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Received 8 May 2013; Accepted 27 June 2013

Academic Editor: Irena Lasiecka
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A new collocation method based on the Fibonacci polynomials is introduced for the approximate solution of high order-linear
Fredholm integro-differential-difference equations with the mixed conditions. The proposed method is analyzed to show the
convergence of the method. Some further numerical experiments are carried out to demonstrate the method.

1. Introduction

The integro-differential-difference equations (IDDEs) have
been developed very rapidly in recent years.This is an impor-
tant branch ofmathematicswhich has a lot of interest inmany
application fields such as engineering, mechanics, physics,
astronomy, chemistry, biology, economics, and potential
theory, electrostatics [1–14]. Since some IDDEs are hard to
solve numerically, they are solved by using the approxi-
mated methods. Several numerical methods were used such
as the successive approximations, Adomian decomposition,
Haar Wavelet, and Tau and Walsh series methods [15–20].
Additionally the Monte Carlo method for linear Fredholm
integro-differential-difference equation has been presented
by Farnoosh and Ebrahimi [21] and the Direct method based
on the Fourier and block-pulse method functions by Asady
et al. [22].

Since the beginning of 1994, the Taylor and Chebyshev
matrix methods have also been used by Sezer et al. to
solve linear differential, Fredholm integral, and Fredholm
integro-differential equations [23–35]. Lately, the Fibonacci
collocation method has been used to find the approximate
solutions of differential, integral, and integro-differential
equations [36].

In this study, we consider the approximate solution of the
𝑚th-order Fredholm integro-differential-difference equa-
tions,

𝑚
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(𝑥) 𝑦
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(𝑥) +

𝑠
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)

= g (𝑥) + 𝜆∫
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𝐾 (𝑥, 𝑡) 𝑦 (𝑡) 𝑑𝑡,

(1)

where 𝑠 ≤ 𝑚, 𝜏
𝑟
are the integer, 0 ≤ 𝑎 ≤ 𝑥, 𝑡 ≤ 𝑏, under the

mixed conditions
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𝑦
(𝑘)

(𝑎) + 𝑏
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(𝑏)] = 𝜆
𝑗
, 𝑗 = 1, 2, 3, . . . , 𝑚, (2)

where 𝑃
𝑘
(𝑥), 𝑄

𝑟
(𝑥), 𝑔(𝑥), and 𝐾(𝑥, 𝑡) are functions defined

on 𝑎 ≤ 𝑥, 𝑡 ≤ 𝑏; 𝑎
𝑗𝑘
, 𝑏
𝑗𝑘
, 𝜆, and 𝜆

𝑗
are suitable constants.

Our aim is to obtain an approximate solution of (1)
expressed in the truncated Fibonacci series form:

𝑦 (𝑥) =

𝑁

∑

𝑛=1

𝑎
𝑛
𝐹
𝑛
(𝑥) , (3)
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where 𝑎
𝑛
, 𝑛 = 1, 2, 3, . . . , 𝑁, are the unknown Fibonacci

coefficients. Here 𝑁 is positive integer such that 𝑁 ≥ 𝑚

and 𝐹
𝑛
(𝑥), 𝑛 = 1, 2, 3, . . . , 𝑁, are the Fibonacci polynomials

defined by

𝐹
𝑛
(𝑥) =

[(𝑛−1)/2]

∑

𝑗=0

(

𝑛 − 𝑗 − 1

𝑗
) 𝑥
𝑛−2𝑗−1

,

[

(𝑛 − 1)

2

] =

{
{

{
{

{

(𝑛 − 2)

2

, 𝑛 even,
(𝑛 − 1)

2

, 𝑛 odd.

(4)

2. Fundamental Matrix Relations

Firstly, we can write the Fibonacci polynomials 𝐹
𝑛
(𝑥) in the

matrix form as follows:

F𝑇 (𝑥) = CX𝑇 (𝑥) ⇐⇒ F (𝑥) = X (𝑥)C𝑇, (5)

where
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1
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2
(𝑥) ⋅ ⋅ ⋅ 𝐹

𝑁
(𝑥)] ,
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] .

