have implemented a master–worker approach where
the master process maintains the only copy of the tree
topology and steers the actual tree search as outlined
in [27] by issuing the three distinct types of likeli-
hood vector combination instructions to the worker
processes.

At initialization each of the p worker processes al-
locates a fraction m/p space for the n tip and n − 2
inner likelihood vectors, i.e. he memory space for
tip/likelihood vectors is equally distributed among the
processes. These vectors are consistently enumerated
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in all workers and the master, despite the fact that no
memory is actually allocated at the master. The work-
ers are light-weight processes because they only im-
plement the actual mathematical operations on the tip
and likelihood vectors. Thus, the master process sim-
ply has to broadcast commands such as optimize the
branch length between vectors number x and y given
the current branch length z. Global reduction opera-
tions, which in both cases (log likelihood computation
and branch length optimization) are simply an addi-
tion over m double values, are performed via the re-
spective MPI collective reduction operation. In con-
trast to the aforementioned operations (branch length
optimization and likelihood computation), the compu-
tation of inner likelihood vectors frequently consists of
a series of recursive calls, depending on how many vec-
tors must be updated due to changes in the tree topol-
ogy or model parameters. In order to reduce the com-
munication frequency such series of recursive calls are
transformed into an iterative sequence of operations by
the master. The master then sends the whole iterative
sequence of inner likelihood vector updates to each
worker via one single broadcast.

In Fig. 1 we provide a simplified view of the parallel
implementation for an alignment with 4 sequences and
100 distinct alignment columns (m = 100). The two
inner likelihood (V 1, V 2, large rectangles) and four
tip vectors (S1–S4, thick black lines) are split equally

among both worker processes. The master only main-
tains the tree data structure and executes the RAxML
search algorithm, i.e., steers the tree search and coor-
dinates the likelihood computations. In this example
the master broadcasts a request for branch length opti-
mization of branch z5 which is performed by execut-
ing computations on the likelihood vectors V 1 and V 2
in the workers. Note that, the master only needs to send
the vector reference numbers Ref(V 1), Ref(V 2) to the
workers.

In order to improve the efficiency in cases where
the master only needs to orchestrate a small number of
workers, e.g., due to more performant individual CPUs
or a comparatively short dataset, one can conduct an
appropriate fraction of the likelihood computations at
the master (see Section 4.2 for respective results of this
modification).

3.2. Coarse-grained parallelism

As outlined in Section 2, RAxML also exploits the
embarrassing parallelism inherent to every ML-based
production run on real biological data via a simple
master–worker scheme. A centralized master distrib-
utes tree inference jobs on distinct starting trees or dis-
tinct bootstrap replicates to the worker processes.

We modified the above scheme to exploit hybrid
parallelism with RAxML using MPI for both layers:

Fig. 1. Simplified representation of the fine-grained parallelization strategy.
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coarse-grained work distribution and fine-grained par-
allelism as described in the preceding section. In a
small example scenario a set of 4 individual master
processes might be working on fine-grained individ-
ual ML searches on 20 distinct starting trees or boot-
strap replicates. Those 4 masters can, e.g., coordi-
nate the computations on 3, 7 or 15 individual worker
processes each – depending on the dataset size – to
carry out likelihood computations. In order to distrib-
ute coarse-grained work at the tree search level one
of those 4 masters has to assume the role of a super-
master. Apart from scheduling fine-grained work to its
respective private set of workers the super-master also
distributes coarse-grained work to the remaining reg-
ular masters. For this purpose we appropriately mod-
ified the straight-forward master–worker scheme of
the standard RAxML distribution which uses a work
queue. These modifications are required to avoid fre-
quent perturbations of fine-grained work scheduling
at the super-master by coarse-grained work distribu-
tion to other master processes. Note that, the execution
time for a tree or bootstrap search typically takes at
least several minutes – if not hours – i.e. master/super-
master communication is relatively scarce.

