
Research Article
A Practical Infrastructure for Real-Time Simulation across
Timing Domains

Yao-fei Ma,1 Xiao Song,1 Jiang-yun Wang,1 and Zhen Xiao2

1School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
2Beijing Institute of Nearspace Vehicle’s Systems Engineering, China Aerospace Science and Technology Corporation,
Beijing 100076, China

Correspondence should be addressed to Xiao Song; songxiao@buaa.edu.cn

Received 6 June 2014; Revised 16 September 2014; Accepted 20 September 2014

Academic Editor: Minrui Fei

Copyright © 2015 Yao-fei Ma et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A real-time infrastructure, called MLRTI, is proposed in this paper to fulfill the requirement of real-time simulation in distributed
environment. There are two novel contributions in this work. Firstly, a flexible timing mechanism is proposed to integrate external
time source and local timer utility, enabling the distributed nodes to advance their timeline simultaneously at different speeds with
high precision. A data transmission solution is also presented in which the reflective memory card (VMIC) is employed to provide
fast data transmissionwithminimumdelay. Secondly, a systempartition schema is proposed inMLRTI to reduce the solution errors
introduced by transforming a continuous system into distribution system, which is common in a class of control applications where
the system is designed in centralizedmodel but simulated in distributed environment for constrains on system structure or the need
to balance computation load. Experiments are conducted and the results show this schema effectively reduces the possible errors
by properly partitioning the system into parts that are suitable to be deployed in distributed environment.

1. Introduction

Real-time simulation has been applied in many domains like
defense [1, 2], aero, and air space systems [3, 4], embedded
automotive electronics [5], and so forth. These domains
are often involved with hardware-in-the-loop or human-in-
the-loop applications, where the response speed to control
signals/commands is critical and the model equations must
be solved within limited time intervals. For example, in a
robotic control system, the vision system needs to respond
with low latency because the produced image is required with
the feedback loops of robotic application [6].

Sometimes a real-time system has to be deployed in
distributed environment. One case is the system’s structure
which is scattered. For example, a training system is where
the human operated device is located at one place while the
controller is at another place. Another case is the scale of the
system which is large and has to be distributed to average
the computation load on each node [7]. As a result, a real-
time infrastructure for distribution simulation must handle
the following issues.

(i) It is to synchronize time advancements on distributed
nodes. There are often multiple subsystems coex-
isting and each has different timing requirements.
For example, in combat simulation, virtual entities
created by computer may need not to interact with
human operator directly. Thus their time advance-
ment step can be longer (e.g., 50 milliseconds); occa-
sionally delay on time advancement would not lead
to fatal failure. On the other hand, nodes operated by
human being (e.g., a manned flight simulator) need
strict real-time performance in which the simulation
step of 1∼5 milliseconds or shorter is needed.

(ii) It is to ensure the data between subsystems can be
exchanged timely. The performance on data trans-
mission will be affected by multiple factors like
bandwidth, data load, topology, and so forth. The
unpredictable delays among simulation nodes are
unacceptable in critical real-time applications.

(iii) A common but little concerned one is the trans-
forming problem when constructing the distributed
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system. In the application of continuous system, the
original system is normally designed and tested in
centralized manner; that is, the system is constructed
as a whole and tested in a standalone computer;
the data transmission does not cross network. When
such system is deployed in distributed environment,
the solution errors, that is, the difference on states
trajectories in two systems, can be introduced.

There does exist formal approach like QSS [8–10] to
transforma continuousmodel/system into one that is suitable
for distributed environment.However, the quantization oper-
ation, named as “hysteretic quantization,” is necessary for
QSS to hold the outputs of submodels until some predefined
thresholds are crossed. This operation needs to modify
system models, which will lead to problem when too many
models exist or modifications are not allowed at all due to
classified reason. Additionally, QSS approach did not discuss
the situation where themodel resolver step ℎ is different from
the distributed simulation step 𝑇, which is the common cases
in real-world applications.

In this paper, a multiple layer real-time infrastructure
(MLRTI) is proposed to address these problems. MLRTI
highlight the following three characteristics: (i) high preci-
sion global timing capability achieved by integrating external
timing source and local timer; (ii) low latency on data trans-
mission and the publish/subscribe mechanism borrowed
from High Level Architecture (HLA) (IEEE standard 1516)
to specify data exchanging map between components; (iii)
a novel partition schema to reduce the solution errors (for
control system) incurred by system transformation from the
centralized one to the distributed one.