(6)
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if𝑁 is odd,
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[
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. (8)

Let us show (1) in the following form:
𝑃 (𝑥) + 𝑄 (𝑥) = g (𝑥) + 𝜆𝐼 (𝑥) , (9)

where
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(10)
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2.1. Matrix Relations for the Differential Part 𝑃(𝑥). Firstly, we
consider the solution y(𝑥) and its 𝑘th derivate y(𝑘)(𝑥) in the
matrix form:

y (𝑥) = F (𝑥)A, A = [𝑎
1

𝑎
2

⋅ ⋅ ⋅ 𝑎
𝑁
]

𝑇

, (11)

y(𝑘) (𝑥) = F(𝑘) (𝑥)A. (12)

Then, from relations (5) and (11), we can obtain the following
matrix form:

y (𝑥) = X (𝑥)C𝑇A. (13)

Similar to (13), from relations (5), (11), and (12), we can find
y(𝑘)(𝑥) matrix form as

y(𝑘) (𝑥) = X(𝑘) (𝑥)C𝑇A. (14)

To find the matrix X(𝑘)(𝑥) in terms of the matrix X(𝑥), we
can use the following relation:

X(1) (𝑥) = X (𝑥)T𝑇,

X(2) (𝑥) = X(1) (𝑥)T𝑇 = (X (𝑥)T𝑇)T𝑇 = X (𝑥) (T𝑇)
2

...

X(𝑘) (𝑥) = X(𝑘−1) (𝑥)T𝑇 = X (𝑥) (T𝑇)
𝑘

,

(15)

where

T𝑇 =

[

[

[

[

[

[

[

[

[

0 1 0 ⋅ ⋅ ⋅ 0 0 0

0 0 2 ⋅ ⋅ ⋅ 0 0 0

0 0 0 ⋅ ⋅ ⋅ 0 0 0

...
...

...
...

...
0 0 0 ⋅ ⋅ ⋅ 0 0 𝑁 − 1

0 0 0 ⋅ ⋅ ⋅ 0 0 0

]

]

]

]

]

]

]

]

]

. (16)

Subsequently, by substituting the matrix form (15) into (14),
we obtain the matrix relations

y(𝑘) (𝑥) = X (𝑥) (T𝑇)
𝑘

C𝑇A. (17)

2.2. Matrix Relations for the Difference Part 𝑄(𝑥). If we put
𝑥 → 𝜇

𝑟
𝑥 + 𝜏
𝑟
in the relation (11), we have the matrix form
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𝑟
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𝑟
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𝑟
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.

(20)

By using the relations (15) and (19), we can get

X(𝑘) (𝜇
𝑟
𝑥 + 𝜏
𝑟
) = X (𝑥)𝛽 (𝜇

𝑟
, 𝜏
𝑟
) (T𝑇)

𝑘

. (21)

Thus from (14) and (21), we can find

y(𝑘) (𝜇
𝑟
+ 𝜏
𝑟
) = X (𝑥)𝛽 (𝜇

𝑟
, 𝜏
𝑟
) (T𝑇)

𝑘

C𝑇A. (22)

By using the expressions (14) and (22), we obtain the matrix
form

𝑃 (𝑥) =

𝑚

∑

𝑘=0

𝑝
𝑘
(𝑥)X (𝑥) (T𝑇)

𝑘

C𝑇A,

𝑄 (𝑥) =

𝑠

∑

𝑟=0

𝑄
𝑟
(𝑥)X (𝑥)𝛽 (𝜇

𝑟
, 𝜏
𝑟
) (T𝑇)

𝑟

C𝑇A.

(23)

2.3. Matrix Relations for the Integral Part. Let us find the
matrix relation for the Fredholm integral part 𝐼(𝑥) in (9).
The kernel function 𝐾(𝑥, 𝑡) can be shown by the truncated
Fibonacci series,

𝐾 (𝑥, 𝑡) =

𝑁

∑

𝑚=0

𝑁

∑

𝑛=0

𝑘
𝑓

𝑚𝑛
𝐹
𝑚
(𝑥) 𝐹
𝑛
(𝑡) , (24)

and the truncated Taylor series,

𝐾 (𝑥, 𝑡) =

𝑁

∑

𝑚=0

𝑁

∑

𝑛=0

𝑘
𝑡

𝑚𝑛
𝑥
𝑚

𝑡
𝑛

, (25)

where

𝑘
𝑡

𝑚𝑛
=

1

𝑚!𝑛!

