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Intuitionistic fuzzy sets (IFSs) providemathematical framework based on fuzzy sets to describe vagueness in data. It finds interesting
and promising applications in different domains. Here, we develop an intuitionistic fuzzy possibilistic Cmeans (IFPCM) algorithm
to cluster IFSs by hybridizing concepts of FPCM, IFSs, and distance measures. IFPCM resolves inherent problems encountered
with information regarding membership values of objects to each cluster by generalizing membership and nonmembership with
hesitancy degree.The algorithm is extended for clustering interval valued intuitionistic fuzzy sets (IVIFSs) leading to interval valued
intuitionistic fuzzy possibilistic C means (IVIFPCM). The clustering algorithm has membership and nonmembership degrees as
intervals. Information regardingmembership and typicality degrees of samples to all clusters is given by algorithm.The experiments
are performed onboth real and simulated datasets. It generates valuable information andproduces overlapped clusterswith different
membership degrees. It takes into account inherent uncertainty in information captured by IFSs. Some advantages of algorithms
are simplicity, flexibility, and low computational complexity. The algorithm is evaluated through cluster validity measures. The
clustering accuracy of algorithm is investigated by classification datasets with labeled patterns.The algorithmmaintains appreciable
performance compared to other methods in terms of pureness ratio.

1. Introduction

Clustering algorithms [1, 2] form an integral part of computa-
tional intelligence and pattern recognition research. Cluster-
ing analysis is commonly used as an important tool to classify
collection of objects into homogeneous groups, such that
objects within a given group are similar to each other whereas
objects within different groups are dissimilar to each other.
The concept is based on the notion of similarity, which is a
basic component of intelligence and ubiquitous to scientific
endeavor. Clustering finds numerous applications [3] across
a variety of disciplines such as taxonomy, image process-
ing, information retrieval, data mining, pattern recognition,
microbiology, archaeology and geographical analysis, and so
forth. It is an exploratory tool for deducing the nature of
data by providing labels to individual objects that describe
how the data separate into groups. It has improved the
performance of other systems by separating the problem
domain intomanageable subgroups [4]. Often researchers are
confronted with the challenging datasets that are large and
unlabeled. There are many methods available in exploratory

data analysis [5, 6] by which researchers can elucidate these
data.

Clustering an unlabeled dataset 𝑋 = {𝑥
1
, . . . , 𝑥

𝑛
} ⊂ R𝑝

is partitioning of 𝑋 into 1 < 𝑐 < 𝑛 subgroups such that
each subgroup represents natural substructure in 𝑋. This is
done by assigning labels to vectors in 𝑋 and hence to objects
generating𝑋. A 𝑐 partition of is a set of 𝑐𝑛 values that can be
conveniently represented as 𝑐 × 𝑛 matrix = [𝑢

𝑖𝑘
]. There are

generally three sets of partition matrices [7, 8]:

𝑀
𝑝𝑐𝑛

= {𝑈 ∈ R
𝑐𝑛

: 0 ≤ 𝑢
𝑖𝑘

≤ 1 ∀𝑖, 𝑘; ∀𝑘 ∃𝑖 ∋ 𝑢
𝑖𝑘

> 0} (1)

𝑀
𝑓𝑐𝑛

= {𝑈 ∈ 𝑀
𝑝𝑐𝑛

:

𝑐

∑

𝑖=1

𝑢
𝑖𝑘

= 1 ∀𝑘;

𝑐

∑

𝑖=1

𝑢
𝑖𝑘

> 0 ∀𝑖} (2)

𝑀
ℎ𝑐𝑛

= {𝑈 ∈ 𝑀
𝑓𝑐𝑛

: 𝑢
𝑖𝑘

= 0 ∨1 ∀𝑖 ∧ 𝑘} . (3)

The matrix 𝑀
𝑝𝑐𝑛

in (1) has the property that for any 𝑘 there
exists at least an index 𝑖 such that 𝑢

𝑖𝑘
is greater than 0.

The matrix 𝑀
𝑓𝑐𝑛

in (2) states that if ∑
𝑐

𝑖=1
𝑢
𝑖𝑘

is equal to
1 for any 𝑘, it is obvious that ∑

𝑐

𝑖=1
𝑢
𝑖𝑘

is greater than 0.
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The matrix 𝑀
ℎ𝑐𝑛

in (3) is formed by boolean matrices as a
subset of matrix 𝑀

𝑓𝑐𝑛
in (2). The equations (1), (2), and (3)

thus define the sets of possibilistic, fuzzy, or probabilistic and
crisp 𝑐 partitions of𝑋, respectively. Hence, there are thus four
kinds of label vectors, but fuzzy and probabilistic label vectors
are mathematically identical having entries between 0 and 1
that sum to 1 over each column. The reason these matrices
are called partitions follows from the interpretation of their
entries. If 𝑈 is crisp or fuzzy, 𝑢

𝑖𝑘
is taken as a membership

of x
𝑘
in 𝑖th partitioning fuzzy subset or cluster of 𝑋. If

𝑈 in 𝑀
𝑓𝑐𝑛

is probabilistic, 𝑢
𝑖𝑘

is the posterior probability
Prob(𝑖/x

𝑘
). If𝑈 in𝑀

𝑝𝑐𝑛
is possibilistic, it has entries between

0 and 1 that do not necessarily sum to 1 over any column.
In this case, 𝑢

𝑖𝑘
is taken as the possibility that x

𝑘
belongs to

class 𝑖. An alternate interpretation of possibility 𝑢
𝑖𝑘
is that

it measures the typicality of x
𝑘
to cluster 𝑖. It is observed

that 𝑀
ℎ𝑐𝑛

⊂ 𝑀
𝑓𝑐𝑛

⊂ 𝑀
𝑝𝑐𝑛

. A clustering algorithm C finds
𝑈 ∈ 𝑀

ℎ𝑐𝑛
(𝑀
𝑓𝑐𝑛

,𝑀
𝑝𝑐𝑛

) which best explains and represents
an unknown structure in 𝑋 with respect to the model that
definesC. For𝑈 in𝑀

𝑓𝑐𝑛
, 𝑐 = 1 is represented uniquely by the

hard 1 partition, 1
𝑛
= [1 ⋅ ⋅ ⋅ 1]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛 times
which unequivocally assigns all

𝑛 objects to a single cluster, and 𝑐 = 𝑛 is represented uniquely
by 𝑈 = 𝐼

𝑛
, the 𝑛 × 𝑛 identity matrix up to a permutation

of columns. In this case, each object is in its own singleton
cluster. Choosing 𝑐 = 1 or 𝑐 = 𝑛 rejects the hypothesis that𝑋
contains clusters.

In the last few decades, variety of clustering techniques
[3, 5, 6, 9, 10] has been developed to classify data. Clustering
techniques are broadly divided into hierarchical and partition
methods. Hierarchical clustering [5] generates hierarchical
tree of clusters called dendrogram which can be either
divisive or agglomerative [3]. The former is a top-down
splitting technique which starts with all objects in one cluster
and forms hierarchy by dividing objects into smaller clusters
in an iterative procedure until the desired number of clusters
is achieved or considered objects which is constituted as
unique cluster. The latter starts by considering each object
as cluster, followed by comparing them amongst themselves
using distancemeasure.The clusters with smaller distance are
considered as constituting unique group and then merged.
Themerging procedure is repeated until the desirable number
of clusters is achieved or only one cluster is left with all
considered objects. Partition clustering method gives single
𝑐 partition of objects, with 𝑐 being the predefined number
of clusters [11]. One of the most widely used partition
clustering algorithms is fuzzy C means (FCM). FCM is a
combination of 𝑘means clustering algorithm and fuzzy logic
[1, 7]. It works iteratively in which the desired number of
clusters 𝑐 and initial seeds are predefined. FCM algorithm
assigns memberships to x

𝑘
which are inversely proportional

to relative distance of x
𝑘
to 𝑐 point prototypes {k

𝑖
} that are

cluster centers. For 𝑐 = 2, if x
𝑘
is equidistant from two

prototypes, the membership of x
𝑘
in each cluster will be the

same regardless of absolute value of the distance of x
𝑘
from

two centroids as well as from other points. The problem this
creates is noise points which are far but equidistant from
central structure of two clusters that can never be given equal
membership, when it seems far more natural that such points

are given very low or no membership in either cluster. This
problem was overcome by Krishnapuram and Keller [8], who
proposed possibilistic Cmeans (PCM) which relaxes column
sum constraint in (2) so that sum of each column satisfies the
constraint 0 < ∑

𝑐

𝑖=1
𝑢
𝑖𝑘

≤ 𝑐. In other words, each element
of 𝑘th column can be between 0 and 1, as long as at least
one of them is positive. They suggested that value should
be interpreted as typicality of 𝑥

𝑘
relative to cluster 𝑖. They

interpreted each row of 𝑈 as possibility distribution over 𝑋.
The objective function of PCM algorithm sometimes helps to
identify outliers, that is, noise points. However, Barni et al.
[12] pointed that PCM pays price for its freedom to ignore
noise points such that it is very sensitive to initializations and
sometimes generates coincident clusters.Moreover, typicality
can be very sensitive to the choice of additional parameters
needed by PCM algorithm. The coincident cluster problem
of PCM algorithm was avoided by two possibilistic fuzzy
clustering algorithms proposed by Timm et al. [13–15]. They
modified PCM objective function by adding an inverse
function of distances between the cluster centers. This term
acts in repulsive nature and avoids coincident clusters. In [13,
14], Timm et al. used the same concept to modify objective
function as used by Gustafson and Kessel [16] clustering
algorithm. These algorithms exploit benefits of both fuzzy
and possibilistic clustering. Pal et al. [17] justified the need
for both possibility, that is, typicality andmembership values,
and proposed a model and corresponding algorithm called
fuzzy possibilistic C means (FPCM).This algorithm normal-
izes possibility values, so that the sum of possibilities of all
data points in a cluster is 1. Although FPCM is much less
prone to errors encountered by FCM and PCM, possibility
values are very small when size of dataset increases.

The notion of intuitionistic fuzzy set (IFS) coined by
Atanassov [22] for fuzzy set generalizations has interest-
ing and useful applications in different domains such as
logic programming, decision making problems, and medical
diagnostics [23–26]. This generalization presents degrees of
membership and nonmembership with a degree of hesitancy.
Thus, knowledge and semantic representation become more
meaningful and applicable [27, 28]. Sometimes it is not
appropriate to assume thatmembership and nonmembership
degree of an object are exactly defined [29], but value ranges
or value intervals can be assigned. In such cases, IFS can
be generalized and interval valued intuitionistic fuzzy set
(IVIFS) [29] can be defined whose components are intervals
rather than exact numbers. IFSs and IVIFSs have been found
to be very useful to describe and deal with vague and
uncertain data [28, 30]. With this motivation, it is desirable
to develop some practical approaches to clustering IFSs and
IVIFSs. Intuitionistic fuzzy similarity matrix was defined by
[31] and thereby intuitionistic fuzzy equivalence matrix was
developed. The work in [31] gave an approach to transform
intuitionistic fuzzy similarity matrices into intuitionistic
fuzzy equivalence matrices, based on which a procedure for
clustering intuitionistic fuzzy sets was proposed. Somemeth-
ods for calculating association coefficients of IFSs or IVIFSs
and corresponding clustering algorithm were introduced by
[32]. The algorithm used derived association coefficients of
IFSs or IVIFSs to construct an associationmatrix and utilized
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the procedure to transform it into an equivalent association
matrix. Reference [33] introduced an intuitionistic fuzzy
hierarchical algorithm for clustering IFSs which is based on
traditional hierarchical clustering procedure and intuition-
istic fuzzy aggregation operator. These algorithms cannot
provide information about membership degrees of objects to
each cluster.