The content of this paper is organized as follows. In
Section 2, the structure of MLRTI is introduced. Two critical
characteristics, the high precision timing and low latency data
communication, are discussed in detail. And a publishing and
subscribing mechanism is also presented to form the data
exchangingmap in distributed environment. In Section 3, the
system partition schema is given to minimize the possible
solution errors caused by transforming a centralized system
into distributed system. Comparative experiments are con-
ducted to verify its effectiveness.

2. System Structure

MLRTI is designed to allow the distributed parts of a
system to work together. Each part can have different timing
speeds. Normally, there are different requirements on timing
performance within a system:

(a) the nonreal-time (NRT) tasks like resource manage-
ment, deployment configuration, and so forth; these
tasks are normally performed at presimulation period
and need not to advance time with real-time manner;

(b) the soft real-time (SRT) parts, which advance their
times at real-time but failures (e.g., the inconsistency
caused by inaccurate timing or delays on data trans-
mission) are allowed; examples include the displaying
part or virtual entities that do not interact with human

operators directly; the time interval here can be 1ms–
100ms;

(c) the hard real-time (HRT) parts, including the human
operated equipment or the models whose inputs
must be sampled from external environment; the
computation of these parts must be completed within
specified interval (e.g., 1 𝜇s–1ms); their times need to
be advanced with high precision.

To satisfy all these requirements, a layered infrastructure
is proposed, as Figure 1 shows.

The NRT layer, SRT layer, and HRT layer are presented
from the top to the bottom, respectively. The differences
among layers are distinguished by two factors: the timing
precision and the data transmission speed. They are often
connected with each other: high data transmission speed
helps to improve the timing precision, and high timing pre-
cision helps to align data updating interval, thus eliminating
the data jitters.

In NRT layer, the network media can be common Ether-
net. Currently, the bandwidth of Ethernet can reach 1Gb/s or
more. However, the underlying mechanism of detecting data
collision on Ethernet (CSMA/CD according to IEEE802.3)
could cause inevitable delays ondata transmission.According
to our test, the average transmission delay in a commonly
configured Ethernet LAN is about 10∼15 milliseconds [11].

To reduce this delay, one solution is to measure and
compensate time-delay by special schedule mechanism [12].
However, it is not a complete approach. A better solution is
to improve the collision detecting mechanism of Ethernet
protocol. An excellent example is the PowerLink protocol
[13] whose PowerLink stack can replace the TCP/IP and
UDP/IP layer seamlessly, called PowerLink Layer. This layer
realizes fast, real-time data transmission in which a collision
preventionmechanism called “Slot CommunicationNetwork
Management (SCNM)” is employed to synchronize each
node in the polling way. In the best case, the minimum
interval between data package sending is about 100 𝜇s, which
can meet the requirement of SRT.

As for HRT layer, the requirements on timing and data
transmission are higher. Specialized hardware needs to be
employed to meet such requirement. High precision time
sources, like GPS and BDS (BeiDou Navigation Satellite Sys-
tem), can be introduced into the simulation for high precision
synchronizing signal. Additionally, reflective memory card
(VMIC) connected with optical fiber provides a mechanism
for high speed, low latency data transmission capability (e.g.,
GEPCI-5565piorc’s data rate≥ 170Mb/s; time delay can reach
nanosecond level). The specialized hardware and protocol
enable CPUs not to be involved in data sending/receiving
process; the big bandwidth of optical fiber also contributes
to the high performance on data communication.

2.1. Flexible Timing Solution. As mentioned previously, pre-
cise timing is one of the key factors of real-time system. Time
synchronization is important to maintain correct timeline
and causal relationship between nodes. Two issues need to
be addressed [14]:
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Figure 1: The structure of MLRTI.

(a) absolute synchronization: simulation time needs to
align precisely with external time in real world, that is,
the physical time; it is important in hybrid simulation
like military drill STOW 99 held in US, where real
military force (human and equipment) and virtual
force interact with each other;

(b) relative synchronization: the distributed nodes also
need to align their own times during simulation.

Relative synchronization is easier to realize. Timer utili-
ties provided by operation system (OS) or other commercial
software can be used to fulfill it. Four utilities are introduced
here.

The first one is the timer utility provided by OS. For
example, the multimedia time provided by Windows OS can
provide periodic timing with accuracy of 1ms; and its built-
in error compensation mechanism can check and remove
accumulated timing error.

The second one is the crystal oscillator clock embedded
on computer’s motherboard, which could provide more
accurate time signal with nanoseconds interval. However,
the precision of this signal will vary with motherboard type,
manufacturing technology, or working temperature.

