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By variational methods and some analysis techniques, the multiplicity of positive solutions
is obtained for a class of weighted quasilinear elliptic equations with critical Hardy-Sobolev
exponents and concave-convex nonlinearities.

1. Introduction and Main Results

Let Ω be a smooth bounded domain in R
N(N ≥ 3) and 0 ∈ Ω. We will study the multiplicity

of positive solutions for the following quasilinear elliptic problem:

−div
(
|x|−ap|∇u|p−2∇u

)
− μ |u|p−2u

|x|p(a+1)
=

|u|p∗(a,b)−2u
|x|bp∗(a,b)

+ λ
|u|q−2u
|x|dp∗(a,d)

in Ω,

u = 0 on ∂Ω,

(1.1)

where λ > 0, 1 < p < N, 0 ≤ μ < μ, μ � ((N − p)/p − a)p, 0 ≤ a < (N − p)/p, a ≤ b, d < a + 1,
1 ≤ q < p, p∗(a, d) � Np/(N − p(a + 1 − d)) is the critical Sobolev-Hardy exponent. Note that
p∗(0, 0) = p∗ � Np/(N − p) is the critical Sobolev exponent.
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2 Abstract and Applied Analysis

In this paper, W � W
1,p
a (Ω) denotes the space obtained as the completion of C∞

0 (Ω)
with respect to the norm (

∫
Ω |x|−ap|∇u|pdx)1/p. The energy functional of (1.1) is defined onW

by

Jλ(u) =
1
p

∫

Ω

(
|x|−ap|∇u|p − μ |u|p

|x|p(a+1)
)
dx − 1

p∗(a, b)

∫

Ω

|u|p∗(a,b)
|x|bp∗(a,b)

dx − λ

q

∫

Ω

|u|q
|x|dp∗(a,d)

dx.

(1.2)

Then Jλ ∈ C1(W,R). u ∈ W \ {0} is said to be a solution of (1.1) if 〈J ′
λ
(u), v〉 = 0 for all v ∈ W

and a solution of (1.1) is a critical point of Jλ. By the standard elliptic regularity argument,
we deduce that u ∈ C1(Ω \ {0}).

Problem (1.1) is related to the following Hardy inequality [1]:

(∫

RN

|u|p∗(a,b)
|x|bp∗(a,b)

dx

)p/p∗(a,b)

≤ C
∫

RN

|x|−ap|∇u|pdx, ∀u ∈ C∞
0

(
R
N
)
, (1.3)

which is also called the (general or weighted) Hardy-Sobolev inequality. For the sharp
constants and extremal functions, see [2, 3]. If b = a + 1, then p∗(a, b) = p and the following
(general or weighted) Hardy inequality holds [1, 4]:

∫

RN

|u|p
|u|p(a+1)

dx ≤ 1
μ

∫

RN

|x|−ap|∇u|pdx, ∀u ∈ C∞
0

(
R
N
)
, (1.4)

where μ = ((N − p)/p − a)p is the best Hardy constant.
In the spaceW , we employ the following norm if μ < μ:

‖u‖ = ‖u‖W �
(∫

Ω

(
|x|−ap|∇u|p − μ |u|p

|x|p(a+1)
)
dx

)1/p

. (1.5)

By (1.4) it is equivalent to the usual norm (
∫
Ω |x|−ap|∇u|pdx)1/p of the spaceW . According to

(1.4), we can define the following best constant for 0 ≤ a < (N −p)/p, a ≤ b < a+1 and μ < μ:

Sμ,a,b(Ω) = inf
u∈W\{0}

‖u‖p
(∫

Ω |u|p∗(a,b)/|x|bp∗(a,b)dx
)p/p∗(a,b) . (1.6)

From Kang [5, Lemma 2.2], Sμ,a,b is independent of Ω ⊂ R
N . Thus, we will simply denote

that Sμ,a,b(Ω) = Sμ,a,b(RN) = Sμ,a,b.
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When a = 0, we set s = dp∗(0, d) and t = bp∗(0, b), then (1.1) is equivalent to the
following quasilinear elliptic equations:

−div
(
|∇u|p−2∇u

)
− μ |u|

p−2u
|x|p =

|u|p∗(t)−2u
|x|t

+ λ
|u|q−2u
|x|s in Ω,

u = 0 on ∂Ω,

(1.7)

where λ > 0, 1 < p < N, 0 ≤ μ < μ = ((N − p)/p)p, 0 ≤ s, t < p, 1 ≤ q < p and p∗(t) =
p(N − t)/(N − p).

Such kind of problem relative with (1.7) has been extensively studied by many
authors. When p = 2, people have paid much attention to the existence of solutions for
singular elliptic problems (see [6–16] and their references therein), besides, in the most of
these papers, the operator −Δ − μ/|x|2 with Sobolev-Hardy critical exponents (the case that
t = 0) has been considered. Some authors also studied the singular problems with Sobolev-
Hardy critical exponents (the case that t /= 0) (see [17–22] and their references therein). In
[23, 24], the authors deal with doubly-critical exponents.

When p /= 2. The quasilinear problems related to Hardy inequality and Sobolev-Hardy
inequality have been studied by some authors [25–32]. Here we recall the work in [25], where
the extremal functions for the best Sobolev constant Sμ,0,0 were studied. The results can be
employed to study the problems with critical Sobolev exponents and Hard terms, see [25,
28]. In [26] it is investigated in R

N a quasilinear elliptic equation involving doubly critical
exponents by the concentration compactness principle [33, 34].