In this work, an intuitionistic fuzzy possibilistic C means
(IFPCM) algorithm to cluster IFSs is developed. IFPCM is
obtained by applying IFSs to FPCMwhich is a known cluster-
ing method based on basic distance measures between IFSs
[34, 35]. At each stage of the algorithm seeds are modified
and for each IFS membership and typicality degrees to each
of the clusters are estimated. The algorithm ends when all
given IFSs are clustered according to estimated membership
and typicality degrees. It overcomes the inherent problems
encountered with information regarding membership values
of objects to each cluster by generalizing membership and
nonmembershipwith hesitancy degree.The algorithm is then
extended to interval valued intuitionistic fuzzy possibilistic
C means (IVIFPCM) for clustering IVIFSs. The algorithms
are illustrated through conducting experiments on differ-
ent datasets. The evaluation of the algorithm is performed
through cluster validity measures. The clustering accuracy of
the algorithm is determined by classification datasets with
labeled patterns. IFPCM algorithm is simple and flexible
in nature and provides information about membership and
typicality degrees of samples to all clusters with low compu-
tational complexity.

This paper is organized as follows. In the next sec-
tion, the concepts of IFSs and IVIFSs are defined. FPCM
clustering algorithm is given in Section 3. The next section
presents IFPCM clustering algorithms for IFSs and IVIFSs,
respectively. The experimental results on both real world
and simulated datasets are illustrated in Section 5. Finally, in
Section 6 conclusions are given.

2. Intuitionistic Fuzzy Sets and Interval
Valued Intuitionistic Fuzzy Sets

In this section, we present some basic definitions associated
with IFSs and IVIFSs.

Definition 1. Considering 𝑋 as universe of discourse [22],
then IFS is defined as

𝑉 = {⟨𝑥, 𝜇
𝑉
(𝑥) , V

𝑉
(𝑥)⟩ | 𝑥 ∈ 𝑋} . (4)

In (4) 𝜇
𝑉
(𝑥) and V

𝑉
(𝑥) are the membership and nonmem-

bership degrees, respectively, satisfying the following con-
straints:

𝜇
𝑉
: 𝑋 󳨀→ [0, 1] , 𝑥 ∈ 𝑋 󳨀→ 𝜇

𝑉
(𝑥) ∈ [0, 1] ,

V
𝑉
: 𝑋 󳨀→ [0, 1] , 𝑥 ∈ 𝑋 󳨀→ V

𝑉
(𝑥) ∈ [0, 1] .

(5)

Equation (5) is subject to the condition that𝜇
𝑉
(𝑥)+V

𝑉
(𝑥) ≤ 1,

∀𝑥 ∈ 𝑋.

Definition 2. For each IFS 𝑉 in 𝑋, if 𝜋
𝑉
(𝑥) = 1 − 𝜇

𝑉
(𝑥) −

V
𝑉
(𝑥), then 𝜋

𝑉
(𝑥) is called hesitation degree (or intuition-

istic index) [36] of 𝑥 to 𝑉. Obviously 𝜋
𝑉
(𝑥) is specified in

the range 0 ≤ 𝜋
𝑉
(𝑥) ≤ 1; especially if 𝜋

𝑉
(𝑥) = 0 ∀𝑥 ∈ 𝑋,

then IFS 𝑉 is reduced to fuzzy set. If 𝜋
𝑉
(𝑥) and V

𝑉
(𝑥) have 0

values such that 𝜇
𝑉
(𝑥) = V

𝑉
(𝑥) = 0 ∀𝑥 ∈ 𝑋, then IFS 𝑉 is

completely intuitionistic.

Considering the fact that the elements 𝑥
𝑖
; 𝑖 = 1, . . . , 𝑛

in universe 𝑋 have different importance, let us assume 𝑤 =

(𝑤
1
, . . . , 𝑤

𝑛
) should be the weight vector of 𝑥

𝑖
; 𝑖 = 1, . . . , 𝑛

with

𝑤
𝑖
≥ 0,

𝑛

∑

𝑖=1

𝑤
𝑖
= 1. (6)

Xu [37] defined the following weighted Euclidean distance
between IFSs 𝑉 and𝑊:

𝐷
𝛼
(𝑉,𝑊) = (

1

2

𝑛

∑

𝑖=1

𝑤
𝑖
((𝜇
𝑉
(𝑥
𝑖
) − 𝜇
𝑊

(𝑥
𝑖
))
2

+ (V
𝑉
(𝑥
𝑖
) − V
𝑊

(𝑥
𝑖
))
2

+ (𝜋
𝑉
(𝑥
𝑖
) − 𝜋
𝑊

(𝑥
𝑖
))
2

))

1/2

.

(7)

In particular, if 𝑤 = (1/𝑛, . . . , 1/𝑛), then (7) is reduced
to normalized Euclidean distance [34] which is defined as
follows:

𝐷
𝛼
(𝑉,𝑊)

= (
1

2𝑛

𝑛

∑

𝑖=1

((𝜇
𝑉
(𝑥
𝑖
) − 𝜇
𝑊

(𝑥
𝑖
))
2

+ (V
𝑉
(𝑥
𝑖
) − V
𝑊

(𝑥
𝑖
))
2

+ (𝜋
𝑉
(𝑥
𝑖
) − 𝜋
𝑊

(𝑥
𝑖
))
2

))

1/2

.

(8)

Atanassov and Gargov [29] pointed out that sometimes it
is not appropriate to assume that membership and non-
membership degrees of the element are exactly defined but
value ranges or value intervals can be given. In this context,
Atanassov and Gargov [29] extended IFS and introduced the
concept of IVIFS, which is characterized by a membership
degree and a nonmembership degree, whose values are
intervals rather than exact numbers.

Definition 3. An IVIFS 𝑉̃ over 𝑋 is an object having the
following form [29]:

𝑉̃ = {⟨𝑥, 𝜇
𝑉̃
(𝑥) , Ṽ

𝑉̃
(𝑥)⟩ | 𝑥 ∈ 𝑋} . (9)

Here, 𝜇
𝑉̃
(𝑥) = [𝜇

𝐿

𝑉̃
(𝑥), 𝜇
𝑈

𝑉̃
(𝑥)] ⊂ [0, 1] and Ṽ

𝑉̃
(𝑥) = [Ṽ𝐿

𝑉̃
(𝑥),

Ṽ𝑈
𝑉̃
(𝑥)] ⊂ [0, 1] are intervals 𝜇

𝐿

𝑉̃
(𝑥) = inf 𝜇

𝑉̃
(𝑥), 𝜇𝑈

𝑉̃
(𝑥) =

sup 𝜇
𝑉̃
(𝑥), Ṽ𝐿
𝑉̃
(𝑥) = inf Ṽ

𝑉̃
(𝑥), Ṽ𝑈
𝑉̃
(𝑥) = sup Ṽ

𝑉̃
(𝑥), and 𝜇

𝑈

𝑉̃
(𝑥)+

Ṽ𝑈
𝑉̃
(𝑥) ≤ 1, ∀𝑥 ∈ 𝑋 and 𝜋̃

𝑉̃
(𝑥) = [𝜋̃

𝐿

𝑉̃
(𝑥), 𝜋̃
𝑈

𝑉̃
(𝑥)], where
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𝜋
𝐿

𝑉̃
(𝑥) = 1−𝜇

𝑈

𝑉̃
(𝑥)−V𝑈

𝑉̃
(𝑥),𝜋𝑈
𝑉̃
(𝑥) = 1−𝜇

𝐿

𝑉̃
(𝑥)−V𝐿

𝑉̃
(𝑥), ∀𝑥 ∈ 𝑋.

In particular, if 𝜇
𝑉̃
(𝑥) = 𝜇

𝐿

𝑉̃
(𝑥) = 𝜇

𝑈

𝑉̃
(𝑥) and V

𝑉̃
(𝑥) = Ṽ𝐿

𝑉̃
(𝑥) =

Ṽ𝑈
𝑉̃
(𝑥), then 𝑉̃ is reduced to an IFS.

Now we extend the weighted Euclidean distance measure
given in (7) to IVIFS theory:

𝐷
𝛾
(𝑉̃, 𝑊̃)

= (
1

4

𝑛

∑

𝑙=1

𝑤
𝑙
((𝜇
𝐿

𝑉̃
(𝑥
𝑙
) − 𝜇
𝐿

𝑊̃
(𝑥
𝑙
))
2

+ (𝜇
𝑈

𝑉̃
(𝑥
𝑙
) − 𝜇
𝑈

𝑊̃
(𝑥
𝑙
))
2

+ (Ṽ𝐿
𝑉̃
(𝑥
𝑙
) − Ṽ𝐿
𝑊̃

(𝑥
𝑙
))
2

+ (Ṽ𝑈
𝑉̃
(𝑥
𝑙
) − Ṽ𝑈
𝑊̃

(𝑥
𝑙
))
2

+ (𝜋̃
𝐿

𝑉̃
(𝑥
𝑙
) − 𝜋̃

𝐿

𝑊̃
(𝑥
𝑙
))
2

+ (𝜋̃
𝑈

𝑉̃
(𝑥
𝑙
) − 𝜋̃
𝑈

𝑊̃
(𝑥
𝑙
))
2

))

1/2

.

(10)

Particularly, if 𝑤 = (1/𝑛, . . . , 1/𝑛), then (10) is reduced to
normalized Euclidean distance which is given as follows:

𝐷
𝛾
(𝑉̃, 𝑊̃)

= (
1

4𝑛

𝑛

∑

𝑙=1

𝑤
𝑙
((𝜇
𝐿

𝑉̃
(𝑥
𝑙
) − 𝜇
𝐿

𝑊̃
(𝑥
𝑙
))
2

+ (𝜇
𝑈

𝑉̃
(𝑥
𝑙
) − 𝜇
𝑈

𝑊̃
(𝑥
𝑙
))
2

+ (Ṽ𝐿
𝑉̃
(𝑥
𝑙
) − Ṽ𝐿
𝑊̃

(𝑥
𝑙
))
2

+ (Ṽ𝑈
𝑉̃
(𝑥
𝑙
) − Ṽ𝑈
𝑊̃
(𝑥
𝑙
))
2

+ (𝜋̃
𝐿

𝑉̃
(𝑥
𝑙
) − 𝜋̃

𝐿

𝑊̃
(𝑥
𝑙
))

2

+ (𝜋̃
𝑈

𝑉̃
(𝑥
𝑙
) − 𝜋̃
𝑈

𝑊̃
(𝑥
𝑙
))
2

))

1/2

.

