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This paper presents a new efficient algorithm for image interpolation based on regularization theory. To render a high-resolution
(HR) image from a low-resolution (LR) image, classical interpolation techniques estimate the missing pixels from the surrounding
pixels based on a pixel-by-pixel basis. In contrast, the proposed approach formulates the interpolation problem into the optimization
of a cost function.Theproposed cost function consists of a data fidelity term and regularization functional.The closed-form solution
to the optimization problem is derived using the framework of constrained least squaresminimization, by incorporating Kronecker
product and singular value decomposition (SVD) to reduce the computational cost of the algorithm.The effect of regularization on
the interpolation results is analyzed, and an adaptive strategy is proposed for selecting the regularization parameter. Experimental
results show that the proposed approach is able to reconstruct high-fidelity HR images, while suppressing artifacts such as edge
distortion and blurring, to produce superior interpolation results to that of conventional image interpolation techniques.

1. Introduction

Image interpolation aims to render a high-resolution (HR)
image by estimating the missing pixel information from the
surrounding pixels of the observed low-resolution (LR) image.
This image processing task is commonly referred to as image
interpolation (when only a single LR image is available) or
superresolution (when multiple LR images are available) [1–
4]. It has a wide range of applications such as computational
photography and video surveillance.

The challenge of image interpolation is to enhance the
image quality while suppressing artifacts such as blurring
and jagged edges. Various algorithms have been developed
to address image interpolation over the years. Conventional
piecewise polynomial techniques, such as bicubic interpola-
tion, assume higher-order continuity of image intensity in
the spatial domain. These techniques, however, often lead
to oversmoothness in the edge and textured regions. Some
edge-directed approaches adjust the algorithmic parameters
according to the local features. The HR local covariance
coefficients are estimated from the LR counterpart based on
their geometric duality [5]. For example, inverse gradient
has been employed to determine the weights of bicubic

interpolation. Different edge types are identified and used to
determine different interpolation strategy for local image area
[6–10].The edge-directed interpolation is tuned based on the
covariance. Other methods, including fuzzy-based [11], PDE-
based [12], and regression-based method [13], have also been
reported in color image interpolation and superresolution.
These adaptive methods typically employ heuristic reasoning
to estimate parameters such as threshold values or filter
weights on a pixel-by-pixel basis. Therefore, they require
extra computation to determine these local parameters, and
the quality of the interpolated images may vary significantly
with respect to changes in these parameters. The aforemen-
tioned deterministic image interpolation approaches cannot
suppress the noise or blurring incurred in the input low-
resolution image.

In view of this, a block-based regularized image inter-
polation approach is proposed in this paper by imposing
the regularization constraint on the reconstructed high-
resolution image. The relationship between the HR and LR
images is exploited to formulate the interpolation problem
as the optimization of a cost function. The cost function
consists of a data fidelity term and Tikhonov regularization
functional [14].The closed-form solution to the optimization
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problem is estimated using a new framework of constrained
least squares minimization, Kronecker product, and singular
value decomposition (SVD). A key feature of the method is
its computational efficiency in reconstructing high-fidelity
HR image, while alleviating common artifacts encountered
by other interpolation techniques. This allows the proposed
method to be employed readily in the areas of digital
photography, computer vision, and medical imaging, among
others.

The rest of this paper is organized as follows. Section 2
provides the mathematical formulation on the image inter-
polation. In Section 3, the proposed regularized image inter-
polation approach is presented, which is further evaluated in
experimental results presented in Section 4. Finally, Section 5
concludes this paper.

2. Problem Formulation

The mathematical model between the HR and LR images
plays a key role in the formulation of interpolation algo-
rithms. Due to the finite sampling grid of the sensor array,
the image acquisition processes can be modeled as inte-
gration (averaging), followed by decimation. Decimation
and interpolation are inverse processes. An image decima-
tion/interpolation model is illustrated in Figure 1. The dotted
squares denote the HR pixels, while the shaded solid square
represents the LR pixel. The decimation factor 𝑑 is 2 in this
example.