We should note that the nonlinearities of problems studied in [11–14, 26, 28, 31] are
all not sublinear or p-sublinear near the origin. To the best of our knowledge, there are few
results of problem (1.7) with nonlinearities being p-sublinear near the origin for 1 < p < N.
We are only aware of the works [20, 30, 32] which studied the existence and multiplicity of
positive solution of problem (1.7) with 1 ≤ q < p < N. In this paper, we study (1.1) and
extend the results of [20, 30, 32] to the case a/= 0 and 1 ≤ q < p < N.

For 0 ≤ a < (N − p)/p, a ≤ b < a + 1, and 0 ≤ μ < μ, consider the following limiting
problem:

−div
(
|x|−ap|∇u|p−2∇u

)
− μ |u|p−2u

|x|p(a+1)
=

|u|p∗(a,b)−2u
|x|bp∗(a,b)

in R
N \ {0},

u > 0 in R
N \ {0},

u ∈W1,p
a

(
R
N
)
,

(1.8)

where W
1,p
a (RN) is the space obtained as the completion of C∞

0 (RN) with respect to the
norm (

∫
RN |x|−ap|∇u|pdx)1/p. From [5, Lemma 2.2], we know (1.8) has a unique ground state

solutionUp,μ satisfying

Up,μ(1) =

(
p∗(a, b)

(
μ − μ)

p

)1/(p∗(a,b)−p)
(1.9)
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and all ground states must be of the form Ũε(x) = ε−(N−p)/p−aUp,μ(x/ε) for some ε > 0, that
is,

Sμ,a,b = inf
u∈W1,p

a (RN)\{0}

∫
RN

(
|∇u|p − μ|u|p/|x|p(a+1)

)
dx

(∫
Ω |u|p∗(a,b)/|x|bp∗(a,b)dx

)p/p∗(a,b) (1.10)

is achieved by Ũε. Moreover, Up,μ is radially symmetric and possesses the following proper-
ties:

lim
r→ 0

rα(μ)Up,μ(r) = c1 > 0, lim
r→ 0

rα(μ)+1
∣∣∣U′

p,μ(r)
∣∣∣ = c1α

(
μ
) ≥ 0,

lim
r→+∞

rβ(μ)Up,μ(r) = c2 > 0, lim
r→+∞

rβ(μ)+1
∣∣∣U′

p,μ(r)
∣∣∣ = c2β

(
μ
)
> 0,

(1.11)

where ci (i = 1, 2) are positive constants and α(μ), β(μ) are the zeros of the function

f(τ) =
(
p − 1

)
τp − (N − p(a + 1)

)
τp−1 + μ, τ ≥ 0, 0 ≤ μ < μ, (1.12)

which satisfy 0 ≤ α(μ) < (N − p(a+ 1))/p < β(μ) < (N − p(a+ 1))/(p − 1). Furthermore, there
exist the positive constants c3 = c3(μ, p, a, b) and c4 = c4(μ, p, a, b) such that

c3 ≤ Up,μ(x)
(
|x|α(μ)/δ + |x|β(μ)/δ

)δ ≤ c4, δ � N − p(a + 1)
p

. (1.13)

Throughout this paper, let R0 be the positive constant such that Ω ⊂ B(0;R0), where
B(0;R0) = {x ∈ R

N : |x| < R0}. By Hölder and Sobolev-Hardy inequalities, for all u ∈ W , we
obtain

∫

Ω

|u|q
|x|dp∗(a,d)

≤
(∫

B(0;R0)
|x|−dp∗(a,d)

)(p∗(a,d)−q)/p∗(a,d)(∫

Ω

|u|p∗(a,d)
|x|dp∗(a,d)

)q/p∗(a,d)

≤
(
NωN

∫R0

0
r−dp

∗(a,d)+N−1dr

)(p∗(a,d)−q)/p∗(a,d)(
Sμ,a,d

)−(q/p)‖u‖q

≤
⎛
⎝NωNR

N−dp∗(a,d)
0

N − dp∗(a, d)

⎞
⎠

(p∗(a,d)−q)/p∗(a,d)
(
Sμ,a,d

)−(q/p)‖u‖q.

(1.14)
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Set

Λ0 =
(

p − q
p∗(a, b) − q

)(p−q)/(p∗(a,b)−p)(p∗(a, b) − p
p∗(a, b) − q

)⎛
⎝NωNR

N−dp∗(a,d)
0

N − dp∗(a, d)

⎞
⎠

−((p∗(a,d)−q)/p∗(a,d))

× (Sμ,a,d
)q/p(

Sμ,a,b
)p∗(a,b)(p−q)/p(p∗(a,b)−p)

,

(1.15)

where ωN = 2πN/2/NΓ(N/2) is the volume of the unit ball in R
N .

Furthermore, from 0 ≤ a < (N − p)/p and a ≤ d < a + 1, we can deduce that

0 < p
(
N − p
p

− a
)
+ pd =N − p(a + 1 − d) < N, (1.16)

which implies

p∗(a, d) =
pN

N − p(a + 1 − d) > p,

N − dp∗(a, d) = Np

N − p(a + 1 − d)
(
N − p
p

− a
)
> 0.

(1.17)

Combining these with 1 ≤ q < p, we get Λ0 > 0.
We are now ready to state our main results.

Theorem 1.1. Assume that N ≥ 3, 0 ≤ μ < μ, 0 ≤ a < (N − p)/p, a ≤ b, d < a + 1, and
1 ≤ q < p < N. Then one has the following results.

(i) If λ ∈ (0,Λ0), then (1.1) has at least one positive solution inW .

(ii) If λ ∈ (0, (q/p)Λ0), then (1.1) has at least two positive solutions inW .