Initially, we divide the MPI_COMM_WORLD com-
municator into the respective subgroups (4 subgroups
in our example) by using the MPI_Comm_split
command. On BG/L we apply the following scheme:
Each resulting sub-communicator is built as a 3D mesh
with dimensions x, y, z, such that x ≈ y ≈ z. The
master node has coordinates (0, 0, 0). This mechanism
to create partitions and place the master node is well
adapted to the collective operations in the current IBM
MPI implementation. When MPI_COMM_WORLD is
used MPI_Bcast and MPI_Reduce utilize the spe-
cialized low-latency network for collective commu-

nication. However, when custom communicators are
used collective communication is conducted via the
point-to-point network which has a higher latency.
The exact algorithm deployed in this case depends
on the message size and the shape of the communi-
cator, e.g., whether it is rectangular. In our case the
shape of the communicator guarantees that optimal al-
gorithms, which, e.g., use deposit bits, are executed
in the point-to-point network. Consequently, the la-
tency is only slightly higher compared to the latency of
the MPI_COMM_WORLD communicator (3.35 µs, plus
90 ns per hop versus 2.5 µs) on the faster network.

Once the communicators have been set up the master
of subgroup 0 becomes the super-master. At program
initialization, each master process immediately starts
computations on bootstrap replicates or ML searches
without communicating with the super-master. Every
time a master has completed the computations on a
tree it sends a message to the super-master and locally
stores the tree in a list. This message contains the num-
ber of trees that have been computed so far by this spe-
cific master. Every time the super-master receives such
a message it checks if the total number of trees speci-
fied by the user (20 in our example) has already been
computed. If that is the case, the super-master sends
a termination message to all other master processes.
When a master receives the termination message it
sends all locally stored trees to the super-master, which
prints them to file. Thereafter, each master terminates
along with the respective worker processes. When all
tree topologies have been written to file, the super-
master exits as well. The above modification avoids
the perturbation of fine-grained work scheduling at the
super-master, since the actual tree topologies are only
sent at the end of the inference process.

Figure 2 outlines the example setup with 4 masters
that use 3 worker processes each for ML computations.

Fig. 2. Hybrid MPI/MPI parallelization of RAxML on BlueGene/L.
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Thick black arrows indicate frequent fine-grained ML
communications within each master–worker group.
Dotted thin lines show the infrequent and less time-
critical communications between the super-master and
the remaining masters.

4. Experimental setup and results

In this section, we describe the experimental setup
and platforms used (Section 4.1). We also provide per-
formance data for the fine-grained parallelization in
Section 4.2 as well as for the hybrid parallelization
(Section 4.3). Finally, in Section 4.4 we report execu-
tion times for production-level analyses on the com-
plete biological datasets.

4.1. Experimental setup

To test the scalability of our parallelization we used
two large and challenging real-world datasets as well
as subsets thereof:

1. A multi-gene alignment of 2,182 mammalian se-
quences with 51,089 base-pairs that comprises
data from 67 different genes. Despite the fact that
a few ML trees could already be computed with
RAxML on a 4-way AMD Opteron, the execu-
tion times do not allow for a full bootstrap analy-
sis. Large-scale analyses of mammalian phylo-
genies have recently received considerable atten-
tion (including the popular press), since they can
be used, e.g., to date the rise of present-day mam-
mals [3].

2. A matrix of 566,470 polymorphic data points
for 270 taxa.2 This dataset contains genotype
data for 283,235 non-redundant SNPs on the hu-
man chromosome 1 in sorted order for 270 in-
dividuals in the HapMap project [8]. Each col-
umn in the matrix is occupied by nucleotides
A, C, G, T. For each SNP each individual con-
tributes a pair of consecutive nucleotide columns
(1 each from their paternal and maternal chro-
mosome, sorted alphabetically within each pair).
Thus, for 283,235 SNPs the total sequence align-
ment length is 566,470 per taxa. A phylogenetic
analysis of this dataset represents a novel ap-
proach where individual humans are represented
as leaves on a phylogenetic tree that is reflec-

2A taxon is a name designating an organism or group of organ-
isms.

tive of their ancestral history. The combination
of genotypic and phenotypic data on phyloge-
netic trees makes new types of correlative in-
ference possible that differ from standard linear
approaches [15]. Phylogenetic trees inferred on
HPC systems can be combined and correlated
with publicly available biological phenotype data
from the same human samples [30].

In order to test scalability on various dataset-sizes
we extracted appropriate sub-alignments from the
above datasets. From the mammalian alignment we ex-
tracted sub-alignments containing 50 sequences with
5,000 and 50,000 base-pairs each. In addition, we ex-
tracted alignment samples with 50 as well as 250 se-
quences and a length of 500,000 base-pairs from the
270 sequence HapMap dataset. Note, that usually not
all columns in such alignments are unique. Therefore,
most programs for phylogenetic inference compress
the input datasets and discard redundant columns by
assigning a respective higher weight to column pat-
terns that appear more than once. Consequently, the
number of distinct patterns m′ in our test datasets was
lower than the numbers stated above which refer to the
number of columns m. The number of distinct patterns
(actual length of the compute-intensive for-loops) are
3,066, 23,385 and 216,025 for the 50 sequences sub-
alignments, and 403,581 for the 250 sequences dataset
respectively.