From a physical viewpoint of image acquisition, the
response of each sensor is proportional to the integral of the
light projected onto the surface of the sensor. Therefore, the
intensity of the LR pixel in Figure 1 is determined by the
corresponding effective area in the HR image grids. Consider

𝑔 (0, 0) = ℎ (−1, −1) 𝑓 (−1, −1) + ℎ (−1, 0) 𝑓 (−1, 0)

+ ℎ (−1, 1) 𝑓 (−1, 1) + ℎ (0, −1) 𝑓 (0, −1)

+ ℎ (0, 0) 𝑓 (0, 0) + ℎ (0, 1) 𝑓 (0, 1)

+ ℎ (1, −1) 𝑓 (1, −1) + ℎ (1, 0) 𝑓 (1, 0)

+ ℎ (1, 1) 𝑓 (1, 1) ,

(1)

where ℎ(𝑥, 𝑦) is the weight that is proportional to the area
of HR pixels 𝑓(𝑥, 𝑦) in the LR pixel 𝑔(0, 0). In this case,
ℎ(−1, −1) = (1 −Δ𝑥)(1 −Δ𝑦) and ℎ(−1, 0) = (1 −Δ𝑥). ℎ(𝑥, 𝑦)
is a 2D integration operator, which reflects the regions of the
HR grid that contribute to the formation of a single pixel in
the LR grid. This process is commonly expressed as h = sz𝑇,
where s = z = (1/𝑑)[0.5 1 ⋅ ⋅ ⋅ 1 0.5]

𝑇

𝑑+1
(if 𝑑 is even) or s =

z = (1/𝑑)[1 1 ⋅ ⋅ ⋅ 1 1]
𝑇

𝑑
(if 𝑑 is odd).

Let 𝑔(𝑖, 𝑗) and 𝑓(𝑖, 𝑗) represent the observed LR image
of size 𝑀 × 𝑀 and the original HR image of size 𝑑𝑀 ×

𝑑𝑀, respectively, where 𝑑 is the decimation factor. The
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Figure 1: The relationship between HR and LR pixels.

relationship between the LR and HR images can be modeled
as

𝑤 (𝑖, 𝑗) =

(𝐾−1)/2

∑

𝑘=−(𝐾−1)/2

(𝐾−1)/2

∑

𝑙=−(𝐾−1)/2

ℎ (𝑘, 𝑙) 𝑓 (𝑖 + 𝑘, 𝑗 + 𝑙) + 𝑛 (𝑖, 𝑗) ,

𝑔 (𝑖, 𝑗) = 𝑤 (𝑑𝑖, 𝑑𝑗) ,

(2)

where 𝑤(𝑖, 𝑗) is the intermediary signal before decimation,
ℎ(𝑘, 𝑙) is a 𝐾 × 𝐾 two-dimensional (2D) integration operator
characterizing the averaging process from the HR to LR
image, and 𝑛(𝑖, 𝑗) is the additive noise. Rewriting (2) in the
matrix-vector formation, we have

g = DHf + n, (3)

where f and g are the lexicographically ordered HR and LR
images, respectively, n is the noise vector, andH andD are the
correspondingmatrices constructed from the integration and
decimation processes [15, 16].The interpolation problem can,
therefore, be formulated as solving the least squares problem
for f given the observation g. The Tikhonov regularization
framework is used in this paper to address this problem,
as it is able to offer numerically stable and visually pleasing
solution. Under this setting, fopt is the solution to

fopt = min
f
󵄩󵄩󵄩󵄩DHf − g󵄩󵄩󵄩󵄩

2

2
+ 𝜆‖f‖2

2
, (4)

where 𝜆 is the regularization parameter which controls the
relative contributions between the least square error (first
term) and the regularization functional (second term). The
regularization term is to ensure smoothness of the solution.
The closed-form solution to the least squares problem in (4)
using pseudoinverse is given by fopt = [(DH)𝑇(DH) + 𝜆I]−1

(DH)𝑇g. However, the closed-form solution is impractical
in many real-life applications due to the high computa-
tional cost associated with the inversion of the large matrix
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[(DH)𝑇(DH) + 𝜆I]−1 (with a dimension of 𝑑2𝑀2 ×𝑑2𝑀2). In
view of this, we propose a computationally efficient method
to address this issue in the paper.