Remark 1.2. In [5], Kang considered (1.1) with p-sublinear perturbation of p ≤ q < p∗(a, d).
Via variational methods, he proved the existence of positive solutions of (1.1) when the
parameters a, b, d, p, q, λ, μ satisfy suitable conditions. But the existence of positive solutions
for (1.1) involving the p-sublinear of 1 ≤ q < p < N is not considered. In this paper, we will
give a complement result.

This paper is organized as follows. In Sections 2 and 3, we give some preliminaries
and some properties of Nehari manifold. In Section 4, we complete proofs of Theorem 1.1. At
the end of this section, we explain some notations employed. In the following discussions, we
will denote various positive constants asC,Ci and omit dx in the integral for convenience.We
denote B(0;R) as a ball centered at the origin with radiusR, andωN = 2πN/2/NΓ(N/2) is the
volume of the unit ball B(0; 1) in R

N . We denote the norm in Lr(Ω) by | · |r for 1 ≤ r ≤ ∞, and
Lr(Ω, |x|−s), 1 ≤ r <∞ is the closure ofC∞

0 (Ω)with the norm |·|Lr(Ω,|x|−s) = (
∫
Ω |x|−s|·|r)1/r .W−1

denoting the dual space of W . O(εt) denotes |O(εt)/εt| ≤ C, and o(εt) means |o(εt)/εt| → 0
as ε → 0. By o(1) we always mean it is a generic infinitesimal value.
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2. Nehari Manifold

Since the functional Jλ is not bounded from below onW , we will work on Nehari manifold.
For λ > 0 we define

Nλ =
{
u ∈W \ {0} :

〈
J ′λ(u), u

〉
= 0
}
. (2.1)

We recall that any nonzero solutions of (1.1) belong to Nλ. Moreover, by definition, we have
that u ∈ Nλ if and only if

‖u‖/= 0, ‖u‖p − 1
p∗(a, b)

∫

Ω

|u|p∗(a,b)
|x|bp∗(a,b)

− λ

q

∫

Ω

|u|q
|x|dp∗(a,d)

= 0. (2.2)

The following result is concerned with the behavior of Jλ on Nλ.

Lemma 2.1. Jλ is coercive and bounded from below on Nλ.

Proof. If u ∈ Nλ, then by (1.14) and (2.2), we get

Jλ(u) =
p∗(a, b) − p
p∗(a, b)p

‖u‖p − λ
(
p∗(a, b) − q
p∗(a, b)q

)∫

Ω

|u|q
|x|dp∗(a,d)

(2.3)

≥ p∗(a, b) − p
p∗(a, b)p

‖u‖p − λ
(
p∗(a, b) − q
p∗(a, b)q

)⎛
⎝NωNR

N−dp∗(a,d)
0

N − dp∗(a, d)

⎞
⎠

(p∗(a,d)−q)/p∗(a,d)

× (Sμ,a,d
)−q/p‖u‖q.

(2.4)

Since 0 ≤ a < (N − p)/p, a ≤ b, d < a + 1 and 1 ≤ q < p < p∗(a, b), it follows that Jλ is coercive
and bounded from below on Nλ.

Define ψλ :W → R, by ψλ(u) = 〈J ′λ(u), u〉, that is,

ψλ(u) = ‖u‖p −
∫

Ω

|u|p∗(a,b)
|x|bp∗(a,b)

− λ
∫

Ω

|u|q
|x|dp∗(a,d)

. (2.5)

Note that ψλ is of class C1 with

〈
ψ ′
λ(u), u

〉
= p‖u‖p − p∗(a, b)

∫

Ω

|u|p∗(a,b)
|x|bp∗(a,b)

− qλ
∫

Ω

|u|q
|x|dp∗(a,d)

. (2.6)
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Furthermore, if u ∈ Nλ, then by (2.2), we have that

〈
ψ ′
λ(u), u

〉
=
(
p − q)‖u‖p − (p∗(a, b) − q)

∫

Ω

|u|p∗(a,b)
|x|bp∗(a,b)

(2.7)

=
(
p − p∗(a, b))‖u‖p − (q − p∗(a, b))λ

∫

Ω

|u|q
|x|dp∗(a,d)

. (2.8)

Now we split Nλ into three sets:

N+
λ =

{
u ∈ Nλ :

〈
ψ ′
λ(u), u

〉
> 0
}
,

N0
λ =

{
u ∈ Nλ :

〈
ψ ′
λ(u), u

〉
= 0
}
,

N−
λ =

{
u ∈ Nλ :

〈
ψ ′
λ(u), u

〉
< 0
}
.

(2.9)

The following result shows that minimizers on Nλ are the “usual” critical points for
Jλ.

Lemma 2.2. Suppose u0 is a local minimizer of Jλ on Nλ and u0 /∈ N0
λ. Then, J

′
λ(u0) = 0 inW−1.

Proof. See [30, Lemma 2.2].

Motivated by the above result, we will get conditions for N0
λ = ∅.

Lemma 2.3. N0
λ
= ∅ for all λ ∈ (0,Λ0).

Proof. We argue by contradiction. Suppose that there exists a λ ∈ (0,Λ0) such thatN0
λ /= ∅. Let

u ∈ N0
λ be arbitrary, then by (2.2), (2.7), and (2.8), we have that

0 < ‖u‖p = p∗(a, b) − q
p − q

∫

Ω

|u|p∗(a,b)
|x|bp∗(a,b)

,

0 < ‖u‖p = λp
∗(a, b) − q
p∗(a, b) − p

∫

Ω

|u|q
|x|dp∗(a,d)

.