Commercial software RTX (real-time extension) is
designed to overcome the lack of real-time capability of
Windows operating system. RTX can provide time interval
at 1ms, 1 𝜇s, or one-tick interval produced by computer
hardware by giving its own clock signals.

The fourth one is the specialized hardware. VMIC is often
used in HRT domain to get high precision timing capability.
It can broadcast the interrupt signals to network and the per-
defined interrupt function on each node will be invoked to
process them.

The former two utilities cost low since they are easy to
access. However, their performances are limited. The latter
two provide improved performance, at the cost of expensive
investment.

External time source needs to be imported into system
when absolute synchronization is required. The most con-
venient way is to use timing signals from global navigation
satellite system (GNSS). However, it is difficult to get high
resolution time signals from such system due to cost or
authorization reason. The common resolution is 1 s [15].

As a result, a “Master-Slave” structure is proposed here to
manage the timing in distributed manner, as Figure 2 shows.

The master node is responsible for timing control
throughout the system. Its time is pinned to external time
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Figure 2: The Master-Slave structure for global timing in MLRTI.

source and produces synchronization signals. The signals are
broadcasted to the whole network, as Figure 2 shows. The
slave nodes keep listening to the signals. Each slave node
will firstly check the received signal. If this signal is intended
for it, the slave node will proceed the following process: (i)
update its local time; (ii) read in the latest data from its source
node (if any exists); and (iii) do computation and update its
outputs. When using VMIC device, this process is done via
interrupt functions. The timing precision is ensured by both
external time source and local timer.

To maintain different time advancement speeds on sim-
ulation nodes, there are two information arrays being main-
tained in the master node: (i) the time advancement request
array; request from each slave node specified the next time
point it needs to go to; (ii) the priority array that records a
predefined priority sequence, by which the distributed nodes
are allowed to advance their time one by one. A complete
procedure is described as follows.

(1) Master node polls the request array and pick up the
nearest next time point 𝑇

𝑛
. The slave nodes (there

could be multiple nodes asking for advancing to the
same time point) who send this request are recorded
in set variable𝑁

𝑞
.

(2) Master node resorts 𝑁
𝑞
with descending priority

order and then sends the interrupt signals when each
item’s 𝑇

𝑛
is reached.

(3) Slave nodes that are allowed to advance their time
do model computation in specified time interval and
then send a new time advancement request to the
master node. The next time point is told by this way.

(4) Master node keeps waiting until all time advancing
requests (from 𝑁

𝑞
) arrived; then the request array is

updated. If some node does not respond in time, the
master node would have three options: (a) ignore this
delay and keep going; (b) warn this delay and ask user
if to continue; (c) warn this delay and stop simulation.
It is decided by user.

(5) Go back to step (1).

2.2. Data ExchangingMap between Nodes. Thedata exchang-
ing between simulation nodes is defined before simulation
start. The data is classified into two classes according to their
importance: “property” and “message.” “Property” refers to
data periodically produced by models and exchanged during
simulation, which are not critical and a small amount of
loss cannot lead to fatal consequence to the stability and
correctness of the whole system. On the other hand, “mes-
sage” is important to notify the critical events and keeping
causality correct. In Figure 1, the “messages” are kept and the
“properties” are discarded when data exchanging happened
between real-time domains with different advancing speed.

To describe the data exchanging between nodes, the
concept of “publishing and subscribing” is borrowed from
HLA in which “publishing” node means it can produce data
to simulation space and “subscribing” node consumes data
produced by others.

The publishing and subscribing map is defined in a tree,
in which the parent node represents the parent publishing
or subscribing over its son nodes. For example, a “vehicle”
node may has son nodes of “fighter” and “tank”; subscribing
“vehicle” data means subscribing both “fighter” and “tank”
data. On the other hand, publishing or subscribing of a leaf
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node only triggers the corresponding nodes when that leaf
node (data or event) updates itself. This mechanism provides
extra flexible to the description of data exchanging.

2.3. Performance Experiments. A distributed HRT environ-
ment was built up to test the delays that may exist in
timing and data exchange. In our experiment scenario, three
computers equipped with VMICs (GE PCI-5565piorc) are
connected with optical fiber. Time advancing mechanism
takes “Master-Slave” structure, and the local timer of master
node is enhanced by RTX middleware working with Win-
dows XP.