3. Proposed Regularized Image
Interpolation Approach

The formulation of the proposed interpolation algorithm
involves the manipulation of Kronecker product and SVD to
reduce computational cost.The regularized least square solu-
tion can achieve a good tradeoff between edge preservation
and noise suppression.

3.1. Proposed New Framework of Image Interpolation through
SVD and Kronecker Product. The matrix H in the linear
image acquisition model (3) has a block-circulant structure
[15]:

H =

[
[
[
[
[
[

[

H
0

H
−1

⋅ ⋅ ⋅ H
1

H
1

H
0

⋅ ⋅ ⋅ H
2

...
...

...
...

H
−1

H
−2

⋅ ⋅ ⋅ H
0

]
]
]
]
]
]

]𝑑2𝑀2×𝑑2𝑀2

,

H
𝑗
=

[
[
[
[

[

ℎ (𝑗, 0) ℎ (𝑗, −1) ⋅ ⋅ ⋅ ℎ (𝑗, 1)

ℎ (𝑗, 1) ℎ(𝑗, 0) ⋅ ⋅ ⋅ ℎ (𝑗, 2)

...
...

...
...

ℎ (𝑗, −1) ℎ (𝑗, −2) ⋅ ⋅ ⋅ ℎ (𝑗, 0)

]
]
]
]

]𝑑𝑀×𝑑𝑀

,

(5)

where H
𝑗
is the circulant matrix constructed from the

2D integration operator ℎ(𝑖, 𝑗). In the context of image
interpolation problem, the integration operator is usually
characterized as a 2D separable averaging process.Therefore,
the matrixH can be decomposed into the Kronecker product
of two matrices as

H = H
1
⊗H
2
=

[
[
[
[

[

𝑧
0

𝑧
−1

⋅ ⋅ ⋅ 𝑧
1

𝑧
1

𝑧
0

⋅ ⋅ ⋅ 𝑧
2

...
... d

...
𝑧
−1

𝑧
−2

⋅ ⋅ ⋅ 𝑧
0

]
]
]
]

]𝑑𝑀×𝑑𝑀

⊗

[
[
[
[

[

𝑠
0

𝑠
−1

⋅ ⋅ ⋅ 𝑠
1

𝑠
1

𝑠
0

⋅ ⋅ ⋅ 𝑠
2

...
... d

...
𝑠
−1

𝑠
−2

⋅ ⋅ ⋅ 𝑠
0

]
]
]
]

]𝑑𝑀×𝑑𝑀

,

(6)

where ⊗ denotes the Kronecker product. Here both H
1
and

H
2
are circulant matrices, whose entries are constructed

from the vector decomposition of integration operator: h =

sz𝑇, where s = [𝑠
−(𝐾−1)/2

, . . . , 𝑠
0
, . . . , 𝑠

(𝐾−1)/2
]
𝑇 and z =

[𝑧
−(𝐾−1)/2

, . . . , 𝑧
0
, . . . , 𝑧

(𝐾−1)/2
]
𝑇.

The structure of the Kronecker product for the decima-
tion matrixD in (3) depends on the decimation factor, 𝑑. For
instance, the structure ofD when 𝑑 = 2 is given as

D = D
1
⊗D
2
=

[
[
[
[

[

1 0 0 0 0

0

...

0

...

1

...

0

...

0

...
0 0 0 0 1

]
]
]
]

]𝑀×𝑑𝑀

⊗

[
[
[
[

[

1 0 0 0 0

0

...