𝜕
𝑚+𝑛

𝐾 (0, 0)

𝜕𝑥
𝑚
𝜕𝑥
𝑛

; 𝑚, 𝑛 = 0, 1, . . . , 𝑁. (26)

The expressions (24) and (25) can be put in matrix forms as

𝐾 (𝑥, 𝑡) = F (𝑥)K
𝐹
F𝑇 (𝑡) , K

𝐹
= [𝑘
𝐹

𝑚𝑛
] ,

𝑚, 𝑛 = 0, 1, . . . , 𝑁,

(27)

𝐾 (𝑥, 𝑡) = X (𝑥)K
𝑡
X𝑇 (𝑡) , K

𝑡
= [𝑘
𝑡

𝑚𝑛
] ,

𝑚, 𝑛 = 0, 1, . . . , 𝑁.

(28)
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From (11), (27), and (28) we can obtain

X (𝑥)K
𝑡
X𝑇 (𝑡) = F (𝑥)K

𝐹
F𝑇 (𝑡)

󳨐⇒ X (𝑥)K
𝑡
X𝑇 (𝑡) = X (𝑥)C𝑇K

𝐹
CX𝑇 (𝑡) .

(29)

Thus

K
𝑡
= C𝑇K

𝐹
C 󳨐⇒ K

𝐹
= (C𝑇)

−1

K
𝑡
C−1. (30)

By substituting the matrix forms (22) and (27) into the
integral part 𝐼(𝑥) in (9), we can have the matrix relation as
follows:

[𝐼 (𝑥)] = ∫

𝑏

𝑎

F (𝑥)K
𝐹
F𝑇 (𝑡)X (𝑡)𝛽 (𝜇

𝑟
, 𝜏
𝑟
) (T𝑇)

𝑘

C𝑇A 𝑑𝑡

= F (𝑥)K
𝐹
QA

(31)

so that

Q = ∫

𝑏

𝑎

F𝑇 (𝑡)X (𝑡)𝛽 (𝜇
𝑟
, 𝜏
𝑟
) (T𝑇)

𝑘

C𝑇𝑑𝑡. (32)

From (5) and (32), we have

Q = ∫

𝑏

𝑎

CX𝑇 (𝑡)X (𝑡)𝛽 (𝜇
𝑟
, 𝜏
𝑟
) (T𝑇)

𝑘

C𝑇𝑑𝑡

= CH𝛽 (𝜇
𝑟
, 𝜏
𝑟
) (T𝑇)

𝑘

C𝑇,

(33)

where

H = ∫

𝑏

𝑎

X𝑇 (𝑡)X (𝑡) 𝑑𝑡, H = [ℎ
𝑖𝑗
] ,

ℎ
𝑖𝑗
=

𝑏
𝑖+𝑗+1

− 𝑎
𝑖+𝑗+1

𝑖 + 𝑗 + 1

𝑖, 𝑗 = 1, 2, . . . , 𝑁.

(34)

If we substitute the matrix relation (5) into (31), we have the
matrix form

[I (𝑥)] = X (𝑥)C𝑇K
𝐹
QA. (35)

2.4. Matrix Relations for the Conditions. The corresponding
matrix form for the conditions (2) can be shown, by means of
(17), as

𝑚−1

∑

𝑘=0

[𝑎
𝑗𝑘
X (𝑎) + 𝑏

𝑗𝑘
X (𝑏)] (T𝑇)

𝑘

C𝑇A = 𝜆
𝑗
, 𝑗 = 1, 2, . . . , 𝑚.

(36)

3. Method of Solution

We can construct the fundamental matrix equation corre-
sponding for (1). For this aim, we substitute the matrix

relations (23) and (35) into (9). So we obtain the matrix
equation

𝑚

∑

𝑘=0

𝑃
𝑘
(𝑥)X (𝑥)C𝑇(T𝑇)

𝑘

A

+

𝑠

∑

𝑟=0

𝑄
𝑟
(𝑥)X (𝑥)𝛽 (𝜇

𝑟
, 𝜏
𝑟
) (T𝑇)

𝑟

C𝑇A

= g (𝑥) + 𝜆X (𝑥)C𝑇K
𝐹
QA.