(2.10)

By (1.14), (2.10), and Sobolev-Hardy inequality, we get

‖u‖ ≥
(

p − q
p∗(a, b) − q

)1/(p∗(a,b)−p)(
Sμ,a,b

)p∗(a,b)/p(p∗(a,b)−p)
,

‖u‖ ≤
(
λ
p∗(a, b) − q
p∗(a, b) − p

)1/(p−q)
⎛
⎝NωNR

N−dp∗(a,d)
0

N − dp∗(a, d)

⎞
⎠

(p∗(a,d)−q)/p∗(a,d)(p−q)
(
Sμ,a,d

)−(q/p(p−q))
.

(2.11)
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Hence we must have

λ ≥
(

p − q
p∗(a, b) − q

)(p−q)/(p∗(a,b)−p)(p∗(a, b) − p
p∗(a, b) − q

)⎛
⎝NωNR

N−dp∗(a,d)
0

N − dp∗(a, d)

⎞
⎠

−((p∗(a,d)−q)/p∗(a,d))

× (Sμ,a,d
)q/p(

Sμ,a,b
)p∗(a,b)(p−q)/p(p∗(a,b)−p)

= Λ0,

(2.12)

which is a contradiction.

For each u ∈W \ {0}, let

τmax =

( (
p − q)‖u‖p

(
p∗(a, b) − q) ∫Ω |u|p∗(a,b)/|x|bp∗(a,b)

)1/(p∗(a,b)−p)
. (2.13)

Lemma 2.4. If λ ∈ (0,Λ0), then for each u ∈ W \ {0}, the set {τu : τ > 0} intersects Nλ exactly
twice. More specifically, there exist a unique τ− = τ−(u) > 0 such that τ−u ∈ N−

λ
and a unique

τ+ = τ+(u) > 0 such that τ+u ∈ N+
λ . Moreover, τ+ < τmax < τ

− and

Jλ(τ+u) = inf
0≤τ≤τmax

Jλ(τu), Jλ
(
τ−u

)
= sup

τ≥τmax

Jλ(τu). (2.14)

Proof. The proof is similar to that of [29, Lemma 2.7] and is omitted.

We remark that by Lemma 2.3 we have,Nλ = N+
λ
∪N−

λ
for all λ ∈ (0,Λ0). Furthermore,

by Lemma 2.4 it follows that N+
λ
and N−

λ
are non-empty and by Lemma 2.1 we may define

αλ = inf
u∈Nλ

Jλ(u), α+λ = inf
u∈N+

λ

Jλ(u), α−λ = inf
u∈N−

λ

Jλ(u). (2.15)

Theorem 2.5. (i) If λ ∈ (0,Λ0), then one has αλ ≤ α+λ < 0.

(ii) If λ ∈ (0, (q/p)Λ0), then α−λ > d0 for some positive constant d0.
In particular, for each λ ∈ (0, (q/p)Λ0), one has αλ = α+λ < 0 < α−λ .

Proof. (i) Let u ∈ N+
λ
. By (2.7),

p − q
p∗(a, b) − q‖u‖

p >

∫

Ω

|u|p∗(a,b)
|x|bp∗(a,b)

, (2.16)
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and so also using (2.2),

Jλ(u) =
(
1
p
− 1
q

)
‖u‖p +

(
1
q
− 1
p∗(a, b)

)∫

Ω

|u|p∗(a,b)
|x|bp∗(a,b)

<

[(
1
p
− 1
q

)
+
(
1
q
− 1
p∗(a, b)

)(
p − q

p∗(a, b) − q
)]

‖u‖p

= −
(
p − q)(p∗(a, b) − p)

pqp∗(a, b)
) ‖u‖p < 0.

(2.17)

Therefore, from the definition of αλ and α+λ , we can deduce that αλ ≤ α+λ < 0.
(ii) Let u ∈ N−

λ
. By (2.7),

p − q
p∗(a, b) − q‖u‖

p <

∫

Ω

|u|p∗(a,b)
|x|bp∗(a,b)

. (2.18)

Moreover, by Sobolev-Hardy inequality,

∫

Ω

|u|p∗(a,b)
|x|bp∗(a,b)

≤ (Sμ,a,b
)−(p∗(a,b)/p)‖u‖p∗(a,b). (2.19)

This implies

‖u‖ >
(

p − q
p∗(a, b) − q

)1/(p∗(a,b)−p)(
Sμ,a,b

)p∗(a,b)/p(p∗(a,b)−p) ∀u ∈ N−
λ. (2.20)

By (2.4) and (2.20), we have

Jλ(u) ≥ ‖u‖q
⎡
⎢⎣p

∗(a, b) − p
p∗(a, b)p

‖u‖p−q − λ
(
p∗(a, b) − q
p∗(a, b)q

)

×
⎛
⎝NωNR

N−dp∗(a,d)
0

N − dp∗(a, d)

⎞
⎠

(p∗(a,d)−q)/p∗(a,d)
(
Sμ,a,d

)−(q/p)
⎤
⎥⎦

>

(
p − q

p∗(a, b) − q
)q/(p∗(a,b)−p)(

Sμ,a,b
)qp∗(a,b)/p(p∗(a,b)−p)

×

⎡
⎢⎣p

∗(a, b) − p
p∗(a, b)p

(
p − q

p∗(a, b) − q
)(p−q)/(p∗(a,b)−p)(

Sμ,a,b
)p∗(a,b)(p−q)/p(p∗(a,b)−p)

−λ
(
p∗(a, b) − q
p∗(a, b)q

)⎛
⎝NωNR

N−dp∗(a,d)
0

N − dp∗(a, d)

⎞
⎠

(p∗(a,d)−q)/p∗(a,d)
(
Sμ,a,d

)−(q/p)
⎤
⎥⎦
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=
(
q

p
Λ0 − λ

)(
p − q

p∗(a, b) − q
)q/(p∗(a,b)−p)(

Sμ,a,b
)qp∗(a,b)/p(p∗(a,b)−p)(p∗(a, b) − q

p∗(a, b)q

)

×
⎛
⎝NωNR

N−dp∗(a,d)
0

N − dp∗(a, d)

⎞
⎠

(p∗(a,d)−q)/p∗(a,d)
(
Sμ,a,d

)−(q/p)
.