The performance of relative synchronization is tested
in this scenario. On each timing step, delay comes from
three aspects: (i) timing aberration of RTX timer, (ii) data
transmission delay caused by VMIC’s ring network protocol,
and (iii) responding latency of interrupt function of VMIC
since receiving interrupt signal.

According to the product specification, data transmission
latency between adjacent RMICs is about 0.4 𝜇s. In Figure 3,
1000 measurements of RTX timer callback with interval of
1ms are recorded. As we can see, the maximum deviation is
less than 1.8 𝜇s and the average deviation is 0.3758 𝜇s.

In Figure 4, 1000measurements of the responding latency
of interrupt function ofVMIC since receiving interrupt signal
are recorded. The maximum latency is less than 23 𝜇s; the
average latency is about 13.228 𝜇s.

The average time advancement error between simulation
nodes is 0.3758 + 13.228 + 0.4 = 14.0038 𝜇s. For HRT domain
advancing at millisecond level, this error is less than 5% of
time step and can be omitted most of time.

The experiment on timing performance with external
time source is not conducted here, considering the fact that
external time sources like GPS and BDS have been quite
mature in their technological evolution andown stable timing
precision, which can be added with time delay inside the
simulation (Figures 3 and 4) to get the final performance.

3. System Partition Schema

MLRTI guarantees that the distributed system can advance its
global time synchronously with high precision and exchange
data swiftly with low latency. However, for a class of contin-
uous system application, the possible errors introduced by
system transforming are not considered yet. It is a common
case that a control system is designed in “centralized” man-
ner; that is, the system is constructed as a whole and is tested
in a standalone computer. When such a system is deployed in
distributed environment, the new system has been different
from the original one. In brief, the input/output sequence
between each distributed part could be disordered. This can
be explained with a simple example shown in Figure 5, an
inverted pendulum control system.

3.1. Problem Description. The inverted pendulum system
contains 9 submodels in it, as Figure 5 shows. In nondis-
tributed simulation, all submodels need to be computed
and updated on each step, with certain computing order.
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Figure 3: Variation of the length of time intervals triggered by timer
of RTX.
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Figure 4: Time latency before interrupt service function starting
since VMIC received the interrupt signal.

The principle to determine this order is not to violate data
dependence among submodels. To achieve this, the models
can be classified into two categories according to their
input/output characteristics.

(a) Direct-Feed-Through (DFT) Model. DFT port is defined as
a pair of <input, output> where the output is determined by
current input value. A DFT model owns one or more DFT
ports. Assuming a model can be described with three sets of
variables: input set 𝑋, state set 𝑆, and output set 𝑌; then the
DFT model can be expressed as

̇

𝑆
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Figure 5: Inverted pendulum control system: a sorted order (represented with red, bracketed figures) needs to be determined to compute
and update each model correctly in nondistributed environment.

where 𝐼(∗) is input function,𝑇(∗) is state transition function,
and 𝑂(∗) is output function. The latest output 𝑌

𝑛+1
is

determined by current input 𝑋
𝑛+1

and states 𝑆
𝑛+1

, which
implies a sequent computing order existing between this DFT
model and its preceding models (that produce 𝑋

𝑛+1
). 𝑆 = Φ

is a special case of DFT model, where Φ is the empty set.
CommonDFTmodels include gain, product, sum, derivative,
and so forth.

(b) Non-Direct-Feed-Through (NDFT) Model. NDFT model
has no DFT ports. A NDFT model can be expressed as

̇

𝑆

𝑛+1
= 𝐼 (𝑆

𝑛
, 𝑋

𝑛+1
) ,

𝑆
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̇

𝑆
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, 𝑆

𝑛
, ℎ) ,

𝑌

𝑛+1
= 𝑂 (𝑆

𝑛+1
) .

(2)

The output is associated with current state 𝑆
𝑛+1

rather than
the current input 𝑋

𝑛+1
, which means this NDFT model can

produce output without waiting for the latest input; thus
the constrain on the computing order between it and its
precedingmodels is relaxed. CommonNDFTmodels include
integrator, input signal, memory, and so forth.

Upon this classification, the rules to determine the com-
puting order can be stated as follows.

(1) For a DFT model, the models which drive its DFT
ports should be computed before it.

(2) For aNDFTmodel, it can be computedwith any order
as long as before the DFT models it drives.

There could be multiple feasible computing orders for a
specific systemaccording to the above rules; the red bracketed
figures in Figure 5 indicate one of them. In centralized
simulation, the system works well by this order; however,
the case becomes complex when it is deployed in distributed
environment.