(37)

By using in (37) the collocation points 𝑥
𝑖
defined by

𝑥
𝑖
= 𝑎 + (

𝑏 − 𝑎

𝑁 − 1

) (𝑖 − 1) , 𝑖 = 1, 2, . . . , 𝑁, (38)

the system of the matrix equations is obtained
𝑚

∑

𝑘=0

𝑃
𝑘
(𝑥
𝑖
)X (𝑥

𝑖
)C𝑇(T𝑇)

𝑘

A

+

𝑠

∑

𝑟=0

𝑄
𝑟
(𝑥
𝑖
)X (𝑥

𝑖
)𝛽 (𝜇
𝑟
, 𝜏
𝑟
) (T𝑇)

𝑟

C𝑇A

= g (𝑥
𝑖
) + 𝜆X (𝑥

𝑖
)C𝑇K

𝐹
QA

(39)

or shortly the fundamental matrix equation becomes

{

𝑚

∑

𝑘=0

P
𝑘
X(T𝑇)

𝑘

C𝑇 +
𝑠

∑

𝑟=0

Q
𝑟
X𝛽 (𝜇

𝑟
, 𝜏
𝑟
) (T𝑇)

𝑟

C𝑇

−𝜆XC𝑇K
𝐹
Q}A = G,

(40)

where

P
𝑘
=

[

[

[

[

𝑝
𝑘
(𝑥
1
) 0 ⋅ ⋅ ⋅ 0

0 𝑝
𝑘
(𝑥
2
) ⋅ ⋅ ⋅ 0

0 0 d 0

0 0 ⋅ ⋅ ⋅ 𝑝
𝑘
(𝑥
𝑁
)

]

]

]

]

,

Q
𝑟
=

[

[

[

[

𝑄
𝑟
(𝑥
1
) 0 ⋅ ⋅ ⋅ 0

0 𝑄
𝑟
(𝑥
2
) ⋅ ⋅ ⋅ 0

0 0 d 0

0 0 ⋅ ⋅ ⋅ 𝑄
𝑟
(𝑥
𝑁
)

]

]

]

]

,

X =

[

[

[

[

[

𝑋 (𝑥
1
)

𝑋 (𝑥
2
)

...
𝑋(𝑥
𝑁
)

]

]

]

]

]

=

[

[

[

[

[

[

1 𝑥
1

⋅ ⋅ ⋅ 𝑥
𝑁−1

1

1 𝑥
2

⋅ ⋅ ⋅ 𝑥
𝑁−1

2

...
... d

...
1 𝑥
𝑁

⋅ ⋅ ⋅ 𝑥
𝑁−1

𝑁

]

]

]

]

]

]

,

G =

[

[

[

[

[

[

g (𝑥
1
)

g (𝑥
2
)

...
g (𝑥
𝑁
)

]

]

]

]

]

]

.

(41)

Therefore, the fundamental matrix equation (40) corre-
sponding for (1) can be written as

WA = G or [W;G] , (42)
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where

W=

𝑚

∑

𝑘=0

P
𝑘
X(T𝑇)

𝑘

C𝑇

+

𝑠

∑

𝑟=0

Q
𝑟
X𝛽 (𝜇

𝑟
, 𝜏
𝑟
) (T𝑇)

𝑟

C𝑇 − 𝜆XC𝑇K
𝐹
Q.

(43)

Equation (42) corresponds to a system of 𝑁 linear algebraic
equationswith unknownFibonacci coefficients 𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑁
.

Further, we can express the matrix form (36) conditions

U
𝑗
𝐴 = [𝜆

𝑗
] or [U

𝑗
; 𝜆
𝑗
] , 𝑗 = 1, 2, . . . , 𝑚, (44)

where

U
𝑗
=

𝑚−1

∑

𝑘=0

[𝑎
𝑗𝑘
X (𝑎) + 𝑏

𝑗𝑘
X (𝑏)] (T𝑇)

𝑘

C𝑇

= [𝑢
𝑗1

𝑢
𝑗2

𝑢
𝑗3

. . . 𝑢
𝑗𝑁
] .