(11)

3. Fuzzy Possibilistic C Means
Clustering Algorithm

This section illustrates FPCM clustering algorithm proposed
by Pal et al. [17] in 1997 to exploit the benefits of fuzzy and
possibilistic modeling while circumventing their weaknesses.
To correctly interpret the data substructure, FPCM clustering
uses both memberships (relative typicality) and possibilities
(absolute typicality). When we want to crisply label a data
point, membership is a plausible choice as it is natural to
assign a point to cluster whose prototype is closest to the
point. On the other hand, while estimating the centroids,
typicality is an important means for alleviating the undesir-
able effects of outliers. Here, the number of clusters is fixed
a priori to a default value considering the dataset used in the
application such that it is completely data driven. Generally it
is advisable to avoid trivial clusters which may be either too
large or small.

FPCM extends FCM clustering algorithm [17] by nor-
malizing possibility values so that sum of possibilities of all
data points in a cluster is 1. Although FPCM is much less
prone to the problems of both FCM and PCM, the possibility
values are very small when size of the dataset increases.
Analogous to FCM clustering algorithm, the membership
term in FPCM is a function of data point and all centroids.
The typicality term in FPCM is a function of data point
and cluster prototype alone. That is, the membership term
is influenced by the positions of all cluster centers whereas
typicality term is affected by only one. Incorporating the
abovementioned facets the FPCM model is defined by the
following optimization problem [17]:

min⏟⏟⏟⏟⏟⏟⏟

(𝑈,𝑇,𝑉)

{𝐽
𝑚,𝜂

(𝑈, 𝑇, 𝑉;𝑋) =

𝑝

∑

𝑘=1

𝑐

∑

𝑖=1

(𝑢
𝑚

𝑖𝑘
+ 𝑡
𝜂

𝑖𝑘
)𝐷
2

𝑖𝑘
}

subject to 𝑚 > 1, 𝜂 > 1, 0 < 𝑢
𝑖𝑘
, 𝑡
𝑖𝑘

< 1

(12)

𝑐

∑

𝑖=1

𝑢
𝑖𝑘

= 1 ∀𝑘 i.e., 𝑈 ∈ 𝑀
𝑓𝑐𝑛 (13)

𝑝

∑

𝑘=1

𝑡
𝑖𝑘

= 1 ∀𝑖 i.e., 𝑇
𝑡
∈ 𝑀
𝑓𝑛𝑐

. (14)

The transpose of admissible 𝑇’s is member of set 𝑀
𝑓𝑛𝑐

. 𝑇 is
viewed as a typicality assignment of 𝑛 objects to 𝑐 clusters.
The possibilistic term ∑

𝑝

𝑘=1
∑
𝑐

𝑖=1
𝑡
𝜂

𝑖𝑘
𝐷
2

𝑖𝑘
distributes {𝑡

𝑖𝑘
} with

respect to all 𝑛 data points, but not with respect to all
𝑐 clusters. Under the usual conditions placed on c-means
optimization problems, the first order necessary conditions
for extrema of 𝐽

𝑚,𝜂
are stated in terms of the following

theorem.

Theorem FPCM (see [17]). If 𝐷
𝑖𝑘

= ‖𝑥
𝑘
− v
𝑖
‖ > 0 ∀𝑖 and

𝑘,𝑚, 𝜂 > 1 and 𝑋 contains at least 𝑐 distinct data points, then
(𝑈, 𝑇
𝑡
,V) ∈ 𝑀

𝑓𝑐𝑛
× 𝑀
𝑓𝑐𝑛

×R𝑝 may minimize 𝐽
𝑚,𝜂

only if

𝑢
𝑖𝑘

= (

𝑐

∑

𝑗=1

(
𝐷
𝑖𝑘

𝐷
𝑗𝑘

)

2/(𝑚−1)

)

−1

; 1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑘 ≤ 𝑛, (15)

𝑡
𝑖𝑘

= (

𝑛

∑

𝑗=1

(
𝐷
𝑖𝑘

𝐷
𝑖𝑗

)

2/(𝜂−1)

)

−1

; 1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑘 ≤ 𝑛, (16)

k
𝑖
=

∑
𝑛

𝑘=1
(𝑢
𝑚

𝑖𝑘
+ 𝑡
𝜂

𝑖𝑘
) x
𝑘

∑
𝑛

𝑘=1
(𝑢
𝑚

𝑖𝑘
+ 𝑡
𝜂

𝑖𝑘
)

; 1 ≤ 𝑖 ≤ 𝑐. (17)

The proof of the above theorem follows from [38]. FPCM has
the same type of singularity as FCM. FPCM does not suffer
from the sensitivity problem that PCM seems to exhibit.
Unfortunately, when the number of data points is large, the
typicality values will be very small. Thus, after FPCM-AO
algorithm [38] for approximating solutions to (12) based on
iteration through (17) terminates, the typicality values may
need to be scaled up. Conceptually, this is not different than
scaling typicality as is done in PCM. While scaling seems
to solve the small value problem which is caused by row
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sum constraint on 𝑇, the scaled values do not possess any
additional information about points in the data. Thus scaling
{𝑡
𝑖𝑘
} is an artificial fix for a mathematical drawback of FPCM.

4. Intuitionistic Fuzzy Possibilistic C Means
Clustering Algorithms

In this section, we discuss intuitionistic fuzzy possibilistic C
means clustering algorithms for IFSs and IVIFSs, respectively.

4.1. Intuitionistic Fuzzy Possibilistic C Means Algorithm for
IFSs. We develop the intuitionistic fuzzy possibilistic C
means (IFPCM) model and corresponding algorithm for
IFSs. We take the basic distance measure 𝐷

𝑗
in (7) as

proximity function of IFPCM; the objective function of
IFPCMmodel can then be defined as follows:

min⏟⏟⏟⏟⏟⏟⏟

(𝑈,𝑇,𝑉)

{𝐽
𝑚,𝜂

(𝑈, 𝑇, 𝑉;𝑋) =

𝑝

∑

𝑘=1

𝑐

∑

𝑖=1

(𝑢
𝑚

𝑖𝑘
+ 𝑡
𝜂

𝑖𝑘
)𝐷
2

𝛼
(𝑍
𝑘
, 𝑉
𝑖
)}

subject to 𝑚 > 1, 𝜂 > 1, 0 < 𝑢
𝑖𝑘
, 𝑡
𝑖𝑘

< 1

𝑐

∑

𝑖=1

𝑢
𝑖𝑘

= 1 ∀𝑘 i.e., 𝑈 ∈ 𝑀
𝑓𝑐𝑛

𝑝

∑

𝑘=1

𝑡
𝑖𝑘

= 1 ∀𝑖 i.e., 𝑇
𝑡
∈ 𝑀
𝑓𝑛𝑐

.

(18)

Here 𝑍 = {𝑍
1
, . . . , 𝑍

𝑝
} are 𝑝 IFSs each with 𝑛 elements, 𝑐 is

the number of clusters (1 ≤ 𝑐 ≤ 𝑝), and 𝑉 = {𝑉
1
, . . . , 𝑉

𝑐
}

are the prototypical IFSs, that is, centroid of the clusters. The
parameter𝑚 is the fuzzy factor, 𝑢

𝑖𝑘
is the membership degree

of 𝑗th sample 𝑍
𝑗
to the 𝑖th cluster, 𝑈 = (𝑢

𝑖𝑘
)
𝑐×𝑝

is matrix
of order 𝑐 × 𝑝, parameter 𝜂 is the typicality factor, 𝑡

𝑖𝑘
is the

typicality of 𝑗th sample 𝑍
𝑗
to the 𝑖th cluster, and 𝑇 = (𝑡

𝑖𝑘
)
𝑐×𝑝

is typicality matrix.
To solve the optimization problem stated in (18), wemake

use of Lagrange multiplier method [39], which is discussed
below. Considering

𝐿 =

𝑝

∑

𝑘=1

𝑐

∑

𝑖=1

(𝑢
𝑚

𝑖𝑘
+ 𝑡
𝜂

𝑖𝑘
)𝐷
2

𝛼
(𝑍
𝑘
, 𝑉
𝑖
) −

𝑝

∑

𝑘=1

𝜆
𝑘
(

𝑐

∑

𝑖=1

𝑢
𝑖𝑘
− 1)

−

𝑝

∑

𝑘=1

𝜉
𝑘
(

𝑐

∑

𝑖=1

𝑡
𝑖𝑘
− 1) ,

(19)

where,

𝐷
2

𝛼
(𝑍
𝑘
, 𝑉
𝑖
) =

1

2

𝑛

∑

𝑙=1

𝑤
𝑙
((𝜇
𝑍𝑘

(𝑥
𝑙
) − 𝜇
𝑉𝑖
(𝑥
𝑙
))
2

)

+ (V
𝑍𝑘

(𝑥
𝑙
) − V
𝑉𝑖
(𝑥
𝑙
))
2

+ (𝜋
𝑍𝑘

(𝑥
𝑙
) − 𝜋

𝑉𝑖
(𝑥
𝑙
))
2

.

(20)

Furthermore, ∀1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑘 ≤ 𝑝; let

𝜕𝐿

𝜕𝑢
𝑖𝑘

= 0,

𝜕𝐿

𝜕𝑡
𝑖𝑘

= 0,

𝜕𝐿

𝜕𝜆
𝑘

= 0,

𝜕𝐿

𝜕𝜉
𝑘

= 0.

(21)

From the above system of equations, we have the following
expressions:

𝑢
𝑖𝑘

=
1

∑
𝑐

𝑟=1
(𝐷
𝛼
(𝑍
𝑘
, 𝑉
𝑖
)/𝐷
𝛼
(𝑍
𝑘
, 𝑉
𝑟
))
2/(𝑚−1)

;

1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑘 ≤ 𝑝

(22)

𝑡
𝑖𝑘

=
1

∑
𝑐

𝑟=1
(𝐷
𝛼
(𝑍
𝑘
, 𝑉
𝑖
) /𝐷
𝛼
(𝑍
𝑘
, 𝑉
𝑟
))
2/(𝜂−1)

;

1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑘 ≤ 𝑝.

(23)

Now we proceed to compute 𝑉
𝑖
; 𝑖 = 1, . . . , 𝑐, the prototypical

IFSs. Let us assume that

𝜕𝐿

𝜕𝜇
𝑉𝑖
(𝑥
𝑙
)
=

𝜕𝐿

𝜕V
𝑉𝑖
(𝑥
𝑙
)
=

𝜕𝐿

𝜕𝜋
𝑉𝑖
(𝑥
𝑙
)
= 0. (24)

From the above expression we have

𝜇
𝑉𝑖
(𝑥
𝑙
) =

∑
𝑝

𝑘=1
(𝑢
𝑚

𝑖𝑘
+ 𝑡
𝜂

𝑖𝑘
) 𝜇
𝑍𝑘

(𝑥
𝑙
)

∑
𝑝

𝑘=1
(𝑢
𝑚

𝑖𝑘
+ 𝑡
𝜂

𝑖𝑘
)

; 1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑙 ≤ 𝑛,

(25)

V
𝑉𝑖
(𝑥
𝑙
) =

∑
𝑝

𝑘=1
(𝑢
𝑚

𝑖𝑘
+ 𝑡
𝜂

𝑖𝑘
) V
𝑍𝑘

(𝑥
𝑙
)

∑
𝑝

𝑘=1
(𝑢
𝑚

𝑖𝑘
+ 𝑡
𝜂

𝑖𝑘
)

; 1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑙 ≤ 𝑛,

(26)

𝜋
𝑉𝑖
(𝑥
𝑙
) =

∑
𝑝

𝑘=1
(𝑢
𝑚

𝑖𝑘
+ 𝑡
𝜂

𝑖𝑘
) 𝜋
𝑍𝑘

(𝑥
𝑙
)

∑
𝑝

𝑘=1
(𝑢
𝑚

𝑖𝑘
+ 𝑡
𝜂

𝑖𝑘
)

; 1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑙 ≤ 𝑛.