(2.21)

Thus, if λ ∈ (0, (q/p)Λ0), then

Jλ(u) > d0 ∀u ∈ N−
λ, (2.22)

for some positive constant d0.

Remark 2.6. If λ ∈ (0, (q/p)Λ0), then by Lemma 2.4 and Theorem 2.5, for each u ∈W \{0}, we
can easily deduce that

τ−u ∈ N−
λ, Jλ

(
τ−u

)
= sup

τ≥0
Jλ(τu) ≥ α−λ > 0. (2.23)

3. Proof of the Main Results

First, we define the Palais-Smale (simply by (PS)) sequences, (PS)-values, and (PS)-
conditions inW for Jλ as follows.

Definition 3.1. (i) For c ∈ R, a sequence {un} is a (PS)c-sequence inW for Jλ if Jλ(un) = c+o(1)
and J ′

λ
(un) = o(1) strongly inW−1 as n → ∞.
(ii) c ∈ R is a (PS)-value inW for Jλ if there exists a (PS)c-sequence inW for Jλ.
(iii) Jλ satisfies the (PS)c-condition in W if any (PS)c-sequence {un} in W for Jλ

contains a convergent subsequence.
Now, we use the Ekeland variational principle [35] to get the following results.

Proposition 3.2. (i) If λ ∈ (0,Λ0), then Jλ has a (PS)αλ-sequence {un} ⊂ Nλ.
(ii) If λ ∈ (0, (q/p)Λ0), then Jλ has a (PS)α−

λ
-sequence {un} ⊂ N−

λ
.

Proof. The proof is similar to [29, Proposition 3.3] and the details are omitted.

Now, we establish the existence of a local minimum for Jλ on Nλ.

Theorem 3.3. Assume that N ≥ 3, 0 ≤ μ < μ, 0 ≤ a < (N − p)/p, a ≤ b, d < a + 1, and
1 ≤ q < p < N. If λ ∈ (0,Λ0), then there exists uλ ∈ N+

λ such that

(i) Jλ(uλ) = αλ = α+λ ,

(ii) uλ is a positive solution of (1.1),

(iii) ‖uλ‖ → 0 as λ → 0+.
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Proof. By Proposition 3.2(i), there exists a minimizing sequence {un} ⊂ Nλ such that

Jλ(un) = αλ + o(1), J ′λ(un) = o(1) in W−1. (3.1)

Since Jλ is coercive on Nλ (see Lemma 2.1), we get that {un} is bounded in W . From
[5, Lemma 2.1], we deduce that the embedding W ↪→ Lr(Ω, |x|−dp∗(a,d)) is compact for
1 ≤ r < p∗(a, d). Thus, there exists uλ ∈ W , passing to a subsequence if necessary, using
similar arguments found in [27, 36], then one can get that as n → ∞

un ⇀ uλ weakly in W,

un −→ uλ strongly in Lq
(
Ω, |x|−dp∗(a,d)

)
for 1 ≤ q < p,

un −→ uλ a.e. in Ω,

∇un −→ ∇uλ a.e. in Ω,
un

|x|a+1
⇀

uλ

|x|a+1
weakly in Lp(Ω),

∫

Ω

|un|p
∗(a,b)−2un

|x|bp∗(a,b)
v −→

∫

Ω

|uλ|p
∗(a,b)−2uλ

|x|bp∗(a,b)
v, ∀v ∈W.

(3.2)

Consequently, passing to the limit in 〈J ′
λ
(un), v〉, by (3.1) and (3.2), as n → ∞, we have

∫

Ω

(
|∇uλ|p−2∇uλ∇v

|x|ap − μ |uλ|
p−2uλv

|x|p(a+1)
)

−
∫

Ω

|uλ|p
∗(a,b)−2uλv

|x|bp∗(a,b)
− λ

∫

Ω

|uλ|q−2uλv
|x|dp∗(a,d)

= 0, (3.3)

for all v ∈ W . That is, 〈J ′
λ
(uλ), v〉 = 0. Thus uλ is a weak solution of (1.1). Furthermore, from

un ∈ Nλ and (2.3), we deduce that

λ

∫

Ω

|un|q
|x|dp∗(a,d)

=
q
(
p∗(a, b) − p)

p
(
p∗(a, b) − q)‖un‖

p − p∗(a, b)q
p∗(a, b) − qJλ(un). (3.4)

Let n → ∞ in (3.4), by (3.1) and (3.2), and since αλ < 0 by (i) of Theorem 2.5, we get

λ

∫

Ω

|uλ|q
|x|dp∗(a,d)

≥ − p∗(a, b)q
p∗(a, b) − qαλ > 0. (3.5)

Thus uλ /≡ 0, and since J ′
λ
(uλ) = 0, it follows that uλ ∈ Nλ and, in particular, Jλ(uλ) ≥ αλ.
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Next, we will show, up to a subsequence, that un → uλ strongly inW and Jλ(uλ) = αλ.
From the fact un, u ∈ Nλ, (2.3) and the Fatou’s lemma, it follows that

αλ ≤ Jλ(uλ) =
p∗(a, b) − p
pp∗(a, b)