0

...

1

...

0

...

0

...
0 0 0 0 1

]
]
]
]

]𝑀×𝑑𝑀

.

(7)

Other decimation matrices with different decimation factors
can be constructed in a similar fashion to (7) by adjusting the
spacing between the consecutive 1s.

The minimization of (4) can be expressed as the con-
strained least squares problem via

fopt = min
f

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
[
DH
√𝜆I] f − [

g
0]
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2

. (8)

Since the dimension of DH is very large, it may not be
computationally feasible to solve the problem directly using
matrix pseudoinverse. In view of this, we develop an efficient
scheme to solve (8) based on Kronecker product and SVD as
follows.

First, based on (6) and (7), the Kronecker product ofDH
can be expressed as

DH = (D
1
⊗D
2
) (H
1
⊗H
2
)

= (D
1
H
1
) ⊗ (D

2
H
2
) .

(9)

Next, we apply SVD onD
1
H
1
andD

2
H
2
to obtain

D
1
H
1
= U
1
[Σ
1
| 0]VT

1
,

D
2
H
2
= U
2
[Σ
2
| 0]VT

2
,

(10)

where U
1
, V
1
, Σ
1
, U
2
, V
2
, and Σ

2
are the standard matrices

arising from SVD.Then, substituting (9) and (10) into (8), we
obtain

fopt = min
f

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

[

DH
√𝜆I

] f − [
g
0
]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2

= min
f

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
[
DHf − g
√𝜆f ]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2

= min
f

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

[
[

[

(U
1
⊗ U
2
) ([Σ
1
| 0] ⊗ [Σ

2
| 0])

× (V
1
⊗ V
2
)
Tf − g

√𝜆f

]
]

]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2

.

(11)
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We further multiply the first row of the matrix by (U
1
⊗U
2
)
𝑇

and multiply the second row of the matrix by (V
1
⊗ V
2
)
𝑇 to

get

fopt = min
f

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

[
[
[
[
[
[

[

(U
1
⊗ U
2
)
𝑇
(U
1
⊗ U
2
)

× ([Σ
1
| 0] ⊗ [Σ

2
| 0]) (V

1
⊗ V
2
)
Tf

−(U
1
⊗ U
2
)
𝑇g

√𝜆(V
1
⊗ V
2
)
Tf

]
]
]
]
]
]

]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2

.

(12)

Finally, we denote y = (V
1
⊗ V
2
)
𝑇f , x = (U

1
⊗ U
2
)
𝑇g, to

rewrite the above equation to obtain the optimal solution yopt
as

yopt = min
y

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

[

([Σ
1
| 0] ⊗ [Σ

2
| 0])

√𝜆I
] y − [x0]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2

. (13)

To find out the closed-form solution of (13), we first
get x = (U

1
⊗ U
2
)
𝑇g = vec(U𝑇

2
ivec(g)U

1
) and fopt =

(V
1
⊗ V
2
)yopt = vec(V

2
ivec(yopt)V𝑇1 ), since the Kronecker

product for matrices A, B, and vector c yields the property
that (A ⊗ B)c = vec(Bivec(c)A𝑇). Then, according to (13), we
can get yopt = minf‖[Σ1 | 0] ⊗ [Σ2 | 0]y − x‖2

2
+𝜆‖y‖2

2
and use

pseudoinverse as the optimal solution as

yopt = [A
𝑇A + 𝜆I]

−1

A𝑇x, (14)

where A = [Σ
1
| 0] ⊗ [Σ

2
| 0], A𝑇 = [ Σ10 ] ⊗ [

Σ
2

0 ], and A𝑇A =

[Σ
2

1
] ⊗ [Σ

2

2
]. Finally, we can rewrite yopt as

yopt = [A
𝑇A + 𝜆I]

−1

A𝑇x

= A𝑇(AA𝑇 + 𝜆I)
−1

x

= ([
Σ
1

0 ] ⊗ [
Σ
2

0 ]) ([Σ
2

1
] ⊗ [Σ

2

2
] + 𝜆I)

−1

x.