(45)

To obtain the solution of (1) under the conditions (2), by
replacing the row matrices (44) by the last 𝑚 rows of the
matrices (42), we have the new augmented matrix

̃WA = ̃G. (46)

If the last m rows of the (30) are replaced, the augmented
matrix of the above system is obtained as

[
̃W;

̃G]

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑤
11

𝑤
12

⋅ ⋅ ⋅ 𝑤
1𝑁

; g (𝑡
1
)

𝑤
21

𝑤
22

⋅ ⋅ ⋅ 𝑤
2𝑁

; g (𝑡
2
)

...
...

...
... ;

...
𝑤
(𝑁−𝑚)1

𝑤
(𝑁−𝑚)2

⋅ ⋅ ⋅ 𝑤
(𝑁−𝑚)𝑁

; g (𝑡
𝑁−𝑚

)

𝑢
11

𝑢
12

⋅ ⋅ ⋅ 𝑢
1𝑁

; 𝜆
1

𝑢
21

𝑢
22

⋅ ⋅ ⋅ 𝑢
2𝑁

; 𝜆
2

...
...

...
... ;

...
𝑢
𝑚1

𝑢
𝑚2

⋅ ⋅ ⋅ 𝑢
𝑚𝑁

; 𝜆
𝑚

]

]

]

]

]

]

]

]

]

]

]

]

]

]

.

(47)

If rank ̃W = rank [
̃W;

̃G] = 𝑁, then we can write

A=(W̃)

−1
G̃. (48)

And so, the matrix A (thereby the coefficients 𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑁
)

is uniquely determined.

4. Accuracy of Solution

We can check the accuracy of the method. The truncated
Fibonacci series in (3) have to be approximately satisfying (1).
For each 𝑥 = 𝑥

𝑖
∈ [𝑎, 𝑏], 𝑖 = 1, 2, 3, . . .,

𝐸 (𝑥
𝑖
) =

󵄨
󵄨
󵄨
󵄨
𝑃 (𝑥
𝑖
) − 𝑄 (𝑥

𝑖
) − g (𝑥

𝑖
) − 𝜆𝐼 (𝑥

𝑖
)
󵄨
󵄨
󵄨
󵄨
≅ 0 (49)

or

𝐸 (𝑥
𝑖
) ≤ 10

−𝑘𝑖
(𝑘
𝑖
is any positive integer) . (50)

If max(10−𝑘𝑖) = 10
−𝑘 (𝑘 is any positive integer) is prescribed,

then the truncation limit 𝑁 is increased until the difference
𝐸(𝑥
𝑖
) at each of the points 𝑥

𝑖
becomes smaller than the

prescribed 10
−𝑘.

5. Numerical Examples

In this section, several examples are given to illustrate the
applicability of the method and all of them are performed on
the computerMATLAB. Also, the absolute errors in tables are
the values of |𝑦(𝑥) − 𝑦

𝑁
(𝑥)| at selected points.

Example 1. Let us consider the linear Fredholm integro-
differential-difference equation given by

𝑦
󸀠󸀠

(𝑥) − 𝑦
󸀠󸀠

(𝑥 − 1) + 2𝑥𝑦
󸀠

(𝑥 − 2)

= 4𝑥
2

− 15𝑥 + 4 + 12∫

1

0

𝑥𝑡𝑦 (𝑡) 𝑑𝑡, 0 ≤ 𝑥, 𝑡 ≤ 1,

(51)

with the boundary conditions

𝑦 (0) = 1, 𝑦 (1) = 1 (52)

and the approximate solution𝑦(𝑥) by the truncated Fibonacci
series

𝑦 (𝑥) =

3

∑

𝑛=1

𝑎
𝑛
𝐹
𝑛
(𝑥) , (53)

where 𝑁 = 3, 𝑃
2
(𝑥) = 1, 𝑄

1
(𝑥) = 2𝑥, 𝑄

2
(𝑥) = 1, 𝜇

1
= 1,

𝜏
1
= −2, 𝜇

2
= 1, and 𝜏

2
= −1,

𝜆 = 12, 𝐾 (𝑥, 𝑡) = 𝑥𝑡, g (𝑥) = 4𝑥
2

− 15𝑥 + 4. (54)