‖uλ‖p − λ
(
p∗(a, b) − q
p∗(a, b)q

)∫

Ω

|uλ|q
|x|dp∗(a,d)

≤ lim inf
n→∞

[
p∗(a, b) − p
p∗(a, b)p

‖un‖p − λ
(
p∗(a, b) − q
p∗(a, b)q

)∫

Ω

|un|q
|x|dp∗(a,d)

]

= lim inf
n→∞

Jλ(un) = αλ,

(3.6)

which implies that Jλ(uλ) = αλ and limn→∞‖un‖p = ‖uλ‖p. Standard argument shows that
un → uλ strongly inW . Moreover, uλ ∈ N+

λ
. Otherwise, if uλ ∈ N−

λ
, by Lemma 2.4, there exist

unique τ+
λ
and τ−

λ
such that τ+

λ
uλ ∈ N+

λ
, τ−

λ
uλ ∈ N−

λ
and τ+

λ
< τ−

λ
= 1. Since

d

dτ
Jλ
(
τ+λ uλ

)
= 0,

d2

dτ2
Jλ
(
τ+λ uλ

)
> 0, (3.7)

there exists τ ∈ (τ+
λ
, τ−

λ
) such that Jλ(τ+λ uλ) < Jλ(τuλ). By Lemma 2.4 we get that

Jλ
(
τ+λ uλ

)
< Jλ(τuλ) ≤ Jλ

(
τ−λ uλ

)
= Jλ(uλ), (3.8)

which is a contradiction. Since Jλ(uλ) = Jλ(|uλ|) and |uλ| ∈ N+
λ
, by Lemma 2.2, wemay assume

that uλ is a nontrivial nonnegative solution of (1.1). By [5, Lemma 2.3], it follows that uλ > 0
in Ω. Finally, by (1.14) and (2.8), we obtain

‖uλ‖p−q < λ
(
p∗(a, b) − q
p∗(a, b) − p

)⎛
⎝NωNR

N−dp∗(a,d)
0

N − dp∗(a, d)

⎞
⎠

(p∗(a,d)−q)/p∗(a,d)
(
Sμ,a,d

)−(q/p)
, (3.9)

which implies that ‖uλ‖ → 0 as λ → 0+.

Next, we will establish the existence of the second positive solution of (1.1) by proving
that Jλ satisfies the (PS)α−

λ
-condition.

Lemma 3.4. Let {un} be a bounded sequence inW . If {un} is a (PS)c-sequence for Jλ with

c ∈
(
0,
p∗(a, b) − p
p∗(a, b)p

(
Sμ,a,b

)p∗(a,b)/(p∗(a,b)−p))
, (3.10)

then there exists a subsequence of {un} converging weakly to a nonzero solution of (1.1).

Proof. Let {un} ⊂ W be a (PS)c-sequence for Jλ with c ∈ (0, ((p∗(a, b) −
p)/p∗(a, b)p) (Sμ,a,b)

p∗(a,b)/(p∗(a,b)−p)). Since {un} is bounded in W and the embedding
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W ↪→ Lr(Ω, |x|−dp∗(a,d)) is compact for 1 ≤ r < p∗(a, d) (see [5, Lemma 2.1]), thus passing
to a subsequence if necessary, we may assume that as n → ∞

un ⇀ u0 weakly in W,

un ⇀ u0 weakly in Lp
∗(a,b)

(
Ω, |x|−bp∗(a,b)

)

un −→ u0 strongly in Lq
(
Ω, |x|−dp∗(a,d)

)
for 1 ≤ q < p,

un −→ u0 a.e. in Ω.

(3.11)

Using the same argument in Theorem 3.3, we deduce that J ′λ(u0) = 0 and

λ

∫

Ω

|un|q
|x|dp∗(a,d)

= λ
∫

Ω

|u0|q
|x|dp∗(a,d)

+ o(1). (3.12)

Next we verify that u0 /≡ 0. Arguing by contradiction, we assume u0 ≡ 0. Set

l = lim
n→∞

∫

Ω

|un|p
∗(a,b)

|x|bp∗(a,b)
. (3.13)

Since J ′
λ
(u0) = 0 and {un} is bounded inW , then by (3.12), we can deduce that

0 =
〈
lim
n→∞

J ′λ(un), un
〉

= lim
n→∞

(
‖un‖p −

∫

Ω

|un|p
∗(a,b)

|x|bp∗(a,b)
)

= lim
n→∞

‖un‖p − l, (3.14)

that is,

lim
n→∞

‖un‖p = l. (3.15)

If l = 0, then by (3.12)–(3.15), we get

c = lim
n→∞

Jλ(un) = lim
n→∞

(
1
p
‖un‖p −

∫

Ω

|un|p
∗(a,b)

|x|bp∗(a,b)
− λ

∫

Ω

|un|q
|x|dp∗(a,d)

)
= 0, (3.16)

which contradicts c > 0. Thus we conclude that l > 0. Furthermore, the Sobolev-Hardy
inequality implies that

‖un‖p ≥ Sμ,a,b
(∫

Ω

|un|p
∗(a,b)

|x|bp∗(a,b)
)p/p∗(a,b)

. (3.17)

Then as n → ∞, we have l = limn→∞‖un‖p ≥ Sμ,a,blp/p∗(a,b), which implies that

l ≥ (Sμ,a,b
)p∗(a,b)/(p∗(a,b)−p)

. (3.18)
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Hence, from (3.12)–(3.18) we get

c = lim
n→∞

Jλ(un)

=
1
p
lim
n→∞

‖un‖p − 1
p∗(a, b)

lim
n→∞

∫

Ω

|un|p
∗(a,b)

|x|bp∗(a,b)
− λ

q
lim
n→∞

∫

Ω

|un|q
|x|dp∗(a,d)

=
(
1
p
− 1
p∗(a, b)

)
l

≥ p∗(a, b) − p
p∗(a, b)p

(
Sμ,a,b

)p∗(a,b)/(p∗(a,b)−p)
.