(27)

For simplicity, we define weighted average operator for IFSs
as follows.

Let 𝐴 = {𝐴
1
, . . . , 𝐴

𝑝
} be a set of IFSs each with 𝑛

elements; let 𝜔 = {𝜔
1
, . . . , 𝜔

𝑝
} be a set of weights for

IFSs, respectively, with ∑
𝑝

𝑗=1
𝜔
𝑗
= 1; and then the weighted

operator 𝑓 is defined as

𝑓 (𝐴, 𝜔)

=

{

{

{

⟨𝑥
𝑙
,

𝑝

∑

𝑗=1

𝜔
𝑗
𝜇
𝐴𝑗

(𝑥
𝑙
) ,

𝑝

∑

𝑗=1

𝜔
𝑗
V
𝐴𝑗

(𝑥
𝑙
)⟩ | 1 ≤ 𝑙 ≤ 𝑛

}

}

}

.

(28)
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According to (25) to (28), if we assume

𝜔
(𝑖)

= {
(𝑢
𝑖1
+ 𝑡
𝑖1
)

∑
𝑝

𝑘=1
(𝑢
𝑖𝑘
+ 𝑡
𝑖𝑘
)
, . . . ,

(𝑢
𝑖𝑝
+ 𝑡
𝑖𝑝
)

∑
𝑝

𝑘=1
(𝑢
𝑖𝑘
+ 𝑡
𝑖𝑘
)
} ;

1 ≤ 𝑖 ≤ 𝑐,

(29)

the prototypical IFSs 𝑉 = {𝑉
1
, . . . , 𝑉

𝑐
} of the IFPCM model

can be computed as follows:

𝑉
𝑖
= 𝑓 (𝑍, 𝜔

(𝑖)
)

=

{

{

{

⟨𝑥
𝑙
,

𝑝

∑

𝑗=1

𝜔
(𝑖)

𝑗
𝜇
𝑍𝑗

(𝑥
𝑙
) ,

𝑝

∑

𝑗=1

𝜔
(𝑖)

𝑗
V
𝑍𝑗

(𝑥
𝑙
)⟩ | 1 ≤ 𝑙 ≤ 𝑛

}

}

}

,

1 ≤ 𝑖 ≤ 𝑐.

(30)

Since the above equations (22), (23), and (30) are compu-
tationally interdependent, we exploit an iterative procedure
similar to the FPCM algorithm to solve these equations. The
steps of algorithm are as follows.

IFPCM Algorithm

Step 1. Initialize the seed values 𝑉(0); let 𝑥 = 0 and set 𝜀 > 0.

Step 2(i). Calculate 𝑈(𝑥) = (𝑢
𝑖𝑘
(𝑥))
𝑐×𝑝

, where

(a) if ∀𝑘, 𝑟, 𝐷
𝛼
(𝑍
𝑘
, 𝑉
𝑟
(𝑥)) > 0, then 𝑢

𝑖𝑘
(𝑥) =

1/(∑
𝑐

𝑟=1
(𝐷
𝛼
(𝑍
𝑘
, 𝑉
𝑖
(𝑥))/𝐷

𝛼
(𝑍
𝑘
, 𝑉
𝑟
(𝑥)))
2/(𝑚−1)

);
1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑘 ≤ 𝑝,

(b) if ∃𝑘, 𝑟 such that 𝐷
𝛼
(𝑍
𝑘
, 𝑉
𝑟
(𝑥)) = 0, then let 𝑢

𝑟𝑘
(𝑥) =

1 and 𝑢
𝑖𝑘
(𝑥) = 0 ∀𝑖 ̸= 𝑟.

Step 2(ii). Calculate 𝑇(𝑥) = (𝑡
𝑖𝑘
(𝑥))
𝑐×𝑝

, where

(a) if ∀𝑘, 𝑟, 𝐷
𝛼
(𝑍
𝑘
, 𝑉
𝑟
(𝑥)) > 0, then 𝑡

𝑖𝑘
(𝑥) =

1/(∑
𝑐

𝑟=1
(𝐷
𝛼
(𝑍
𝑘
, 𝑉
𝑖
(𝑥))/𝐷

𝛼
(𝑍
𝑘
, 𝑉
𝑟
(𝑥)))
2/(𝜂−1)

);
1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑘 ≤ 𝑝,

(b) if∃𝑘, 𝑟 such that𝐷
𝛼
(𝑍
𝑘
, 𝑉
𝑟
(𝑥)) = 0, then let 𝑡

𝑟𝑘
(𝑥) = 1

and 𝑡
𝑖𝑘
(𝑥) = 0 ∀𝑖 ̸= 𝑟.

Step 3. Calculate𝑉(𝑥 + 1) = {𝑉
1
(𝑥 + 1), . . . , 𝑉

𝑐
(𝑥 + 1)}, where

𝑉
𝑖
(𝑥 + 1) = 𝑓 (𝑍, 𝜔

(𝑖)
(𝑥 + 1)) , 1 ≤ 𝑖 ≤ 𝑐 (31)

𝜔
(𝑖)

(𝑥 + 1)

= {
(𝑢
𝑖1
(𝑥) + 𝑡

𝑖1
(𝑥))

∑
𝑝

𝑘=1
(𝑢
𝑖𝑘
(𝑥) + 𝑡

𝑖𝑘
(𝑥))

, . . . ,

(𝑢
𝑖𝑝
(𝑥) + 𝑡

𝑖𝑝
(𝑥))

∑
𝑝

𝑘=1
(𝑢
𝑖𝑘
(𝑥) + 𝑡

𝑖𝑘
(𝑥))

} ;

1 ≤ 𝑖 ≤ 𝑐.

(32)

Step 4. If ∑𝑐
𝑖=1

(𝐷
𝛼
(𝑉
𝑖
(𝑥), 𝑉
𝑖
(𝑥 + 1))/𝑐) < 𝜀, then go to Step 5;

otherwise, let 𝑥 = 𝑥 + 1, and return to Step 2.

Step 5. End

The pseudocode of the IFPCM algorithm is given in
Algorithm 1.

4.2. Interval Valued Intuitionistic Fuzzy Possibilistic C Means
Algorithm for IVIFSs. If the collected data are expressed
as IVIFSs, then we extend IFPCM to interval valued intu-
itionistic fuzzy possibilistic C means (IVIFPCM) model. We
take the basic distance measure 𝐷

𝛾
in (10) as the proximity

function of the IVIFCM.The objective function of IVIFPCM
model can be defined as follows:

min⏟⏟⏟⏟⏟⏟⏟

(𝑈,𝑇,𝑉̃)

{𝐽
𝑚,𝜂

(𝑈, 𝑇, 𝑉̃; 𝑋) =

𝑝

∑

𝑘=1

𝑐

∑

𝑖=1

(𝑢
𝑚

𝑖𝑘
+ 𝑡
𝜂

𝑖𝑘
)𝐷
2

𝛾
(𝑍
𝑘
, 𝑉̃
𝑖
)}

subject to 𝑚 > 1, 𝜂 > 1, 0 < 𝑢
𝑖𝑘
, 𝑡
𝑖𝑘

< 1

(33)
𝑐

∑

𝑖=1

𝑢
𝑖𝑘

= 1 ∀𝑘 i.e., 𝑈 ∈ 𝑀
𝑓𝑐𝑛 (34)

𝑝

∑

𝑘=1

𝑡
𝑖𝑘

= 1 ∀𝑖 i.e., 𝑇
𝑡
∈ 𝑀
𝑓𝑛𝑐

. (35)

Here𝑍 = {𝑍
1
, . . . , 𝑍

𝑝
} are 𝑝 IVIFSs each with 𝑛 elements, 𝑐 is

the number of clusters (1 < 𝑐 < 𝑝), and 𝑉̃ = {𝑉̃
1
, . . . , 𝑉̃

𝑐
} are

the prototypical IVIFSs, that is, centroids of the clusters. The
parameter𝑚 is the fuzzy factor, 𝑢

𝑖𝑘
is the membership degree

of 𝑗th sample 𝑍
𝑗
to the 𝑖th cluster, 𝑈 = (𝑢

𝑖𝑘
)
𝑐×𝑝

is matrix
of order 𝑐 × 𝑝, parameter 𝜂 is the typicality factor, 𝑡

𝑖𝑘
is the

typicality of 𝑗th sample 𝑍
𝑗
to the 𝑖th cluster, and 𝑇 = (𝑡

𝑖𝑘
)
𝑐×𝑝

is typicality matrix.
To solve the optimization problem stated in (30) to (35),

we make use of Lagrange multiplier method [39], which is
discussed below. Considering

𝐿 =

𝑝

∑

𝑘=1

𝑐

∑

𝑖=1

(𝑢
𝑚

𝑖𝑘
+ 𝑡
𝜂

𝑖𝑘
)𝐷
2

𝛾
(𝑍
𝑘
, 𝑉̃
𝑖
) −

𝑝

∑

𝑘=1

𝜆
𝑘
(

𝑐

∑

𝑖=1

𝑢
𝑖𝑘
− 1)

−

𝑝

∑

𝑘=1

𝜉
𝑘
(

𝑐

∑

𝑖=1

𝑡
𝑖𝑘
− 1) ,

(36)

where,

𝐷
2

𝛾
(𝑍
𝑘
, 𝑉̃
𝑖
) =

1

4

𝑛

∑

𝑙=1

𝑤
𝑙
((𝜇
𝐿

𝑍𝑘
(𝑥
𝑙
) − 𝜇
𝐿

𝑉̃𝑖
(𝑥
𝑙
))

2

+ (𝜇
𝑈

𝑍𝑘
(𝑥
𝑙
) − 𝜇
𝑈

𝑉̃𝑖
(𝑥
𝑙
))

2

+ (Ṽ𝐿
𝑍𝑘

(𝑥
𝑙
) − Ṽ𝐿
𝑉̃𝑖
(𝑥
𝑙
))

2

+ (Ṽ𝑈
𝑍𝑘

(𝑥
𝑙
) − Ṽ𝑈
𝑉̃𝑖
(𝑥
𝑙
))

2

+ (𝜋̃
𝐿

𝑍𝑘
(𝑥
𝑙
) − 𝜋̃

𝐿

𝑉̃𝑖
(𝑥
𝑙
))

2

+ (𝜋̃
𝑈

𝑍𝑘
(𝑥
𝑙
) − 𝜋̃
𝑈

𝑉̃𝑖
(𝑥
𝑙
))

2

) .