From (38), the collocation points for𝑁 = 3, are computed

{𝑥
1
= 0, 𝑥

2
=

1

2

, 𝑥
3
= 1} (55)

and from (40), the fundamental matrix equation of the
problem is

{P
2
X(T𝑇)

2

C𝑇 +Q
0
X𝛽 (1, −2) (T𝑇)

0

C𝑇

+Q
1
X𝛽 (1, −1) (T𝑇)

2

C𝑇 − 𝜆XC𝑇K
𝑓
Q}A = G,

(56)

where

P
2
=
[

[

1 0 0

0 1 0

0 0 1

]

]

, Q
1
=
[

[

0 0 0

0 1 0

0 0 2

]

]

, Q
2
=
[

[

1 0 0

0 1 0

0 0 1

]

]

,

T𝑇 = [

[

0 1 0

0 0 2

0 0 0

]

]

, C𝑇 = [

[

1 0 1

0 1 0

0 0 1

]

]

, G =
[

[

[

4

−

5

2

−7

]

]

]

,

𝛽 (1, −2) = [

[

1 −2 4

0 1 −4

0 0 1

]

]

, 𝛽 (1, −1) = [

[

1 −1 1

0 1 −2

0 0 0

]

]

,

K =
[

[

0 0 0

0 1 0

0 0 0

]

]

, Q =

[

[

[

[

[

[

[

[

[

[

1

1

2

4

3

1

2

1

3

3

4

4

3

3

4

28

15

]

]

]

]

]

]

]

]

]

]

.

(57)
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The augmented matrix for this fundamental matrix equation
is calculated as

[W;G] = [

[

[

0 0 4 ; 4

−3 −1 −

7

2

; −

5

2

−6 −2 −9 ; −7

]

]

]

. (58)

From (37), the matrix forms for the boundary conditions are

[U
0
; 𝜆
0
] = [1 0 1 ; 1] ,

[U
1
; 𝜆
1
] = [0 1 2 ; 1] .

(59)

The new augmented matrix based on conditions can be
written as

[
̃W;

̃G] = [

[

0 0 4 ; 4

1 0 1 ; 1

0 1 2 ; 1

]

]

. (60)

Solving this system, the unknown Fibonacci coefficients are
obtained as

𝐴 = [0 −1 1]

𝑇

. (61)

Hence, by substituting the Fibonacci coefficients matrix into
(11), we have the approximate solution 𝑦(𝑥) = 𝑥

2

− 𝑥 + 1,
which is the exact solution

𝑦 (𝑥) =

3

∑

𝑛=1

𝑎
𝑛
𝐹
𝑛
(𝑥) = 𝑎

1
𝐹
1
(𝑥) + 𝑎

2
𝐹
2
(𝑥) + 𝑎

3
𝐹
3
(𝑥)

= 0.1 + (−1) ⋅ 𝑥 + 1 ⋅ (𝑥
2

+ 1) = 𝑥
2

− 𝑥 + 1.

(62)

Example 2 (see [26]). Consider the following linear Fred-
holm integro-differential-difference equation with variable
coefficients

𝑦
󸀠󸀠󸀠

(𝑥) − 𝑥𝑦
󸀠

(𝑥) + 𝑦
󸀠󸀠

(𝑥 − 1) − 𝑥𝑦 (𝑥 − 1)

= − (𝑥 + 1) (sin (𝑥 − 1) + cos (𝑥))

− cos (2) + 1 + ∫

1

−1

𝑦 (𝑡 − 1) 𝑑𝑡 − 1 ≤ 𝑥, 𝑡 ≤ 1

(63)

with the conditions 𝑦(0) = 0, 𝑦󸀠(0) = 1, and 𝑦
󸀠󸀠

(0) = 0 and
the exact solution 𝑦(𝑥) = sin(𝑥).