(3.19)

This contradicts the definition of c. Therefore, u0 is a nontrivial solution of (1.1).

Lemma 3.5. IfN ≥ 3, 0 ≤ μ < μ, 0 ≤ a < (N − p)/p, a ≤ b, d < a + 1, and 1 ≤ q < p < N, then
for any λ > 0, there exists vλ ∈W such that

sup
τ≥0

Jλ(τvλ) <
p∗(a, b) − p
p∗(a, b)p

(
Sμ,a,b

)p∗(a,b)/(p∗(a,b)−p)
. (3.20)

In particular, α−λ < ((p∗(a, b) − p)/p∗(a, b)p)(Sμ,a,b)p
∗(a,b)/(p∗(a,b)−p) for all λ ∈ (0,Λ0).

Proof. Let Up,μ be a ground state solution of (1.8), ρ > 0 small enough such that B(0; ρ) ⊂
Ω, η ∈ C∞

0 (Ω), 0 ≤ η(x) ≤ 1, η(x) = 1 for |x| < ρ/2, η(x) = 0 for |x| ≥ ρ. Set Ũε(x) =
ε−((N−p)/p)−aUp,μ(x/ε) and uε(x) = η(x)Ũε(x), ε > 0. Then, following the same lines as in [5],
we get the following estimates as ε → 0:

‖uε‖p =
(
Sμ,a,b

)p∗(a,b)/(p∗(a,b)−p) +O
(
εβ(μ)p+p(a+1)−N

)
, (3.21)

∫

Ω

|uε|p
∗(a,b)

|x|bp∗(a,b)
=
(
Sμ,a,b

)p∗(a,b)/(p∗(a,b)−p) +O
(
ε(β(μ)+b)p

∗(a,b)−N
)
, (3.22)

∫

Ω

|uε|q
|x|dp∗(a,d)

≥

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

CεN−dp∗(a,d)−qδ,
N − dp∗(a, d)

β
(
μ
) < q < p∗(a, d),

Cεq(β(μ)−δ)|ln ε|, q =
N − dp∗(a, d)

β
(
μ
) ,

Cεq(β(μ)−δ), 1 ≤ q < N − dp∗(a, d)
β
(
μ
) ,

(3.23)

where b(μ) is given in the introduction satisfying δ = (N − p(a + 1))/p < b(μ) < (N − p(a +
1))/(p − 1).
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Now we consider the following functions:

g(τ) = Jλ(τuε) =
τp

p
‖uε‖p − τp

∗(a,b)

p∗(a, b)

∫

Ω

|uε|p
∗(a,b)

|x|bp∗(a,b)
− λτ

q

q

∫

Ω

|uε|q
|x|dp∗(a,d)

,

g(τ) =
τp

p
‖uε‖p − τp

∗(a,b)

p∗(a, b)

∫

Ω

|uε|p
∗(a,b)

|x|bp∗(a,b)
.

(3.24)

Using the definitions of g and uε, we get

g(τ) = Jλ(τuε) ≤ τp

p
‖uε‖p, ∀τ ≥ 0, λ > 0. (3.25)

Combining this with (3.21), let ε ∈ (0, 1), then there exists τ0 ∈ (0, 1) independent of ε such
that

sup
0≤τ≤τ0

g(τ) <
p∗(a, b) − p
p∗(a, b)p

(
Sμ,a,b

)p∗(a,b)/(p∗(a,b)−p)
, ∀λ > 0, ∀ε ∈ (0, 1). (3.26)

On the other hand, by the fact for B1, B2 > 0

max
τ≥0

(
τp

p
B1 − τp

∗(a,b)

p∗(a, b)
B2

)
=
p∗(a, b) − p
p∗(a, b)p

(B1)p
∗(a,b)/(p∗(a,b)−p)(B2)−(p/(p

∗(a,b)−p)), (3.27)

and by (3.21) and (3.22), we can get that

max
τ≥0

g(τ) =
p∗(a, b) − p
p∗(a, b)p

‖uε‖p
∗(a,b)/(p∗(a,b)−p)

(∫

Ω

|uε|p
∗(a,b)

|x|bp∗(a,b)
)−(p/(p∗(a,b)−p))

=
p∗(a, b) − p
p∗(a, b)p

((
Sμ,a,b

)p∗(a,b)/(p∗(a,b)−p) +O
(
εβ(μ)p+p(a+1)−N

)p∗(a,b)/(p∗(a,b)−p)

×
((
Sμ,a,b

)p∗(a,b)/(p∗(a,b)−p) +O
(
ε(β(μ)+b)p

∗(a,b)−N
))−(p/(p∗(a,b)−p))

=
p∗(a, b) − p
p∗(a, b)p

(
Sμ,a,b

)p∗(a,b)/(p∗(a,b)−p) +O
(
εβ(μ)p+p(a+1)−N

)
.

(3.28)

Hence as λ > 0, 1 ≤ q < p, by (3.28) we have that

sup
τ≥τ0

g(τ) = sup
τ≥τ0

(
g(τ) − λτ

q

q

∫

Ω

|uε|q
|x|dp∗(a,d)

)

≤ p∗(a, b) − p
p∗(a, b)p

(
Sμ,a,b

)p∗(a,b)/(p∗(a,b)−p) +O
(
εβ(μ)p+p(a+1)−N

)
− λτ

q

0

q

∫

Ω

|uε|q
|x|dp∗(a,d)

.