(15)

By utilizing the newly derived equation (15), the computa-
tional cost of the estimation can be reduced. For an image
of size 𝑀 × 𝑀 with decimation factor 𝑑, only 𝑂(𝑑

3
𝑀
3
)

operations are needed in the new scheme as compared to
𝑂(𝑑
6
𝑀
6
) for direct implementation of pseudoinverse for (4).

Therefore, this makes the algorithm computationally attrac-
tive and feasible to be implemented in real-life applications.

3.2. Regularization Analysis. After establishing the efficient
algorithm to obtain the regularized solution, we study the
effect of regularization on the interpolation results.Themean
error and mean square error between the interpolated and
original images are analyzed as follows.

The direct solution to the least square problem in (4) is
given as fopt = P(𝜆)g, where fopt is the estimated HR image

and P(𝜆) = ((DH)𝑇(DH) + 𝜆I)−1(DH)𝑇. Substituting (9) and
(10) intoDH and P(𝜆), we obtain

DH =

𝑀

∑

𝑖=1

𝑀

∑

𝑗=1

𝜎
1,𝑖
𝜎
2,𝑗
u
(𝑖−1)𝑀+𝑗

k𝑇
(𝑖−1)𝑑𝑀+𝑗

,

P (𝜆) =
𝑀

∑

𝑖=1

𝑀

∑

𝑗=1

[
𝜎
1,𝑖
𝜎
2,𝑗

𝜎2
1,𝑖
𝜎2
2,𝑗
+ 𝜆

] k
(𝑖−1)𝑑𝑀+𝑗

u𝑇
(𝑖−1)𝑀+𝑗

,

(16)

where Σ
1

= diag(𝜎
1,𝑖
), Σ
2

= diag(𝜎
2,𝑗
). k
(𝑖−1)𝑑𝑀+𝑗

and
u
(𝑖−1)𝑀+𝑗

are the [(𝑖−1)𝑑𝑀+𝑗]th and [(𝑖−1)𝑀+𝑗]th column
vectors of the orthogonal matrices V

1
⊗ V
2
and U

1
⊗ U
2
,

respectively, which can be expressed as

k
(𝑖−1)𝑑𝑀+𝑗

= vec (k̃
2,𝑗
k̃𝑇
1,𝑖
)

u
(𝑖−1)𝑀+𝑗

= vec (ũ
2,𝑗
ũ𝑇
1,𝑖
) ,

(17)

where k̃
1,𝑖
, k̃
2,𝑗
, ũ
1,𝑖
, and ũ

2,𝑗
are the column orthonormal

basis of V
1
, V
2
, U
1
, and U

2
, respectively.

The residual error vector between the original image f and
the interpolation result fopt is equal to

r = fopt − f

= (

𝑀

∑

𝑖=1

𝑀

∑

𝑗=1

[
𝜎
2

1,𝑖
𝜎
2

2,𝑗

𝜎2
1,𝑖
𝜎2
2,𝑗
+ 𝜆

] k
(𝑖−1)𝑑𝑀+𝑗

× k𝑇
(𝑖−1)𝑑𝑀+𝑗

− I) f

+

𝑀

∑

𝑖=1

𝑀

∑

𝑗=1

[
𝜎
1,𝑖
𝜎
2,𝑗

𝜎2
1,𝑖
𝜎2
2,𝑗
+ 𝜆

] k
(𝑖−1)𝑑𝑀+𝑗

u𝑇
(𝑖−1)𝑀+𝑗

n.