(37)
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Given an unlabeled dataset𝑋 = {𝑥
1
, . . . , 𝑥

𝑛
}, partition𝑋 into 1 < 𝑐 < 𝑛 clusters such

that objective function 𝐽
𝑚,𝜂

(𝑈, 𝑇, 𝑉;𝑋) is minimized
(1) Input: Consider the seed values 𝑉 (0) and assume 𝑥 = 0 and set 𝜀 > 0

(2)Output: Generate clusters using the IFPCM clustering algorithm for IFSs
(3) begin procedure
(4) repeat
(5) calculate 𝑈(𝑥) = (𝑢

𝑖𝑘
(𝑥))
𝑐×𝑝

(6) begin
(7) if (∀𝑘, 𝑟, 𝐷

𝛼
(𝑍
𝑘
, 𝑉
𝑟
(𝑥)) > 0) then

(8) 𝑢
𝑖𝑘
(𝑥) =

1

∑
𝑐

𝑟=1
(𝐷
𝛼
(𝑍
𝑘
, 𝑉
𝑖
(𝑥)) /𝐷

𝛼
(𝑍
𝑘
, 𝑉
𝑟
(𝑥)))
2/(𝑚−1)

; 1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑘 ≤ 𝑝

(9) end if
(10) if (∃ 𝑘, 𝑟, 𝐷

𝛼
(𝑍
𝑘
, 𝑉
𝑟
(𝑥)) = 0) then

(11) 𝑢
𝑟𝑘
(𝑥) = 1 and 𝑢

𝑖𝑘
(𝑥) = 0 ∀𝑖 ̸= 𝑟

(12) end if
(13) end
(14) calculate 𝑇(𝑥) = (𝑡

𝑖𝑘
(𝑥))
𝑐×𝑝

(15) begin
(16) if (∀𝑘, 𝑟, 𝐷

𝛼
(𝑍
𝑘
, 𝑉
𝑟
(𝑥)) > 0) then

(17) 𝑡
𝑖𝑘
(𝑥) =

1

∑
𝑐

𝑟=1
(𝐷
𝛼
(𝑍
𝑘
, 𝑉
𝑖
(𝑥)) /𝐷

𝛼
(𝑍
𝑘
, 𝑉
𝑟
(𝑥)))
2/(𝜂−1)

; 1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑘 ≤ 𝑝

(18) end if
(19) if (∃ 𝑘, 𝑟, 𝐷

𝛼
(𝑍
𝑘
, 𝑉
𝑟
(𝑥)) = 0) then

(20) 𝑡
𝑟𝑘
(𝑥) = 1 and 𝑡

𝑖𝑘
(𝑥) = 0 ∀𝑖 ̸= 𝑟

(21) end if
(22) end
(23) calculate 𝑉 (𝑥 + 1) = {𝑉

1
(𝑥 + 1) , . . . , 𝑉

𝑐
(𝑥 + 1)} ; 𝑉

𝑖
(𝑥 + 1) = 𝑓 (𝑍, 𝜔

(𝑖)
(𝑥 + 1)) , 1 ≤ 𝑖 ≤ 𝑐; 𝜔

(𝑖)
(𝑥 + 1) =

{(𝑢
𝑖1
(𝑥) + 𝑡

𝑖1
(𝑥)) / (∑

𝑝

𝑘=1
(𝑢
𝑖𝑘
(𝑥) + 𝑡

𝑖𝑘
(𝑥))) , . . . , (𝑢

𝑖𝑝
(𝑥) + 𝑡

𝑖𝑝
(𝑥)) / (∑

𝑝

𝑘=1
(𝑢
𝑖𝑘
(𝑥) + 𝑡

𝑖𝑘
(𝑥)))} , 1 ≤ 𝑖 ≤ 𝑐

(24) 𝑥 = 𝑥 + 1

(25) until (∑𝑐
𝑖=1

(𝐷
𝛼
(𝑉
𝑖
(𝑥) , 𝑉

𝑖
(𝑥 + 1)) /𝑐) < 𝜀)

(26) end procedure

Algorithm 1

Similar to IFPCM model, we establish the system of partial
differential functions of 𝐿 as follows:

𝜕𝐿

𝜕𝑢
𝑖𝑘

= 0; 1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑘 ≤ 𝑝,

𝜕𝐿

𝜕𝑡
𝑖𝑘

= 0; 1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑘 ≤ 𝑝,

𝜕𝐿

𝜕𝜆
𝑘

= 0,
𝜕𝐿

𝜕𝜉
𝑘

= 0; 1 ≤ 𝑘 ≤ 𝑝,

𝜕𝐿

𝜕𝜇
𝐿

𝑉̃𝑖

(𝑥
𝑙
)
=

𝜕𝐿

𝜕V𝐿
𝑉̃𝑖

(𝑥
𝑙
)
=

𝜕𝐿

𝜕𝜋
𝐿

𝑉̃𝑖

(𝑥
𝑙
)
= 0,

𝜕𝐿

𝜕𝜇
𝑈

𝑉̃𝑖

(𝑥
𝑙
)
=

𝜕𝐿

𝜕V𝑈
𝑉̃𝑖

(𝑥
𝑙
)
=

𝜕𝐿

𝜕𝜋
𝑈

𝑉̃𝑖

(𝑥
𝑙
)
= 0

1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑙 ≤ 𝑝.

(38)

The solution for the above system of equations is

𝑢
𝑖𝑘

=
1

∑
𝑐

𝑟=1
(𝐷
𝛾
(𝑍
𝑘
, 𝑉̃
𝑖
)/𝐷
𝛾
(𝑍
𝑘
, 𝑉̃
𝑟
))
2/(𝑚−1)

;

1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑘 ≤ 𝑝

(39)

𝑡
𝑖𝑘

=
1

∑
𝑐

𝑟=1
(𝐷
𝛾
(𝑍
𝑘
, 𝑉̃
𝑖
)/𝐷
𝛾
(𝑍
𝑘
, 𝑉̃
𝑟
))
2/(𝜂−1)

;

1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑘 ≤ 𝑝,

(40)

𝑉̃
𝑖
= 𝑓 (𝑍, 𝜔

(𝑖)
)

=

{

{

{

⟨𝑥
𝑙
, [

[

𝑝

∑

𝑗=1

𝜔
(𝑖)

𝑗
𝜇
𝐿

𝑍𝑗
(𝑥
𝑙
) ,

𝑝

∑

𝑗=1

𝜔
(𝑖)

𝑗
𝜇
𝑈

𝑍𝑗
(𝑥
𝑙
)]

]

,

[

[

𝑝

∑

𝑗=1

𝜔
(𝑖)

𝑗
Ṽ𝐿
𝑍𝑗

(𝑥
𝑙
) ,

𝑝

∑

𝑗=1

𝜔
(𝑖)

𝑗
Ṽ𝑈
𝑍𝑗

(𝑥
𝑙
)]

]

⟩ | 1 ≤ 𝑙 ≤ 𝑛

}

}

}

,

1 ≤ 𝑖 ≤ 𝑐,

(41)

where

𝜔
(𝑖)

= {
(𝑢
𝑖1
+ 𝑡
𝑖1
)

∑
𝑝

𝑘=1
(𝑢
𝑖𝑘
+ 𝑡
𝑖𝑘
)
, . . . ,

(𝑢
𝑖𝑝
+ 𝑡
𝑖𝑝
)

∑
𝑝

𝑘=1
(𝑢
𝑖𝑘
+ 𝑡
𝑖𝑘
)
} ;

1 ≤ 𝑖 ≤ 𝑐.

(42)

Because (41) and (42) are computationally interdependent,
we exploit a similar iteration procedure as follows.
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IVIFPCM Algorithm

Step 1. Initialize the seed values 𝑉̃(0); let 𝑥 = 0 and set 𝜀 > 0.

Step 2(i). Calculate 𝑈(𝑥) = (𝑢
𝑖𝑘
(𝑥))
𝑐×𝑝

, where

(c) if ∀𝑘, 𝑟, 𝐷
𝛾
(𝑍
𝑘
, 𝑉̃
𝑟
(𝑥)) > 0, then 𝑢

𝑖𝑘
(𝑥) =

1/(∑
𝑐

𝑟=1
(𝐷
𝛾
(𝑍
𝑘
, 𝑉̃
𝑖
(𝑥))/𝐷

𝛾
(𝑍
𝑘
, 𝑉̃
𝑟
(𝑥)))
2/(𝑚−1)

);
1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑘 ≤ 𝑝.

(d) if ∃𝑘, 𝑟 such that 𝐷
𝛾
(𝑍
𝑘
, 𝑉̃
𝑟
(𝑥)) = 0, then let 𝑢

𝑟𝑘
(𝑥) =

1 and 𝑢
𝑖𝑘
(𝑥) = 0 ∀𝑖 ̸= 𝑟.

Step 2(ii). Calculate 𝑇(𝑥) = (𝑡
𝑖𝑘
(𝑥))
𝑐×𝑝

, where

(c) if ∀𝑘, 𝑟, 𝐷
𝛾
(𝑍
𝑘
, 𝑉̃
𝑟
(𝑥)) > 0, then 𝑡

𝑖𝑘
(𝑥) =

1/(∑
𝑐

𝑟=1
(𝐷
𝛾
(𝑍
𝑘
, 𝑉̃
𝑖
(𝑥))/𝐷

𝛾
(𝑍
𝑘
, 𝑉̃
𝑟
(𝑥)))
2/(𝜂−1)

);
1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑘 ≤ 𝑝,

(d) if∃𝑘, 𝑟 such that𝐷
𝛾
(𝑍
𝑘
, 𝑉̃
𝑟
(𝑥)) = 0, then let 𝑡

𝑟𝑘
(𝑥) = 1

and 𝑡
𝑖𝑘
(𝑥) = 0 ∀𝑖 ̸= 𝑟.

Step 3. Calculate 𝑉̃(𝑥 + 1) = {𝑉̃
1
(𝑥 + 1), . . . , 𝑉̃

𝑐
(𝑥 + 1)}, where

𝑉̃
𝑖
(𝑥 + 1) = 𝑓 (𝑍, 𝜔

(𝑖)
(𝑥 + 1)) , 1 ≤ 𝑖 ≤ 𝑐

𝜔
(𝑖)

(𝑥 + 1)

= {
(𝑢
𝑖1
(𝑥) + 𝑡

𝑖1
(𝑥))

∑
𝑝

𝑘=1
(𝑢
𝑖𝑘
(𝑥) + 𝑡

𝑖𝑘
(𝑥))

, . . . ,

(𝑢
𝑖𝑝
(𝑥) + 𝑡

𝑖𝑝
(𝑥))

∑
𝑝

𝑘=1
(𝑢
𝑖𝑘
(𝑥) + 𝑡

𝑖𝑘
(𝑥))

} ;

1 ≤ 𝑖 ≤ 𝑐.

(43)

Step 4. If ∑𝑐
𝑖=1

(𝐷
𝛾
(𝑉̃
𝑖
(𝑥), 𝑉̃
𝑖
(𝑥 + 1))/𝑐) < 𝜀, then go to Step 5;

otherwise let 𝑥 = 𝑥 + 1, and return to Step 2.

Step 5. End
The pseudocode of the IVIFPCM algorithm is given in

Algorithm 2.