(3.29)
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(i) If 1 ≤ q < (N − dp∗(a, d))/β(μ), then by (3.23) we have that

∫

Ω

|uε|q
|x|dp∗(a,d)

≥ Cεq(β(μ)−δ) (3.30)

and since b(μ) > δ = (N − p(a + 1))/p, then

β
(
μ
)
p + p(a + 1) −N = p

(
β
(
μ
) − δ) > q(β(μ) − δ). (3.31)

Combining this with (3.26) and (3.29), for any λ > 0, we can choose ελ small enough such
that

sup
τ≥0

Jλ(τuελ) <
p∗(a, b) − p
p∗(a, b)p

(
Sμ,a,b

)p∗(a,b)/(p∗(a,b)−p)
. (3.32)

(ii) If (N − dp∗(a, d))/β(μ) ≤ q < p, then by (3.23) and b(μ) > δ = (N − p(a + 1))/p we
have that

∫

Ω

|uε|q
|x|dp∗(a,d)

≥

⎧
⎪⎪⎨
⎪⎪⎩

CεN−dp∗(a,d)−qδ,
N − dp∗(a, d)

β
(
μ
) < q < p∗(a, d),

Cεq(β(μ)−δ)|ln ε|, q =
N − dp∗(a, d)

β
(
μ
) ,

N − dp∗(a, d) − qδ ≤ qβ(μ) − qδ < p(β(μ) − δ) = β(μ)p + p(a + 1) −N.

(3.33)

Combining this with (3.26) and (3.29), for any λ > 0, we can choose ελ small enough such
that

sup
τ≥0

Jλ(τuελ) <
p∗(a, b) − p
p∗(a, b)p

(
Sμ,a,b

)p∗(a,b)/(p∗(a,b)−p)
. (3.34)

From (i) and (ii), (3.20) holds by taking vλ = uελ .
From Lemma 2.4, the definition of α−

λ
, and (3.20), for any λ ∈ (0,Λ0), we obtain that

there exists τ−λ > 0 such that τ−λ vλ ∈ N−
λ and

α−λ ≤ Jλ
(
τ−λ vλ

) ≤ sup
t≥0

Jλ(τvλ) <
p∗(a, b) − p
p∗(a, b)p

(
Sμ,a,b

)p∗(a,b)/(p∗(a,b)−p)
. (3.35)

The proof is thus complete.

Now, we establish the existence of a local minimum of Jλ on N−
λ
.

Theorem 3.6. Assume that N ≥ 3, 0 ≤ μ < μ, 0 ≤ a < (N − p)/p, a ≤ b, d < a + 1 and
1 ≤ q < p < N. If λ ∈ (0, (q/p)Λ0), then there existsUλ ∈ N−

λ
such that

(i) Jλ(Uλ) = α−λ ,

(ii) Uλ is a positive solution of (1.1).
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Proof. If λ ∈ (0, (q/p)Λ0), then by Theorem 2.5 (ii), Proposition 3.2 (ii), and Lemma 3.5,
there exists a (PS)α−

λ
-sequence {un} ⊂ N−

λ
in W for Jλ with α−

λ
∈ (0, ((p∗(a, b) −

p)/p∗(a, b)p)(Sμ,a,b)
p∗(a,b)/(p∗(a,b)−p)). Since Jλ is coercive on Nλ (see Lemma 2.1), we get that

{un} is bounded inW . From Lemma 3.4, there exists a subsequence still denoted by {un} and
a nontrivial solutionUλ ∈W of (1.1) such that un ⇀ Uλ weakly inW .

First, we prove that Uλ ∈ N−
λ . Arguing by contradiction, we assume Uλ ∈ N+

λ . Since
N−

λ is closed in W , we have ‖Uλ‖ < lim infn→∞‖un‖. Thus, by Lemma 2.4, there exists a
unique τ−

λ
such that τ−

λ
Uλ ∈ N−

λ
. If u ∈ Nλ, then it is easy to see that

Jλ(u) =
p∗(a, b) − p
p∗(a, b)p

‖u‖p − λ
(
p∗(a, b) − q
p∗(a, b)q

)∫

Ω

|u|q
|x|dp∗(a,d)

. (3.36)

From Remark 2.6, un ∈ N−
λ , ‖Uλ‖ < lim infn→∞‖un‖, and (3.36), we can deduce that

α−λ ≤ Jλ
(
τ−λUλ

)
< lim

n→∞
Jλ
(
τ−λ un

) ≤ lim
n→∞

Jλ(un) = α−λ. (3.37)

This is a contradiction. Thus,Uλ ∈ N−
λ .

Next, by the same argument as that in Theorem 3.3, we get that un → Uλ strongly in
W and Jλ(Uλ) = α−

λ
> 0 for all λ ∈ (0, (q/p)Λ0). Since Jλ(Uλ) = Jλ(|Uλ|) and |Uλ| ∈ N−

λ
, by

Lemma 2.2, we may assume that Uλ is a nontrivial nonnegative solution of (1.1). Finally, by
[5, Lemma 2.3], we obtain thatUλ is a positive solution of (1.1).

Now, we complete the proof of Theorem 1.1. The part (i) of Theorem 1.1 immediately
follows from Theorem 3.3. When 0 < λ < (q/p)Λ0 < Λ0, by Theorems 3.3 and 3.6, we obtain
(1.1) has two positive solutions uλ and Uλ such that uλ ∈ N+

λ
, Uλ ∈ N−

λ
. Since N+

λ
∩ N−

λ
= ∅,

this implies that uλ andUλ are distinct. This completes the proof of Theorem 1.1.
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