(18)

If the noise is zero-mean additive white Gaussian with
variance 𝜎2

𝑛
and independent of the image, then the expected

error vector and square error between fopt and f are given by

𝐸 (r) = (

𝑀

∑

𝑖=1

𝑀

∑

𝑗=1

[
𝜎
2

1,𝑖
𝜎
2

2,𝑗

𝜎2
1,𝑖
𝜎2
2,𝑗
+ 𝜆

] k
(𝑖−1)𝑑𝑀+𝑗

× k𝑇
(𝑖−1)𝑑𝑀+𝑗

− I)𝐸 (f) ,

𝐸 (‖r‖2
2
) = 𝜎
2

𝑛

𝑀

∑

𝑖=1

𝑀

∑

𝑗=1

𝜎
2

1,𝑖
𝜎
2

2,𝑗

(𝜎2
1,𝑖
𝜎2
2,𝑗
+ 𝜆)
2

+ 𝐸[

[

f𝑇(I −
𝑀

∑

𝑖=1

𝑀

∑

𝑗=1

𝜎
4

1,𝑖
𝜎
4

2,𝑗

(𝜎2
1,𝑖
𝜎2
2,𝑗
+ 𝜆)
2

× k
(𝑖−1)𝑑𝑀+𝑗

k𝑇
(𝑖−1)𝑑𝑀+𝑗

) f]
]

.

(19)
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It can be observed from (19) that the regularization func-
tional has biased the interpolated image, as a trade-
off for numerical stability (i.e., 𝐸(r) ̸= 0 if 𝜆 ̸= 0 since
∑
𝑀

𝑖=1
∑
𝑀

𝑗=1
k
(𝑖−1)𝑑𝑀+𝑗

k𝑇
(𝑖−1)𝑑𝑀+𝑗

= I). The mean square error
(MSE) 𝐸(‖r‖2

2
) consists of two parts: the noise term and the

image term. If the image is preprocessed using zero-mean
centering and assumed to be white, then 𝐸(ff𝑇) = 𝜎2

𝑓
I, where

𝜎
2

𝑓
= 𝐸(f𝑇f)/𝑀2 is the image power. This assumption is used

to enable 𝐸(‖r‖2
2
) to be upper-bounded explicitly in terms of

𝜆 as below:

𝐸 (‖r‖2
2
) ≤𝜎
2

𝑓
𝑀
2
− 𝜎
2

𝑓

𝑀

∑

𝑖=1

𝑀

∑

𝑗=1

𝜎
4

1,𝑖
𝜎
4

2,𝑗

(𝜎2
1,𝑖
𝜎2
2,𝑗
+ 𝜆)
2

+ 𝜎
2

𝑛

𝑀

∑

𝑖=1

𝑀

∑

𝑗=1

𝜎
2

1,𝑖
𝜎
2

2,𝑗

(𝜎2
1,𝑖
𝜎2
2,𝑗
+ 𝜆)
2
.

(20)

It can be seen from (19) and (20) that regularization will
reduce the impact of noise by introducing a small bias in the
interpolated image.

The regularization technique is instrumental in providing
satisfactory results so long as the regularization parameter is
properly selected. A simple yet effective scheme to estimate
the regularization parameter 𝜆 is based on the generalized
cross-validation (GCV) function since it has been shown to
be robust in other regularization schemes [16]:

GCV (𝜆) =

󵄩󵄩󵄩󵄩(I −DHP (𝜆) g󵄩󵄩󵄩󵄩
2

[trace(I −DHP (𝜆)]2
. (21)

Cross-validation is a widely used technique in the field of
statistical data analysis. It uses the leave-one-out principle
to address approximation of noisy data. For a fixed value
of model parameter, an interpolated image is redecimated
to predict the observation. GCV determines the parameter
by minimizing the weighted sum of prediction errors. An
advantage of GCV is that it allows the selection of the
regularization parameter even when the noise power is
unknown. We derive the GCV function under the context of
our formulation to give

GCV (𝜆) =
∑
𝑀

𝑖=1
∑
𝑀

𝑗=1
(𝜆𝑥
𝑖𝑀+𝑗

/ (𝜎
2

1,𝑖
𝜎
2

2,𝑗
+ 𝜆))