5. Experimental Results

In this section, we enumerate the results of experiments
performed on both real world and simulated datasets [32] in
order to demonstrate the effectiveness of IFPCM clustering
algorithm. IFPCM algorithm is implemented through MAT-
LAB. We first explain the steps of the algorithm by the use of
some experimental data which is evaluated through cluster
validity measures. Next, the algorithm is applied to some
classification datasets, that is, data with labeled patterns in
order to examine its clustering accuracy.

5.1. Application of IFPCM Algorithm on Experimental Data.
Theparameters set in IFPCM algorithm are shown in Table 1.
It is to be noted that if 𝜋(𝑥) = 0 ∀𝑥 ∈ 𝑋, then
IFPCM is reduced to FPCM algorithm. Hence, we present a
comparative performance of both the algorithms.

The experimental data used here is investment portfolio
dataset which contains information regarding ten invest-
ments at the disposal of the investor to invest some money to
be classified in ICICI prudential financial services, India. Let

Table 1: IFPCM parameters.

Parameter Description
𝑓 Name of input file
𝑐 Number of clusters (default value = 3)
𝑚 Fuzzy factor (default value = 2)
𝜂 Typicality factor (default value = 2)

𝑤
Type of sample weights (default value
= 0 (equal); user specified value = 1)

𝑠
Type of initial centroids (default value
= 0 (random); user specified value = 1)

𝑖
Maximum number of iterations till
convergence (default value = 100)

𝑡
Threshold for iterations stoppage
(default value = 0.001)

𝐼
𝑖
; 𝑖 = 1, . . . , 10 be the investments described by six attributes,

namely 𝑎
1
: investment price; 𝑎

2
: advance mobilization; 𝑎

3
:

time period; 𝑎
4
: return on investment; 𝑎

5
: risk factor; 𝑎

6
:

security factor. The weight vector of these attributes is 𝑤 =

(0.20, 0.10, 0.30, 0.15, 0.10, 0.15). The characteristics of ten
investments under six attributes are represented by IFSs in
Table 2. Simulated datasets are used for comparing with the
experimental data. We assume that there are three classes in
the simulated dataset, 𝐶

𝑖
; 𝑖 = 1, 2, 3. The number of IFSs

in each class is considered as 300. The different classes have
different IFSs which are characterized as follows:

(a) IFSs in 𝐶
1
have relatively high and positive scores,

(b) IFSs in 𝐶
2
have relatively high and uncertain scores,

(c) IFSs in 𝐶
3
have relatively high and negative scores.

Considering this, we generate simulated dataset as follows:
(a) 𝜇(𝑥) ∼ 𝑈(0.7, 1) ∧V(𝑥)+𝜋(𝑥)∼𝑈(0, 1−𝜇(𝑥)) ∀𝑥 ∈ 𝐶

1
,

(b) V(𝑥) ∼ 𝑈(0.7, 1) ∧𝜇(𝑥)+𝜋(𝑥)∼𝑈(0, 1−V(𝑥)) ∀𝑥 ∈ 𝐶
2
,

(c) 𝜋(𝑥) ∼ 𝑈(0.7, 1) ∧𝜇(𝑥)+V(𝑥)∼𝑈(0, 1−𝜋(𝑥)) ∀𝑥 ∈ 𝐶
3
.

Here,𝑈(𝑎, 𝑏) is the uniformdistribution on the interval [𝑎, 𝑏].
We thus generate a simulated dataset which consists of 3
classes comprising 900 IFSs.

5.1.1. Cluster Validity Measures. In IFPCM algorithm big
challenge lies in setting the parameter 𝑐, that is, the number
of clusters. To resolve this, we use two relative measures for
fuzzy cluster validity mentioned in [40], namely, partition
coefficient (PC) and classification entropy (CE).The descrip-
tions of these two measures are given in Table 3. In PC and
CE 𝑝 is number of samples in the dataset.

5.1.2. IFPCM Algorithm on Investment Portfolio Dataset.
IFPCM algorithm is used to cluster ten investments 𝐼

𝑖
; 𝑖 =

1, . . . , 10, involving the following steps.

Step 1. Let 𝑐 = 3 and 𝜀 = 0.005. Now randomly select initial
centroids 𝑉(0) from the dataset:

𝑉 (0) = [

[

𝐼
9

𝐼
10

𝐼
7

]

]

. (44)



Advances in Fuzzy Systems 9

Given an unlabeled dataset𝑋 = {𝑥
1
, . . . , 𝑥

𝑛
}, partition𝑋 into 1 < 𝑐 < 𝑛 clusters such

that objective function 𝐽
𝑚,𝜂

(𝑈, 𝑇, 𝑉;𝑋) is minimized
(1) Input: Consider the seed values 𝑉̃ (0) and assume 𝑥 = 0 and set 𝜀 > 0

(2)Output: Generate clusters using the IFPCM clustering algorithm for IVIFSs
(3) begin procedure
(4) repeat
(5) calculate 𝑈(𝑥) = (𝑢

𝑖𝑘
(𝑥))
𝑐×𝑝

(6) begin
(7) if (∀𝑘, 𝑟, 𝐷

𝛾
(𝑍
𝑘
, 𝑉
𝑟
(𝑥)) > 0) then

(8) 𝑢
𝑖𝑘
(𝑥) =

1

∑
𝑐

𝑟=1
(𝐷
𝛾
(𝑍
𝑘
, 𝑉̃
𝑖
(𝑥)) /𝐷

𝛾
(𝑍
𝑘
, 𝑉̃
𝑟
(𝑥)))

2/(𝑚−1)
; 1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑘 ≤ 𝑝

(9) end if
(10) if (∃ 𝑘, 𝑟, 𝐷

𝛾
(𝑍
𝑘
, 𝑉
𝑟
(𝑥)) = 0) then

(11) 𝑢
𝑟𝑘
(𝑥) = 1 and 𝑢

𝑖𝑘
(𝑥) = 0 ∀𝑖 ̸= 𝑟

(12) end if
(13) end
(14) calculate 𝑇(𝑥) = (𝑡

𝑖𝑘
(𝑥))
𝑐×𝑝

(15) begin
(16) if (∀𝑘, 𝑟, 𝐷

𝛾
(𝑍
𝑘
, 𝑉̃
𝑟
(𝑥)) > 0) then

(17) 𝑡
𝑖𝑘
(𝑥) =

1

∑
𝑐

𝑟=1
(𝐷
𝛾
(𝑍
𝑘
, 𝑉̃
𝑖
(𝑥)) /𝐷

𝛾
(𝑍
𝑘
, 𝑉̃
𝑟
(𝑥)))

2/(𝜂−1)
; 1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑘 ≤ 𝑝

(18) end if
(19) if (𝐷

𝛾
(𝑍
𝑘
, 𝑉̃
𝑟
(𝑥)) = 0) then

(20) 𝑡
𝑟𝑘
(𝑥) = 1 and 𝑡

𝑖𝑘
(𝑥) = 0 ∀𝑖 ̸= 𝑟

(21) end if
(22) end
(23) calculate 𝑉̃ (𝑥 + 1) = {𝑉

1
(𝑥 + 1) , . . . , 𝑉̃

𝑐
(𝑥 + 1)} ; 𝑉

𝑖
(𝑥 + 1) = 𝑓 (𝑍, 𝜔

(𝑖)
(𝑥 + 1)) , 1 ≤ 𝑖 ≤ 𝑐; 𝜔

(𝑖)
(𝑥 + 1) =

{(𝑢
𝑖1
(𝑥) + 𝑡

𝑖1
(𝑥)) / (∑

𝑝

𝑘=1
(𝑢
𝑖𝑘
(𝑥) + 𝑡

𝑖𝑘
(𝑥))) , . . . , (𝑢

𝑖𝑝
(𝑥) + 𝑡

𝑖𝑝
(𝑥)) / (∑

𝑝

𝑘=1
(𝑢
𝑖𝑘
(𝑥) + 𝑡

𝑖𝑘
(𝑥)))} , 1 ≤ 𝑖 ≤ 𝑐

(24) 𝑥 = 𝑥 + 1

(25) until (∑𝑐
𝑖=1

(𝐷
𝛾
(𝑉
𝑖
(𝑥) , 𝑉̃

𝑖
(𝑥 + 1)) /𝑐) < 𝜀)

(26) end procedure

Algorithm 2

Step 2(i). Calculate the membership degrees and centroids
iteratively. According to (15), we have

𝑈 (0) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0.4012 0.3179 0.2812

0.2155 0.2527 0.5336

0.2896 0.2312 0.4806

0.8969 0.0546 0.0512

0.1666 0.6313 0.2033

0.3196 0.3906 0.2914

0.1796 0.2139 0.6079

0.0000 0.0000 1.0000

1.0000 0.0000 0.0000

0.0000 1.0000 0.0000

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (45)

Step 2(ii). Calculate the typicality degrees and centroids
iteratively. According to (16), we have

𝑇 (0) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0.4215 0.3286 0.2816

0.2269 0.2626 0.5439

0.2899 0.2415 0.4809

0.8996 0.0545 0.0412

0.1569 0.6416 0.2133

0.3369 0.3909 0.2813

0.1696 0.2239 0.6286

0.0000 1.0000 1.0000

1.0000 0.0000 1.0000

1.0000 1.0000 0.0000

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (46)

Step 3. According to (17), we update the centroids as follows:

𝑉 (1) = [

[

⟨0.366, 0.386⟩ ⟨0.839, 0.086⟩ ⟨0.786, 0.156⟩ ⟨0.626, 0.186⟩ ⟨0.209, 0.707⟩ ⟨0.196, 0.739⟩

⟨0.760, 0.152⟩ ⟨0.679, 0.139⟩ ⟨0.586, 0.269⟩ ⟨0.496, 0.206⟩ ⟨0.709, 0.226⟩ ⟨0.509, 0.466⟩

⟨0.679, 0.212⟩ ⟨0.575, 0.209⟩ ⟨0.669, 0.169⟩ ⟨0.366, 0.520⟩ ⟨0.386, 0.569⟩ ⟨0.669, 0.139⟩

]

]

. (47)
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Step 4. We made a check whether to stop the iterations:
3

∑

𝑖=1

𝐷
𝛼
(𝑉
𝑖
(0) , 𝑉

𝑖
(1))

3
= 0.086 > 0.005. (48)

Since this value exceeds the chosen threshold value, we
continue with the next iteration.