The scalability of our approach was assessed on the
following systems:

• The InfiniBand Cluster at Technische Univer-
sität München: A Linux cluster consisting of 32
4-way AMD 2.4 GHz Opteron 850 processors
with 8 GB of main memory per node which
are interconnected by Mellanox Technologies
MT23108 Infiniband host channel adapters and an
MTEK43132 Infiniband switch.

• The BlueGene/L system at Iowa State University:
A one-rack machine with 1,024 nodes
(2,048 CPUs) and a peak performance of 5.734
teraflops.

• The HLRB2 (Bavarian Supercomputer System) at
Leibniz Rechenzentrum: An SGI Altix 4700 sys-
tem with a total of 9,728 Intel Itanium2 Mon-
tecito cores, an aggregated peak performance of
62.3 teraflops and 39 terabyte of main memory.

Since RAxML uses randomized algorithms for the
creation of starting trees and for bootstrapping, the run-
times as well as the results of the tree search differ
slightly among individual program runs. In order to ob-
tain reproducible results and run-times, we used a fixed
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seed for both random number generators (bootstrap-
ping and computation of starting trees).

4.2. Scalability of fine-grained parallelism

We provide speedup graphs for the fine-grained par-
allelization on all three HPC systems for increasing

dataset sizes in Figs 3–7. Absolute run-times for all
three systems are given in Tables 1–3, respectively.

Plots 3 and 4 depict speedups for 50-sequence sub-
sets of the mammalian alignment consisting of 3,066
and 23,385 alignment patterns, respectively. The com-
paratively poor performance for more than 15 workers
in Fig. 3 can be explained by the relatively small prob-

Fig. 3. Speedup on 50 sequences with 3,066 distinct patterns.

Fig. 4. Speedup on 50 sequences with 23,385 distinct patterns.
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Fig. 5. Speedup on 50 sequences with 216,025 distinct patterns.

Fig. 6. Speedup on 250 sequences with 403,581 distinct patterns on 15–127 workers.

lem size. Note that, performance on the Opteron clus-
ter is slightly super-linear up to 31 worker processes
in Fig. 4 due to increased cache efficiency. Another
observation is that BG/L scales significantly better for
this setting with more than 63 workers. However, this
was expected as the BlueGene system provides a bet-
ter communication to computation ratio due to the

low latency network coupled with moderate per CPU
computing power. Therefore, BG/L scales consider-
ably better, even on small problem sizes.

In Fig. 5 we depict speedup values for a 50-taxa hap-
lotype subset with 216,025 distinct patterns. Since the
for-loops for this alignment are longer by one order
of magnitude, the communication to computation ra-
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Fig. 7. Speedup on 250 sequences with 403,581 distinct patterns on 127–1,023 workers.

Table 1

Absolute run-times on BlueGene/L (in seconds)

# SEQS # BP # Workers

1 3 7 15 31 63 127 255 511 1,023

50 3,066 1,400 498 226 120 67 44 33 31 29 29

50 23,385 14,326 4,653 2,008 948 472 252 142 87 60 48

50 216,025 32,659 14,187 6,531 3,055 1,533 798 436 256 169

250 403,581 145,739 70,617 35,056 18,025 9,375 5,105

Table 2

Absolute run-times on SGI Altix 4700 (in seconds)

# SEQS # BP # Workers

1 3 7 15 31 63 127 255 511

50 3,066 672 235 110 65 49 41 46

50 23,385 6,663 2,205 975 471 246 146 101

50 216,025 46,353 17,589 7,228 3,074 1,547 772 423

250 403,581 135,544 59,340 29,716 15,725 9,079 5,815

Table 3

Absolute run-times on AMD Opteron (in seconds)