So 𝑃
1
(𝑥) = −𝑥, 𝑃

3
(𝑥) = 1, 𝑄

1
(𝑥) = 2𝑥, 𝑄

2
(𝑥) = 1,

𝜇
1
= 1, 𝜏
1
= −1, 𝜇

0
= 1, and 𝜏

0
= −1,

𝜆 = 1, 𝐾 (𝑥, 𝑡) = 𝑡 − 1,

g (𝑥) = − (𝑥 + 1) (sin (𝑥 − 1) + cos (𝑥)) − cos (2) + 1.

(64)

The fundamental matrix equation of the problem from (40)
becomes

{P
1
X(T𝑇)

1

C𝑇 + P
3
X(T𝑇)

3

C𝑇 +Q
0
X𝛽 (1, −1) (T𝑇)

0

C𝑇

+Q
1
X𝛽 (1, −1) (T𝑇)

2

C𝑇 − 𝜆XC𝑇K
𝑓
Q}A = G.

(65)

−1 −0.5 0 0.5 1
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1
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3

x

y
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x
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Exact solution
Present method for N = 8

Present method for N = 9

Figure 1: Numerical and exact solutions of Example 2 for𝑁 = 8, 9.

For 𝑁 = 8, 9 the solutions of the problem are found as,
respectively,

𝑦 (𝑥) = (0.003823057225) 𝑥
7

+ (0.01008064682) 𝑥
6

− (0.02660425406) 𝑥
5

+ (0.05046207175) 𝑥
4

+ (0.1974487774) 𝑥
3

− (2.925448512) 𝑥
2

+ 𝑥 + (5.629719781𝑒 − 17) ,

𝑦 (𝑥) = − (0.003384338243) 𝑥
8

− (0.001420180534) 𝑥
7

+ (0.06727516657) 𝑥
6

− (0.1256152219) 𝑥
5

− (0.2693617976) 𝑥
4

+ (2.000085149) 𝑥
3

− (6.513886652𝑒 − 16) 𝑥
2

+ 𝑥 − (1.153157431𝑒 − 15) .

(66)

We compare the solutions found by the present method for
𝑁 = 8,𝑁 = 9 and the absolute errors in Figure 1 and Table 1.
It is seen that whenwe increase integer𝑁, the errors decrease.

Example 3 (see [30]). Now consider the linear Fredholm
integro-differential-difference equation given by

𝑦
󸀠󸀠󸀠

(𝑥) − (𝑥 − 1) 𝑦
󸀠󸀠

+ (𝑥 − 1) 𝑦
󸀠

(𝑥) − 𝑦 (𝑥) + 𝑦
󸀠

(𝑥 − 1)

= 𝑒
𝑥−1

+ 𝑥(𝑒𝑥 −

1

𝑒

𝑥 − 2

1

𝑒

)

+ ∫

1

−1

(𝑥𝑡 − 𝑥
2

) 𝑦 (𝑡) 𝑑𝑡 − 1 ≤ 𝑥, 𝑡 ≤ 1

(67)
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Table 1: Comparison of the absolute errors of Example 2.

𝑥
𝑖

Exact solution
Present method

𝑁 = 8 𝑁 = 9

𝑦(𝑥
𝑖
) Absolute errors 𝑦(𝑥

𝑖
) Absolute errors

−1 −0.8414711 −1.114125 0.2726539 −3.078521 2.23705
−0.8 −0.7173561 −0.869866 0.1525099 −1.875847 1.158491
−0.6 −0.5646425 −0.633677 0.06903453 −1.054038 0.4893957
−0.4 −0.3894183 −0.4110374 0.0216191 −0.5333391 0.1439208
−0.2 −0.1986693 −0.2014897 0.00282041 −0.2163871 0.01771782
0 0 5.62972𝑒 − 17 5.62972𝑒 − 17 −1.153157𝑒 − 15 1.153157𝑒 − 15

0.2 0.1986693 0.2016525 0.00298318 0.2155338 0.01686445
0.4 0.3894183 0.4137037 0.02428533 0.5200945 0.1306762
0.6 0.5646425 0.6476974 0.08305494 0.9903835 0.4257410
0.8 0.7173561 0.9164897 0.1991336 1.689322 0.9719655
1 0.841471 1.235210 0.3937393 2.667579 1.826108

Table 2: Comparison of the absolute errors of Example 5.3.