When 𝑥 = 1,

𝑈 (1) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0.3866 0.3333 0.2755

0.0866 0.1022 0.8077

0.1339 0.1239 0.7333

0.8386 0.0333 0.0355

0.1027 0.7525 0.2222

0.2899 0.3786 0.2779

0.0655 0.8002 0.7530

0.1000 0.1955 0.6336

0.7933 0.0550 0.0500

0.0720 0.7120 0.1012

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑇 (1) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0.3716 0.3065 0.2515

0.2024 0.2562 0.5233

0.2698 0.2210 0.4620

0.8696 0.0525 0.0312

0.1455 0.6045 0.2030

0.3036 0.3799 0.2715

0.1595 0.2138 0.6185

0.1000 0.8888 0.7775

0.6867 0.0444 0.0505

0.0577 0.6600 0.0005

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑉 (2) = [

[

⟨0.354, 0.385⟩ ⟨0.838, 0.075⟩ ⟨0.750, 0.145⟩ ⟨0.616, 0.139⟩ ⟨0.185, 0.706⟩ ⟨0.170, 0.725⟩

⟨0.755, 0.142⟩ ⟨0.635, 0.174⟩ ⟨0.533, 0.222⟩ ⟨0.396, 0.160⟩ ⟨0.625, 0.222⟩ ⟨0.472, 0.399⟩

⟨0.536, 0.176⟩ ⟨0.512, 0.170⟩ ⟨0.650, 0.142⟩ ⟨0.279, 0.515⟩ ⟨0.327, 0.525⟩ ⟨0.596, 0.120⟩

]

]

,

3

∑

𝑖=1

𝐷
𝛼
(𝑉
𝑖
(1) , 𝑉

𝑖
(2))

3
= 0.009 > 0.005.

(49)

Since this value exceeds the chosen threshold value, we
continue with the next iteration.

When 𝑥 = 2,

𝑈 (2) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0.3864 0.3332 0.2752

0.0865 0.1021 0.8072

0.1337 0.1236 0.7331

0.8385 0.0330 0.0354

0.1026 0.7524 0.2221

0.2898 0.3784 0.2778

0.0653 0.8000 0.7529

0.1000 0.1954 0.6333

0.7932 0.0550 0.0499

0.0716 0.7118 0.1010

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑇 (2) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0.3715 0.3064 0.2512

0.2022 0.2560 0.5232

0.2697 0.2209 0.4619

0.8693 0.0524 0.0311

0.1454 0.6042 0.2028

0.3035 0.3798 0.2714

0.1593 0.2137 0.6184

0.9999 0.8886 0.7772

0.6862 0.0443 0.0504

0.0575 0.6599 0.0004

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,
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𝑉 (3) = [

[

⟨0.352, 0.380⟩ ⟨0.837, 0.077⟩ ⟨0.752, 0.144⟩ ⟨0.614, 0.133⟩ ⟨0.180, 0.705⟩ ⟨0.172, 0.722⟩

⟨0.765, 0.140⟩ ⟨0.632, 0.172⟩ ⟨0.532, 0.220⟩ ⟨0.389, 0.156⟩ ⟨0.623, 0.222⟩ ⟨0.470, 0.396⟩

⟨0.528, 0.169⟩ ⟨0.510, 0.168⟩ ⟨0.647, 0.145⟩ ⟨0.276, 0.512⟩ ⟨0.326, 0.523⟩ ⟨0.586, 0.115⟩

]

]

,

3

∑

𝑖=1

𝐷
𝛼
(𝑉
𝑖
(2) , 𝑉

𝑖
(3))

3
= 0.003 < 0.005.

(50)

Since this value is less than the threshold value, we stop the
iterations and calculate the values of𝑈(3) and 𝑇(3)when 𝑥 =

3:

𝑈 (3) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0.3862 0.3330 0.2750

0.0665 0.1018 0.8069

0.1335 0.1236 0.7330

0.8380 0.0325 0.0352

0.1023 0.7516 0.2220

0.2886 0.3765 0.2769

0.0650 0.8002 0.7527

0.9999 0.1953 0.6331

0.7922 0.0545 0.0495

0.0712 0.7116 0.1009

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑇 (3) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0.3712 0.3050 0.2510

0.2020 0.2555 0.5226

0.2695 0.2205 0.4520

0.8690 0.0520 0.0310

0.1450 0.6040 0.2025

0.3033 0.3796 0.2710

0.1590 0.2135 0.6175

0.9666 0.8880 0.7769

0.6860 0.0442 0.0502

0.0572 0.6596 0.0002

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(51)

According to 𝑈(4) and 𝑇(4), cluster validation measures 𝑉PC
and 𝑉CE are calculated as

𝑉PC =
1

3

3

∑

𝑖=1

10

∑

𝑘=1

(𝑢
2

𝑖𝑘
+ 𝑡
2

𝑖𝑘
) = 0.633,

𝑉CE = −
1

10

3

∑

𝑖=1

10

∑

𝑘=1

(𝑢
𝑖𝑘
log 𝑢
𝑖𝑘
+ 𝑡
𝑖𝑘
log 𝑡
𝑖𝑘
) = 0.865.

(52)

If we further assume that 𝑢
𝑖𝑘

≥ 0.75, 𝑡
𝑖𝑘

≥ 0.65 ⇒ 𝐼
𝑗

∈

𝐶
𝑖
(1 ≤ 𝑗 ≤ 10, 1 ≤ 𝑖 ≤ 3), where𝐶

𝑖
denotes cluster 𝑖, then we

have clusters as shown in Table 4.

5.1.3. Convergence of IFPCM Algorithm. Now, we proceed
to investigate the convergence of IFPCM algorithm on
investment portfolio dataset. The movements of objective
function values 𝐽

𝑚,𝜂
(𝑈, 𝑇, 𝑉;𝑋) are shown in Figure 1 along

the iterations. As evident from Figure 1, the IFPCM algo-
rithm decreases the objective function value continuously by
iterating two phases, namely, updating the membership and
typicality degrees in (15) and (16) and updating prototypical
IFSs in (17). The IFPCM algorithm has lower computational

complexity as compared to other clustering algorithms [1–3,
5–7, 9].The space and time complexities of IFPCM algorithm
are 𝑂(𝑝(𝑛 + 𝑐) + 𝑐𝑛) and 𝑂(𝐼𝑐𝑝𝑛), where 𝑝 is the number of
samples, 𝑛 is the number of IFSs in sample, 𝑐 is the number
of clusters, and 𝐼 is the maximum number of iterations
preset for optimal value search process. Some advantages of
IFPCM algorithm include simplicity and flexibility, informa-
tion about the membership, and typicality degrees of samples
to all clusters and relatively low computational complexity.

5.1.4. Comparative Performance of IFPCM and FPCM on
Investment Portfolio Dataset. In this subsection, we present a
comparative performance of IFPCM and FPCM algorithms.
We first experiment IFPCM algorithm on the simulated
dataset. Here, we set a series of 𝑐 values in the range of 2 to 10
and compute𝑉PC and𝑉CE measures for each clustering result.
The results are given in Table 5, where 𝑂𝑏𝑗 is the objective
function value after convergence of IFPCM algorithm. The
optimal values of cluster validity measures are highlighted.

As evident from Table 5, when 𝑐 = 4 𝑉PC reaches its
optimal value 0.9664 (maximum) and 𝑉CE also reaches its
optimal value 0.1866 (minimum), this implies that both 𝑉PC
and 𝑉CE are capable of finding optimal number of clusters,
that is, 𝑐. However, this is not the case for objective function
value. From Figure 2, as the number of clusters increases,𝑂𝑏𝑗

decreases continuously and finally reaches 1.1969 when 𝑐 = 4.
Hence, the usage of 𝑉PC and 𝑉CE is justified in the evaluation
of clustering results produced by IFPCM algorithm. Next,
we experiment FPCM algorithm on the simulated dataset for
comparison purpose. The results are given in Table 6. The
optimal values of cluster validitymeasures are highlighted. As
indicated by 𝑉PC and 𝑉CE values in Table 6, FPCM algorithm
prefers to cluster the modified simulated datasets into three
clusters which are actually away from four true clusters in
the data. In other words, FPCM algorithm cannot identify all
four classes precisely.This further signifies the importance of
uncertainty information in IFSs.

5.2. Examining Clustering Accuracy of IFPCM Algorithm. To
assess the ability of IFPCM algorithm to explore natural
clusters in real world data, 11 classification and two clus-
tering datasets with numerical attributes are chosen from
the University of California at the Irvine Machine Learning
Repository [41] and Knowledge Extraction based on Evolu-
tionary Learning Repository [42]. In Table 7, these datasets
are summarized.

The accuracy of IFPCM algorithm is adhered by remov-
ing the class labels of data before applying the algorithm.
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Table 2: Investment portfolio dataset.

𝑎
1

𝑎
2

𝑎
3

𝑎
4

𝑎
5

𝑎
6

𝜇
𝐼𝑖
(𝑎
1
) V

𝐼𝑖
(𝑎
1
) 𝜇

𝐼𝑖
(𝑎
2
) V

𝐼𝑖
(𝑎
2
) 𝜇

𝐼𝑖
(𝑎
3
) V

𝐼𝑖
(𝑎
3
) 𝜇

𝐼𝑖
(𝑎
4
) V

𝐼𝑖
(𝑎
4
) 𝜇

𝐼𝑖
(𝑎
5
) V

𝐼𝑖
(𝑎
5
) 𝜇

𝐼𝑖
(𝑎
6
) V

𝐼𝑖
(𝑎
6
)

𝐼
1

0.30 0.40 0.20 0.70 0.50 0.50 0.80 0.10 0.40 0.50 0.20 0.70
𝐼
2

0.40 0.30 0.50 0.10 0.60 0.20 0.20 0.70 0.30 0.60 0.70 0.20
𝐼
3

0.40 0.20 0.60 0.10 0.80 0.10 0.20 0.60 0.30 0.70 0.50 0.20
𝐼
4

0.30 0.50 0.90 0.00 0.90 0.10 0.70 0.20 0.20 0.90 0.20 0.90
𝐼
5

0.90 0.20 0.70 0.20 0.70 0.10 0.50 0.10 0.90 0.20 0.50 0.70
𝐼
6

0.40 0.30 0.30 0.60 0.20 0.60 0.70 0.10 0.50 0.40 0.30 0.60
𝐼
7

0.50 0.40 0.50 0.20 0.70 0.20 0.30 0.70 0.30 0.70 0.60 0.10
𝐼
8

0.90 0.10 0.70 0.20 0.70 0.10 0.40 0.50 0.40 0.60 0.80 0.00
𝐼
9

0.40 0.40 1.00 0.20 0.90 0.20 0.70 0.20 0.20 0.70 0.20 0.80
𝐼
10

0.90 0.10 0.90 0.00 0.60 0.30 0.50 0.20 0.80 0.10 0.60 0.40

Table 3: Description of two cluster validity criteria.

Validity criteria Functional description Optimal cluster number

PC 𝑉PC =
1

𝑝

𝑐

∑

𝑖=1

𝑝

∑

𝑘=1

(𝑢
2

𝑖𝑘
+ 𝑡
2

𝑖𝑘
) argmax⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑐

(𝑉PC, 𝑈, 𝑇, 𝑐)

CE 𝑉CE = −
1

𝑝

𝑐

∑

𝑖=1

𝑝

∑

𝑘=1

(𝑢
𝑖𝑘
log 𝑢
𝑖𝑘
+ 𝑡
𝑖𝑘
log 𝑡
𝑖𝑘
) argmin⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑐

(𝑉CE, 𝑈, 𝑇, 𝑐)
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Figure 1: The convergence of IFPCM algorithm on investment
portfolio dataset.

Table 4: Clustering result of the investment portfolio dataset by
IFPCM.