An extreme scenario is to deploy each submodel to a
separate node. Obviously, the system would still work well
as long as the computation order is maintained. However,
it is meaningless to maintain a “sequent” computation in a
distributed environment. If we want to make full use of the
advantage of distributed environment, that is, to compute in

Table 1: Model classification.

NDFT model DFT model
(1) Signal source (step)A (1) Sum operatorE
(2) Feedforward gainB (2) Discrete state estimatorF
(3) IntegratorC (3) Proportional gainG
(4) PendulumD (4) Integral gainH

(5) Multiple-input sum0

parallel, the input/output between distributed models may
become disordered. To describe it, the output sequence of
each submodel will be analyzed.

In the following analysis, two time symbols would be
referred to: the time step ℎ of model resolver and the sim-
ulation step 𝑇 of distributed system. Actually, the continuous
model is normally implemented as “discrete time model”
with specific numerical simulation schema, and the respond
numerical resolver (e.g., the Euler or Runge-Kutta resolver) is
employed to compute it. The resolver can be fixed or variable
step size. In this example, a fixed step of ℎ = 0.001 s is used.
Simulation step is the globally allocated time interval for each
simulation node to compute the models deployed on it. Data
exchanges are performed at the end of each simulation step.
Without losing generality, we specify that 𝑇 = 𝑛 ⋅ ℎ, 𝑛 =
1, 2, . . ..

According to the types of model port, there are 4
NDFT and 5 DFT models in the inverted pendulum system
as shown in Table 1.

Each model is described by three variable sets {𝑋, 𝑆, 𝑌}.
The subscript of them refers to the index of time step, and the
superscript refers to the index of submodel (denoted as 𝑚𝑛).
The computation of each model is displayed in Figure 6. The
expressions are briefly explained as follows:

(i) 𝑋 = {∗}: receiving current inputs “∗”; it should be
noted that there are two special representations on
inputs: (a) 𝑋 = {Φ} means this model has no inputs,
and (b) 𝑋 = {𝑁𝑈𝐿𝐿}means the input is not available
at computing time;

(ii) 𝑇(𝑆,𝑋,𝐻) : 𝑆 → 𝑆󸀠: transiting states from old state 𝑆
to new state 𝑆󸀠, with current input𝑋 and time interval
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𝐻. A brief convention is employed here; for example,
𝑇(𝑆 = 𝑆

0
, 𝑋 = {Φ},𝐻 = ℎ) : 𝑆

0
→ 𝑆

󸀠 is represented
as 𝑇(𝑆

0
, Φ, ℎ) : 𝑆

0
→ 𝑆

󸀠;

𝑇(𝑆,𝑁𝑈𝐿𝐿 | Φ, ℎ) which represents that the state
transition is triggered by time interval ℎ, not by input;
this case only appears when𝑋 = {Φ} or𝑋 = {𝑁𝑈𝐿𝐿};
the model can be considered being out of control
when𝑋 = {𝑁𝑈𝐿𝐿};

DFT models which have no internal states; thus their
state transitions are omitted in the following analysis;

(iii) 𝑌 = 𝑂(∗): computing the outputs 𝑌; symbol “∗”
represents (a) the internal states if this is a NDFT
model or (b) the current inputs if this is a DFTmodel.

The outputs and state transitions at the first 3 steps are
listed in Table 2.

Figure 7 shows the simulation advancing in distributed
environment. Each submodel is computed in parallel manner
and data exchange happens at the end of each simulation step.

The outputs and states transition of the first 5 (or 6) steps
are listed in Table 3.

The outputs of 𝑚4 (NDFT model) and 𝑚5 (DFT model)
are compared here between centralized and distributed sce-
nario, as Figure 8 shows. Firstly, 𝑚4 and 𝑚5’s outputs are
all delayed in distributed environment. The 3rd output of
𝑚

5 in centralized simulation, 𝑦5
2
, appears at the 7th step in

distributed simulation. Similarly, the 3rd output of𝑚4 in cen-
tralized simulation, 𝑦4

2
, appears at the 6th step in distributed

simulation. Secondly, the values of the corresponding outputs
in centralized and distributed scenarios are also changed
except the delayed time. For example, it is found that 𝑦5

2
̸= 𝑦

5

6

by backtracking their data dependence.
The following facts on output delay can be concluded

from the above comparison. All models’ outputs would be
delayed except the source model (𝑚1). Delays start from the
first step since all nodes need to advance their computation
simultaneously. The first input of each node is missing. For
DFT model, the missing input would produce invalid output
(denoted as “𝑁𝑈𝐿𝐿”); for NDFT model, it is equivalent that
the model’s dynamics is changing with inertia rather than
external stimulation.