𝑥
𝑖

Exact solution
Present method

𝑁 = 6 𝑁 = 9

𝑦(𝑥
𝑖
) Absolute errors 𝑦(𝑥

𝑖
) Absolute errors

−1 0.3678794 0.368349 0.4695169𝑒 − 3 0.3678795 9.388396𝑒 − 8

−0.8 0.449329 0.4496545 0.3255685𝑒 − 3 0.4493289 4.540547𝑒 − 8

−0.6 0.5488116 0.5490096 0.1980008𝑒 − 3 0.5488116 3.612436𝑒 − 8

−0.4 0.67032 0.6704069 0.8684809𝑒 − 4 0.67032 8.495309𝑒 − 9

−0.2 0.8187308 0.8187468 0.1605797 0.8187308 7.845555𝑒 − 10

0 1.0 1.0 0 1.0 0
0.2 1.221403 1.221369 0.3335666𝑒 − 4 1.221403 3.813474𝑒 − 9

0.4 1.491825 1.491453 0.3721909𝑒 − 3 1.491825 2.903571𝑒 − 8

0.6 1.822119 1.820404 0.171522𝑒 − 2 1.822119 0.2499077𝑒 − 6

0.8 2.225541 2.220096 0.5445047𝑒 − 2 2.225537 0.3627591𝑒 − 5

1 2.718282 2.704284 0.01399794 2.71826 0.2222775𝑒 − 4

−1 −0.5 0 0.5 1
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3
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y
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Present method for N = 6

Present method for N = 9

Figure 2: Numerical and exact solutions of Example 3 for𝑁 = 6, 9.
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Figure 3: Comparison of the absolute errors of Example 3 for 𝑁 =

6, 9.
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with the initial conditions 𝑦(0) = 0, 𝑦󸀠(0) = 1, and 𝑦
󸀠󸀠

(0) =

0 and the exact solution 𝑦(𝑥) = 𝑒
𝑥.

Here

𝑃
0
(𝑥) = −1,

𝑃
1
(𝑥) = 𝑥 − 1,

𝑃
2
(𝑥) = − (𝑥 − 1) , 𝑃

3
(𝑥) = 1,

𝑄
1
(𝑥) = 1, 𝜇

1
= 1, 𝜏
1
= −1,

𝜆 = 1, 𝐾 (𝑥, 𝑡) = 𝑥𝑡 − 𝑥
2

,

g (𝑥) = 𝑒
𝑥−1

+ 𝑥(𝑒𝑥 −

1

𝑒

𝑥 − 2

1

𝑒

) .

(68)

From (40), the fundamental matrix equation of the problem
becomes

{P
0
X(T𝑇)

0

C𝑇 + P
1
X(T𝑇)

1

C𝑇 + P
2
X(T𝑇)

2

C𝑇

+ P
3
X(T𝑇)

3

C𝑇 +Q
1
X𝛽 (1, −1) (T𝑇)

1

C𝑇

−𝜆XC𝑇K
𝑓
Q}A = G.

(69)

The solutions obtained for 𝑁 = 6, 9 are compared with
the exact solution is 𝑒𝑥 which are given in Figure 2 and we
compare the absolute errors found by presentmethod for𝑁 =

6, 9 in Figure 3. Also, the numerical solution and absolute
errors are compared for𝑁 = 6, 9 in Table 2.

6. Conclusion

The Fibonacci collocation method is used to solve the linear
Fredholm integro-differential-difference equations numeri-
cally. The obtained numerical results show that the accuracy
improves when 𝑁 is increased. Tables and figures indicate
that as 𝑁 increases, the errors decrease more rapidly. A
considerable advantage of the method is that the Fibonacci
polynomial coefficients of the solution are found very eas-
ily by using computer programs. This method can also
be extended to the system of linear integro-differential-
difference equation with variable coefficients, but somemod-
ifications are required.
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[29] S. Yalçinbaş, M. Sezer, andH.H. Sorkun, “Legendre polynomial
solutions of high-order linear Fredholm integro-differential
equations,” Applied Mathematics and Computation, vol. 210, no.
2, pp. 334–349, 2009.
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