2

(∑
𝑀

𝑖=1
∑
𝑀

𝑗=1
(𝜆/ (𝜎2

1,𝑖
𝜎2
2,𝑗
+ 𝜆)))

2
, (22)

where 𝜎
1,𝑖

and 𝜎
2,𝑗

are the singular values of Σ
1
and Σ

2
,

respectively. 𝑥
𝑖𝑀+𝑗

is the [𝑖𝑀+𝑗]th entry of the column vector
x in (15). In fact, experimental results in Section 4 show that
our algorithm is robust towards different values of 𝜆 so long
as it falls within a reasonable range.

4. Experimental Results

4.1. Comparison with Other Image Interpolation Approaches.
The proposed approach is compared with other conventional
methods: Lagrange (2nd-order polynomial) and bicubic and

Table 1: PSNR performance comparison of various image interpo-
lation approaches.

Image Noise
level

Lagrange-
based Bicubic Edge-

directed
Proposed
method

Lena
(512 × 512)

30 dB 32.93 33.19 31.73 33.72
40 dB 33.13 33.39 31.82 34.39

Noiseless 33.15 33.41 31.83 34.47

Boat
(512 × 512)

30 dB 30.21 30.46 29.24 31.02
40 dB 30.33 30.58 29.30 31.43

Noiseless 30.35 30.59 29.31 31.48

Board
(256 × 256)

30 dB 14.15 14.30 13.77 14.98
40 dB 14.17 14.31 13.79 14.99

Noiseless 14.18 14.31 13.79 14.99

CalTrain
(400 × 512)

30 dB 29.25 29.40 28.59 29.90
40 dB 29.35 29.48 28.63 30.19

Noiseless 29.36 29.49 28.64 30.23

edge-directed image interpolation [5]. The standard bench-
mark test images are used as ground truth in the experiments,
including Lena (512 × 512), Boat (512 × 512), Board (256 ×
256), and CalTrain (400 × 512), as shown in Figure 2. The
observed low-resolution is artificially generated by filtering
the original ground truth high-resolution image with an
integration operator and decimating it at a rate of 𝑑 = 2 in the
horizontal and vertical directions. The downsampled image
is further degraded under different noise levels to produce
different SNR values: noiseless, 40 dB, and 30 dB.

The image is divided into blocks of size 16 × 16 with
4 × 4 overlapping area. There is a 4 × 4 overlapping in each
block to avoid boundary effect. For each block, the proposed
algorithm is applied to perform interpolation using (10)–(15),
and the regularization parameter 𝜆 is chosen as 10−4 in this
experiment. For performance evaluation, peak signal-to-noise
ratio (PSNR) is used as the objective performance metric.
Table 1 summarizes the results obtained for the test images
using different methods. It can be observed that the proposed
method achieves higher PSNR than the conventional meth-
ods consistently. On average, the proposed method offers
a PSNR improvement of 0.5–1.0 dB over the Lagrange and
bicubic methods and 1-2 dB over the edge-directed method.
In Figures 3 and 4, the interpolated results using the Boat and
Board images are given. It can be observed that the proposed
method preserves the overall sharpness of the interpolated
images, in particular near the edge and textured regions. The
subjective human evaluation is confirmed by the objective
performance measure given in Table 1.

4.2. Evaluation on the Choice of Regularization Parameter. In
this section, the impact of the regularization parameter on
the interpolation results is investigated. The Lena image in
Figure 2(a) is selected as the test image. The same algorithm
as in previous experiment is run but different values of
regularization parameter 𝜆 are used, which range from 10

−2

to 10−5. In addition, the estimated 𝜆 based on the GCV func-
tion in (22) is also adopted. Table 2 summarizes the results
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(a) (b) (c) (d)

Figure 2: Test images used in experiments. (a) Lena, (b) Boat, (c) Board, and (d) CalTrain.