When two or more DFT models are cascaded, the delay
will accumulate along the cascading path, but NDFT do not.
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Figure 8: The output sequences of 𝑚4 and 𝑚5 in centralized (a) and distributed (b) scenario. Solid arrows indicate the data dependence for
output generation; dotted arrows indicate the data dependence for state transition.
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Table 2: The output sequence of submodels in centralized simula-
tion.
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In the situation where NDFT and DFT models are mixed
cascaded, the delays can be counted as follows.

(a) Back-track NDFT model’s preceding DFT models
until to itself (loop) or another NDFT model. There
could be multiple trace paths, among which the
longest one determines the delays on the output of this
NDFT. For example, there are four incoming paths
before 𝑚4: two go back to itself, one to 𝑚2, and one
to𝑚3, as Figure 1 shows.The longest one (DFTmodel
cascaded) is the “𝑚5 → 𝑚7 → 𝑚9”; thus𝑚4’s output
delay is 3 simulation steps.

(b) For DFT model, count the maximum delay of its
preceding models and then plus one delay produced
by itself. For example, the maximum delay before 𝑚5
is 3 (contributed by 𝑚4); thus 𝑚5’s output delay is
3 + 1 = 4.
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Figure 9: The models are computed with fixed-step resolver, where
the step ℎ = 0.001 s. When all nine submodels are totally distributed
and deployed, the property of stability is volatile. As we can see, the
cart position (a) and pendulum angle (b) cannot be stably controlled
any more when distributed simulation step 𝑇 ≥ 2ℎ.

3.2. Performance Improvement by Proper System Partition.
Obviously, the accumulated delays are produced when dis-
tributed nodes only contain DFT models, which deteriorate
the control quality. For example, in the inverted pendulum
system, the pendulum is actually out of control during the
time when the control signal is delayed by its preceding
DFT models. Thus the system solution, that is, the state
trajectories, could produce undesired errors. In some cases,
it can produce instability, as Figure 9 shows.
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Table 3: The output sequence of submodels in distributed simulation.
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Figure 11: The control quality in distributed environment is improved greatly after repartition of the system. In (a), the dynamics of cart
positions are almost unchanged with 𝑇 increasing; in (b), although the pendulum angle is affected, it is still under control.

To reduce the delays caused by DFD models, a schema is
proposed here to partition the system properly as follows.

(a) Pick up one of the NDFT models, denoted as 𝑚start.
Disconnect its outgoing connections and backtrack
its preceding DFT models along each incoming path
until a different NDFT model, denoted as𝑚end. Loop
is enabled and kept as composition of this part. There
could be multiple tracking paths; thus𝑚end is a set.

(b) Disconnect the connections between 𝑚end set and
their adjacent DFTmodels (along the tracking paths).
This separated part forms a new integrated NDFT
model.

(c) Repeat steps (a) and (b) until the system is partitioned
completely.

Using this schema, the separately deployed DFT models
are eliminated; as a result, the accumulated delays are elim-
inated either. In Figure 10, the inverted pendulum system is
partitioned into 4 parts; the computing order inside each part
is determined by the same way as introduced in Section 3.1.

With this partition schema, the control quality of the
system in distributed environment is improved greatly, as
we can see in Figure 11. The main benefit brought out by
this schema is it enlarges the tolerance of simulation step 𝑇
with which the distributed system can sustain the stability
property of the original system. It relaxes the criterion under
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which the original system can be deployed into distributed
environment without any modifications to models.

4. Conclusion

A simulation infrastructure, MLRTI, is proposed in this
paper to address some practical issues related with real-time
simulations. The integrating timing mechanism and high
data transmission speed achieved with specialized hardware
guarantee the performance of the infrastructure of real-time
system. Additionally, the system partition schema success-
fully reduced the possible errors incurred by improper system
distribution. With these characteristics, MLRTI is used in
the following domains: (a) the virtual combat simulation
domain, where computer generated entities act as friendly or
rival forces and human pilots combat with or against them
by simulators; (b) the distributed control domain, where
different parts of the system residents on different nodes.

In the future, more theoretical work would be done to
improve the system partition schema in two directions: (1)
considering the load balance (computation balance and com-
munication balance) requirement in the partition schema; (2)
finding a formal approach to determine the upper bond of
step size in distributed environment.
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