# SEQS # BP # Workers

1 3 7 15 31 63 127

50 3,066 664 182 92 62 59 72 120

50 23,385 7,706 2,332 937 390 218 157 181

50 216,025 51,569 17,084 7,766 3,462 1,717 884 440

250 403,581 192,591 90,901 45,306 23,111
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tio improves roughly by a factor of 10. As a result,
the scalability on all three platforms is almost linear
up to 63 workers. For 127 workers, the speedup slows
down for all architectures. However, the BlueGene still
shows a speedup of 123 which corresponds to an effi-
ciency of approx. 97%. In Figs 6 and 7 we show how
the program scales on 250 haplotype sequences with
403,581 distinct patterns, up to 1,024 CPUs. Note that,
plots 6 and 7 provide relative scalability compared to
a run with 15 workers. This is due to the fact that we
were not able to execute the program with a smaller
number of workers because of memory shortage on
the Opteron and BG/L systems. However, as shown
in Figs 3 and 4, the program scales linearly for up
to 15 workers even for datasets with a smaller num-
ber of distinct patterns. Interestingly, the absolute run-
times for the 250 sequences dataset on the SGI Altix
are almost two times lower than on the Opteron sys-
tem while for the 50 sequence datasets the absolute
run-times are almost identical. Furthermore, the Altix
shows a slight super-linear speedup up to 127 work-
ers. Evidently, the effect of the approximately 9 times
larger caches on the Itanium only becomes apparent
after a certain alignment size threshold.

In general, one can conclude that the scalability
of fine-grained parallelism directly depends on the
length of the alignment or more precisely on the
number of distinct patterns m′, because the computa-
tion/communication ratio increases with the length of
the likelihood vectors. The number of sequences and
thus the number of nodes in the tree show a less preva-
lent impact on performance. One reason for this is that
the computation of partial likelihood vectors benefits
from the increased number of internal nodes, as more
recursive likelihood vector updates can be aggregated
and communicated via one single broadcast and thus
in turn improve upon the computation/communication
ratio. However, the total number of branches whose
lengths need to be optimized also increases with the
number of sequences. This function is comparatively
costly with respect to communication because of the
frequent reduction operations which need to be per-
formed at every iteration of the Newton–Raphson pro-
cedure. Furthermore, the cost of these reduction oper-
ations also increases with the number of processes in-
volved. In the final analysis, the positive and negative
performance impact caused by increasing the number
of sequences is balanced.

As already mentioned in Section 3.1, in some situa-
tions it makes sense to soften the strict master/worker
paradigm and to perform likelihood-computations at

Table 4

Maximum workload at master on AMD Opteron

# SEQS # BP # Processors

2 4 8 16 32 64 128

50 3,066 100% 100% 95% 90% 90% 80% 60%

50 23,385 100% 95% 95% 90% 90% 90% 70%

50 216,025 100% 100% 95% 90% 90% 95% 90%

the master as well. Therefore, we modified the program
such that the master can also execute the worker-code.
We tested this modification on the AMD Opteron sys-
tem with the 50 sequences datasets. Table 4 shows how
much workload can be handled by the master without
slowing down the other worker processes. The values
represent the master workload compared to the work-
load at each worker process, i.e., simply the ratio of
the number of likelihood vector entries computed at the
master and the workers. For example, 2 processors and
100% indicate that the workload (fraction of likelihood
vector entries computed) was equally split between the
master and the single worker. 90% and 16 processes
means that the master performed 5.63% of the like-
lihood computations while the worker processes per-
formed 6.29% each.

The results show that up to 8 processors, 95% of
worker computations can easily be handled by the mas-
ter process. Up to 90% can be performed by the mas-
ter if he has to orchestrate up to 31 workers. Even with
127 workers over 60% can be offloaded to the mas-
ter. However, this corresponds to only 0.5% of the total
workload and would consequently result in a run-time
reduction of only 0.5%. Hence, it only makes sense to
perform likelihood computations at the master if the
worker count is low.

4.3. Scalability of hybrid parallelism

We assessed the performance of the coarse-grained
parallelization using the mammalian dataset with
50 sequences and 23,385 distinct alignment patterns.
The experiments were conducted on BlueGene/L par-
titions of 32, 128 and 512 nodes.

Figure 8 shows execution times for individual tree
inferences using groups of 8, 16, 32, 64 and 128 nodes.
The straight black line shows the time for a single
master–worker group (see Table 1). The remaining
three graphs show execution times for multiple master–
worker groups on the aforementioned BG/L partitions
which have been split into 4, 8, 16, 32 and 64 groups
(where applicable) using MPI_Comm_split as de-
scribed in Section 3.2.
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Fig. 8. Execution times of multiple groups setup with 50 sequences and 23,385 distinct patterns.