Instance Cluster ID
𝐼
6
, 𝐼
7

1
𝐼
4
, 𝐼
8

2
𝐼
2
, 𝐼
5
, 𝐼
9

3
𝐼
1
, 𝐼
3
, 𝐼
10

4

Each attribute value of all datasets is rescaled to a unit
interval [0, 1] via linear transformation.The clustering results
of the application of IFPCM algorithm on 11 classification
datasets are shown in Table 8, where FPCM algorithm results
as a benchmark fuzzy clustering method are also provided.
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Figure 2: Comparative performance of 𝑂𝑏𝑗 and 𝑉PC given different
𝑐 values.

The threshold 𝑡 for effectiveness measure is set to 0.1 for all
the datasets, provided that at least two clusters are explored.
For fairness of comparison between IFPCM and FPCM
algorithms, the number of clusters that are needed by FPCM
as a parameter for each dataset is set to the number of clusters
that are explored by IFPCM. In this table, two super cells
for each dataset are confusion matrices [43], which represent
the clustering accuracy of IFPCM and FPCM algorithms on
that data. In confusion matrix, cell 𝑐

𝑖𝑗
contains the number

of patterns with class label 𝑖 which are grouped by cluster
𝑗. Accordingly, the cells in each row of actual class label
are summed up to the number of patterns in that class. In
addition, the summation of each column’s cells represents the
number of patterns in that cluster. Ideally, optimal clusters are
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Table 5: IFPCM algorithm with different cluster numbers on investment portfolio dataset.

𝑐

2 3 4 5 6 7 8 9 10
Obj 7.6896 7.0678 5.3655 4.3867 3.4464 3.1393 2.6695 2.4755 1.1969
𝑉PC 0.7666 0.8986 0.9664 0.6999 0.4365 0.4050 0.3555 0.3333 0.2757
𝑉CE 0.5766 0.4672 0.1866 0.7679 1.0009 1.3339 1.4755 1.6462 1.8689

Table 6: FPCM algorithm with different cluster numbers on investment portfolio dataset.

𝑐

2 3 4 5 6 7 8 9 10
𝑉PC 0.9866 0.6987 0.5366 0.4999 0.3566 0.2999 0.2555 0.2222 0.2009
𝑉CE 0.0509 0.7000 1.1569 1.2767 1.5509 1.8750 2.0215 2.2554 2.2869

Table 7: Datasets used for evaluating IFPCM algorithm.

Dataset Number of attributes Number of classes Number of samples
Iris 4 3 150
Thyroid 5 3 215
Ecoli 7 8 336
Cancer (Breast) 9 2 684
Glass 9 6 214
Vowel 10 11 990
Wine 13 3 178
Vehicle 18 4 846
WDBC 30 2 569
Ionosphere 33 2 351
Sonar 60 2 208

achieved when patterns of each class are covered by only one
cluster and each cluster just contains patterns of one class.
Such a case occurred for the first class of the Iris dataset in
both clustering methods. As evident from results in Table 8,
the performance of IFPCM is better as compared to FPCM
algorithm in all datasets.

Although confusion matrices for Vehicle and WDBC
datasets show almost identical overall performance, the
clustering accuracy of IFPCM algorithm for Iris, Thyroid,
Cancer, Glass, and Sonar datasets is comparatively better. On
the other hand, FPCM algorithm obtains better performance
for Ecoli, Vowel, Wine, and Ionosphere datasets. IFPCM
algorithm explores potential clusters that are embedded in
datasets and needs only a distinguishing threshold 𝑡 for
effectiveness measure while the number of clusters in FPCM
algorithm is provided in advance. The clusters obtained
by FPCM algorithm convey no specific cognitive interpre-
tation while those clusters explored by IFPCM algorithm
are identified by intuitionistic measure. This intuitionistic
interpretability which represents the clusters justifies the
claim that IFPCM algorithm is more suitable for knowledge
discovery in datasets.The IFPCMalgorithm ismore robust to
outliers and noise in data. Moreover, the computational cost
of IFPCM algorithm is higher than that of FPCM algorithm

as given in Table 9. Although some of the datasets which
are used in the experiments are high dimensional, they
are not too large. The application of IFPCM algorithm on
large datasets consumes greater CPU time. Since, threshold
𝑡 for effectiveness measure is set to 0.1 for all data given
in Table 8, the number of clusters that are explored for
multiclass datasets is less than their classes. Consequently,
IFPCM algorithm needs a lower threshold to explore more
clusters. Table 10 illustrates clustering results obtained for
these datasets when threshold 𝑡 is set to 0.01.

To compare the effectiveness of IFPCM algorithm with
other fuzzy clustering methods, some recently developed
algorithms have been considered and their results on some
real world datasets are presented in Table 11.The performance
of these methods is expressed in terms of pureness ratio
which is the average pureness of clusters after cluster labeling
that is based on maximum number of sample classes in
each cluster. Along with FPCM algorithms, some other
clustering algorithms that run on these datasets are FCM,
PCM [8], 𝛼-cut FCM (AFCM) [18], entropy based fuzzy
clustering (EFC) [19], fuzzy mixture of Student’s t factor
analyzers (FMSFA) [20], and fuzzy principal component
analysis guided robust k-means (FPRk) [21]. The IFPCM
algorithm maintains appreciable performance compared to
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Table 8: Clustering results of IFPCM and FPCM algorithms.

Dataset Actual class label
IFPCM FPCM

number of cluster number of cluster
1 2 3 1 2 3

Iris
1 50 50
2 50 47 3
3 17 33 12 38

Thyroid
1 150 145 5
2 12 23 35
3 30 30

Ecoli

1 139 4 139 4
2 17 60 15 62
3 2 2
4 2 1 1
5 2 33 3 32
6 3 17 5 15
7 5 5
8 13 39 25 27

Cancer 1 20 219 22 217
2 439 6 438 7

Glass

1 39 31 70
2 39 37 66 10
3 9 8 17
4 9 4 3 10
5 9 5 4
6 30 5 25

Vowel

1 17 22 51 39 51
2 12 5 73 42 48
3 2 22 66 51 39
4 2 55 33 4 65 21
5 4 44 42 9 51 30
6 20 42 28 66 24
7 72 12 6 16 65 9
8 69 16 5 2 58 30
9 82 3 5 5 35 50
10 12 45 33 10 50 30
11 25 15 50 25 65

Wine
1 59 59
2 12 55 4 4 60 7
3 48 48

Vehicle

1 196 3 196 3
2 102 115 98 119
3 162 56 162 56
4 96 116 95 117

WDBC 1 46 166 26 186
2 350 7 345 12

Ionosphere 1 116 109 156 69
2 30 96 36 90

Sonar 1 50 47 39 58
2 54 57 50 61
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Table 9: Computational costs of IFPCM and FPCM algorithms.

Dataset CPU time (in seconds)
IFPCM FPCM

Iris 0.86 0.15
Thyroid 0.16 0.09
Ecoli 1.00 0.09
Cancer 5.50 0.10
Glass 0.99 0.09
Vowel 21.00 0.12
Wine 0.99 0.09
Vehicle 5.00 0.12
WDBC 2.10 0.13
Ionosphere 2.50 0.09
Sonar 1.60 0.16

other methods in terms of pureness ratio although this is not
true for clustering accuracy. The specification of threshold
𝑡 in IFPCM algorithm for effectiveness measure is more
intuitionistic and less data dependent in nature.

6. Conclusion

In this paper, we have proposed IFPCM and IVIFPCM
algorithms to cluster IFSs and IVIFSs, respectively. Both the
algorithms are developed by integrating concepts of FPCM,
IFSs, IVIFSs, and basic distance measures. In interval valued
intuitionistic fuzzy environments, the clustering algorithm
has membership and nonmembership degrees as intervals
rather than exact numbers. The algorithms overcome prob-
lems involved with membership values of objects to each
cluster by generalizing degrees of membership of objects
to each cluster. This is achieved by extending membership
and nonmembership degrees with hesitancy degree. The
algorithms also provide information about membership and
typicality degrees of samples to all clusters. Experiments on
both real world and simulated datasets show that IFPCM
has some notable advantages over FPCM. IFPCM algorithm
is simple and flexible. It generates valuable information
and produces overlapped clusters where instances have
different membership degrees in accordance with different
real world applications. The algorithm has relatively lower
computational complexity. It also takes into account inherent
uncertainty in information captured by IFSs which becomes
crucial for success of some clustering tasks.The evaluation of
the algorithm is performed through cluster validitymeasures.
The clustering accuracy of the algorithm is determined by
classification datasets with labeled patterns. IFPCM main-
tains appreciable performance compared to other methods
in terms of pureness ratio although this is not true for
clustering accuracy. For multiclass datasets there is a chance
for exploring fewer clusters than classes. This is handled by

Table 10: Clustering results of IFPCM algorithm on multiclass
datasets.

Dataset Actual class label
Number of cluster

1 2 3 4 5 6 7 8

Thyroid
1 150

2 12 23

3 9 21

Ecoli

1 21 20 102

2 59 9 9

3 1 1

4 1 1

5 30 2 3

6 2 2 16

7 2 3

8 9 4 39

Glass

1 46 24

2 39 25 12

3 12 5

4 2 3 8

5 5 4

6 5 24

Vowel

1 54 9 27

2 24 45 9 12

3 16 33 35 6

4 55 3 20 12

5 33 14 17 5 21

6 5 26 2 35 12 10

7 25 5 55 5

8 39 2 3 25 3 3 3 12

9 46 9 12 5 12 6

10 15 36 4 12 4 3 16

11 46 11 33

Vehicle

1 115 2 82

2 64 114 39

3 72 60 86

4 60 119 33

decreasing value of threshold for effectiveness measure. The
specification of threshold is more intuitionistic and less data
dependent in nature. For an unknown dataset, IFPCM must
compute cluster accuracy measure for all potential clusters.
A sudden drop in values should be considered as stopping
criterion whereby the number of clusters is determined
which can be explored.The different drawbacks of FPCM are
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Table 11: Comparative analysis of IFPCM algorithm with other Fuzzy clustering methods in terms of Pureness ratio.

Fuzzy clustering method Datasets
Parameters Iris Wine Thyroid Cancer Sonar

IFPCM 𝑡 = 0.1 93.62 93.86 98.55 98.16 55.39
FPCM 𝑡 = 0.1 91.60 93.09 96.46 96.28 53.36
FCM [7] 𝑐 = 3,𝑚 = 2 89.93 90.46 96.08 95.83 53.61

PCM [8] 𝑐 = 3,𝑚 = 2

𝜀 = 0.01
80.80 91.42 87.78 77.17 52.72

AFCM [18] 𝑐 = 3,𝑚 = 2

𝜀 = 0.01
89.79 94.68 69.46 73.90 56.47

EFC [19] 𝛽 = 0.5 − 0.7

𝛾 = 0 − 0.05𝑚
𝐼

96.68 87.15 45.15 95.60 —

FMSFA [20] 𝑐 = 3, 𝑞 = 1

𝜆 = 0.7 − 0.9
98.72 96.26 91.44 94.96 —

FPRk [21] 𝑘 = 3, 𝜆 = 0.1

𝛽 = 1.5
79.60 96.50 96.18 — —

effectively handled by possibilistic fuzzy C means (PFCM)
model proposed by Pal et al. in 2005. Our future work entails
development of IFSs framework for PFCM.
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