(a) (b) (c) (d)

Figure 3: A closed-up comparison of various interpolated images (Boat image). (a) Lagrangian-based image interpolation, (b) bicubic image
interpolation, (c) edge-directed image interpolation, and (d) the proposed approach.

Table 2: Comparison of different regularization parameters in
PSNR performance.

Noise Proposed method
𝜆 = 10

−2
𝜆 = 10

−3
𝜆 = 10

−4
𝜆 = 10

−5 GCV(𝜆)
30 dB 30.90 33.69 33.72 33.71 33.72
40 dB 31.17 34.34 34.39 34.39 34.39
Noiseless 31.21 34.42 34.47 34.47 34.47

obtained using different regularization parameters. It can be
observed that this method provides consistently good results
for 𝜆 = 10

−3 to 𝜆 = 10
−5 and for various noisy environments

from noiseless to 30 dB noise. The estimated 𝜆 using GCV
also offers comparable performance. The results suggest that
the proposed algorithm is robust towards different noisy
environments and regularization parameters as long as the
value of 𝜆 falls within a reasonable range [10−3, 10−5].

Note that there is an obvious improvement from 𝜆 = 10
−2

to 𝜆 = 10
−3. This gap can be explained by (20) together with

the simulatedmean square error (MSE) curve in Figure 5.The
upper bound ofMSE in (20) consists of three terms, where the
first and third terms are positive and the second is negative.
When the value of 𝜆 increases, the second term will decrease;
however, the third term will increase. We simulate this
situation in terms of 𝜆 ranging from 10

−7 to 101 in Figure 5.
The image energy is normalized to 1 (i.e., 𝜎2

𝑓
= 1/𝑀

2) and

Table 3: The run-time performance comparison of various image
interpolation approaches.

Image Lagrange-
based Bicubic Edge-

directed
Proposed
method

Lena
(512 × 512) 0.13 s 0.56 s 29.80 s 0.29 s

Boat
(512 × 512) 0.13 s 0.56 s 31.80 s 0.29 s

Board
(256 × 256) 0.06 s 0.20 s 6.90 s 0.15 s

CalTrain
(400 × 512) 0.09 s 0.49 s 24.51 s 0.33 s

30 dB SNR noise level (i.e., 𝜎2
𝑛
= 10
−3
𝜎
2

𝑓
). Consider the ill-

conditioned problem of matrix inversion; half of the singular
values 𝜎

1,𝑖
are assumed to be evenly distributed in the range

of [0, 1] and the other half are assumed to be 0. It can be
observed from Figure 5 that the magnitude of second term
drops quickly and dramatically before the third term begins
to increase. This leads to a basin area in the overall mean
square error when 𝜆 is between a certain range.

4.3. Evaluation on Computational Complexity. These image
interpolation approaches are run on a PC with Windows XP,
MATLAB 7.1, CPUP4-3.4GHz, and 1GRAM. Each approach
is run for 10 times and their average run-time is presented
in Table 3, where one can see that the proposed approach
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(a) (b) (c) (d)

Figure 4: A closed-up comparison of various interpolated images (Board image). (a) Lagrangian-based image interpolation, (b) bicubic
image interpolation, (c) edge-directed image interpolation, and (d) the proposed approach.
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Figure 5: Simulation of upper bound of mean square error in terms
of 𝜆.

is much faster than the edge-directed interpolation, faster
than the bicubic interpolation, but slightly slower than the
Lagrange interpolation.

5. Conclusion

In this paper, a new regularization-based image interpola-
tion algorithm using Kronecker product and singular value
decomposition has been proposed. The proposed approach
reduces the computational cost of interpolation while offer-
ing significant performance improvement over other con-
ventional methods. This paper also analyzes the effect of
regularization on the interpolation results and shows that the
proposed approach is fairly robust towards different values
of regularization parameter. It is worthwhile to further study
how to extend the proposed approach for the superresolution
image reconstruction.
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