As expected, the run-times observed for the mul-
tiple group configuration are slightly higher than the
corresponding run-times of one single master–worker
group. This is due to the fact that, in multi-group con-
figurations all messages are sent over the higher la-
tency peer-to-peer network while a single group can
utilize the faster specialized collective network (see
Section 3.2). This is a limitation of the MPI implemen-
tation on BG/L which will probably be corrected in fu-
ture versions.

Figure 8 shows that the total number of distinct
groups does not influence the run-time of the individ-
ual tree searches. This underlines that communication
between masters and super-master is infrequent and
does thus not affect the fine-grained parallelism within
each group.

Figure 9 provides the total run-times for 32 distinct
tree searches on 32, 128 and 512 nodes. The nodes
have been split into groups of 16 and 32 nodes. For
example in the case of 512 nodes with 32 nodes per
group, 16 masters with a private set of 31 workers each,
perform 32 distinct tree searches in parallel, i.e., two
per group. The plot shows that the total execution time
decreases linearly with an increasing number of total
nodes used for computation. Furthermore, one can see
that, as expected, by considering the absolute run-times
for single groups in Table 1, groups of 16 nodes per-
form slightly better than groups of 32 nodes.

4.4. Full haplotype data analysis

We used the BlueGene/L system to perform a
full phylogenetic analysis of the haplotype alignment
(212 sequences, 566,470 base pairs). To the best
of our knowledge, this represents the largest dataset
with respect to input matrix size, analyzed under
ML to date. Initially, we conducted ML-searches for
the best-scoring tree with 1,024 CPUs (1,024 nodes
in co-processor mode) in single-group configuration.
We were able to complete 7 distinct tree searches
within 14 hours. Afterwards we performed a boot-
strap analysis on 2,048 CPUs in virtual node mode
which were divided into 8 individual master–worker
groups (256 CPUs per group). It took 26 hours to infer
64 bootstrapped trees.

In addition, we used the comprehensive haplo-
type alignment to test the scalability of our approach
in virtual node mode. The average run-time of the
aforementioned 7 tree searches in co-processor mode
is 6,838 seconds. The average execution time on
512 nodes in virtual node mode, i.e. 1,024 CPUs,
amounts to 7,000 seconds (efficiency: 97.69%).

The above results demonstrate that a full real-world
analysis of challenging datasets is feasible on current
supercomputer architectures like the IBM BlueGene/L
or the SGI Altix. As we have shown in our exper-
iments, fine-grained parallelism can be used to effi-
ciently exploit hundreds of CPUs. Given the fact that
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Fig. 9. Execution times for 32 distinct tree searches with 50 sequences and 23,385 distinct patterns.

alignments used for phylogenetic analyses continue to
grow and that real-life problems require hundreds if
not thousands of individual tree searches and bootstrap
runs, our approach has the potential for efficient ex-
ploitation of forthcoming petascale systems.

5. Biological results

In the current section we briefly describe the biolog-
ical results and insights that have been attained from
the large-scale phylogenetic inference of the haplotype
map dataset on the BG/L.

As already mentioned, there is a rapid growth in
available sequence data as well as improvement of se-
quencing techniques, which will create a vast wealth
of genome sequences aimed at personalized medical
care. These sequences afford opportunities for analy-
ses not only across biological species, i.e., “classic”
phylogenetic inference, but also within populations po-
tentially yielding important clues about genetic varia-
tion that accounts for inter-individual differences, for
instance, between geographically distinct populations
or between healthy and afflicted individuals.

As outlined in the preceding section we analyzed a
huge phylogenetic tree based on SNP data from hun-
dreds of individual humans from around the world. The
utility of a phylogenetic approach is that it provides
a mechanism for inferring genotype–phenotype corre-

lation that explicitly accounts for the natural interre-
latedness of species and individuals in a population.
In contrast, most other current studies of phenotype–
genotype correlation use statistical approaches (i.e.,
regression) that incorrectly assume that the individu-
als are entirely independent samples. We previously
demonstrated the potential of a phylogenetic approach
in finding meaningful genotype–phenotype correla-
tions, e.g., loci (certain regions of the genome) asso-
ciated with susceptibility to infection by the bacteria
that causes Anthrax using comparative SNP data from
strains of mice [15].

Here we extend this approach to combine genetic in-
formation from hundreds of individuals worldwide en-
abling possible future analysis of continuous pheno-
typic data such as microarray gene expression analysis,
blood chemistry, longevity and disease susceptibility.

5.1. Data acquisition and assembly details

Genotype data for a set of 283,235 non-redundant
SNPs located on the human chromosome 1 for 270 hu-
man individuals in the HapMap project [8] were
downloaded from www.hapmap.org/genotypes/2007-
03/fwd_strand/non-redundant and assembled into a
phylogenetic data matrix in the order of their physi-
cal position on the chromosome. 60 taxa that repre-
sented children were removed from the alignment be-
cause of their level of genetic redundancy. Analogous
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data for the chimpanzee and macaque for each corre-
sponding SNP position was obtained from the UCSC
dbSNP Build 126 data [18]. Their data was aligned
with the human HapMap data as outgroups via Perl
scripts based on the respective SNP identifiers. Out-
groups, i.e., sequences of organisms that are not lo-
cated within the group of species that shall be ana-
lyzed, are used to root phylogenetic trees. This large
dataset was then used for the analyses described in Sec-
tion 4.4.

5.2. Biological insights

The optimization of the character describing the ge-
ographic locale of the individuals onto the tree using
the Mesquite software package (Maddison and Mad-
dison, www.mesquiteproject.org) confirmed the antic-
ipated geographic clustering of various individuals as
depicted in Fig. 10.

The mixture noted between Chinese and Japanese
branches may reflect the close geographic as well as
migratory history of these populations. Our approach
yields a biologically reasonable and meaningful phylo-
genetic tree for geographically distinct human samples
that supports an African origin of Homo Sapiens [7].

6. Conclusion and future work

We have presented a generally applicable paral-
lelization strategy for the phylogenetic ML function.
In addition, we have demonstrated that our approach
scales well up to 1,024 processors on the IBM Blue-
Gene/L, up to 256 processors on the SGI Altix 4700,
and up to 128 CPUs on a common Linux cluster archi-
tecture. Due to the ability to handle and scale on large
datasets, the presented parallelization scheme opens up
new possibilities with respect to the inference of large-
scale phylogenies and provides a viable solution for fu-
ture computational needs in phylogenetics.

To emphasize the practical relevance of our work
and to show that datasets which require supercomput-
ing power already exist, we inferred a phylogeny for
hundreds of human samples using genetic information
for chromosome 1, the largest human chromosome.

In addition, the current chromosome 1 analysis on
the BG/L shows that it is computationally and method-
ologically feasible as well as insightful to compute
phylogenetic intra-population trees for large samples
of the human population. These trees are of inter-
est to study human origins and migration. Moreover,

Fig. 10. Phylogenetic tree inferred from haplotype dataset. White
circles – non-human primates (chimpanzee, macaque); grey circles –
humans of Yoruban descent from Ibadan, Nigeria; light gray circles –
humans of Northern and Western European descent from Utah; black
circles – humans of Han Chinese descent from Beijing, China and
humans of Japanese descent from Tokyo, Japan.

in conjunction with measurements of human biomed-
ical science (e.g. cholesterol levels) for large sets of
individuals, these trees can enable new methodolo-
gies in searching for genes that contribute to impor-
tant human differences. Publicly available measure-
ments (e.g., microarray analysis [30]) for the samples
analyzed here exist, suggesting potential future analy-
ses. Due to its phylogenetic nature, this type of analy-
sis acknowledges interrelationships among the indi-
viduals and thus differs from standard statistical ap-
proaches [15] that ignore this inherent property of
biological data [13].
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Current efforts are underway to generate genome-
wide SNP datasets by sampling a diverse ethnogeo-
graphic dataset, as well as to sequence more than
1,000 human genomes for public release. Thus, an-
alytical approaches such as the one we present here
are increasingly relevant. The next step, in the context
of large-scale phylogenetic analyses, is to approach
whole genome comparisons, and to examine issues of
recombination by separate analysis of autosomes, sex-
linked chromosomes, or mitochondrial genomes.

Finally, current technical work covers the integration
of the parallelization scheme developed in this paper
into the most recent standard release of RAxML, which
features a large variety of nucleotide substitution mod-
els and a novel rapid bootstrapping algorithm that fur-
ther accelerates the phylogenetic analysis process by
one order of magnitude via algorithmic means.
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