
Hindawi Publishing Corporation
Journal of Engineering
Volume 2013, Article ID 182525, 9 pages
http://dx.doi.org/10.1155/2013/182525

Research Article
Multilanguage Semantic Interoperability in
Distributed Applications

Agostino Poggi andMichele Tomaiuolo

Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Parma, Viale U. P. Usberti 181/A, 43100 Parma, Italy

Correspondence should be addressed to Agostino Poggi; agostino.poggi@unipr.it

Received 19 August 2012; Accepted 6 December 2012

Academic Editor: Stavros Koubias

Copyright © 2013 A. Poggi and M. Tomaiuolo.is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

JOSI is a soware framework that tries to simplify the development of such kinds of applications both by providing the possibility
of working on models for representing such semantic information and by offering some implementations of such models that can
be easily used by soware developers without any knowledge about semanticmodels and languages.is soware library allows the
representation of domain models through Java interfaces and annotations and then to use such a representation for automatically
generating an implementation of domain models in different programming languages (currently Java and C++). Moreover, JOSI
supports the interoperability with other applications both by automatically mapping the domain model representations into
ontologies and by providing an automatic translation of each object obtained from the domain model representations in an OWL
string representation.

1. Introduction

Semantic information is assuming more and more impor-
tance both for the development of knowledge-based appli-
cations and for supporting the interoperability among dif-
ferent applications [1–4]. In particular, ontologies have been
gaining interest for the representation of the application
domain models and their use has been spreading in different
applications �elds [5–8].

Domain models are increasingly speci�ed as formal
ontologies through the use of a semantic Web language
(e.g., OWL [9, 10]), but such models remain difficult to be
utilized in applications developed through the used soware
languages and libraries. In fact, the mapping of such models
into the code of a typical application development language
oen is not possible because of the different expressive power
of themodeling and the implementation language.Moreover,
when it is possible, the obtained implementation is too
complex to be used by the large part of soware developers.

However, the development of domain models that rep-
resent semantic information is very difficult without the
use of a semantic language. To cope with this problem,
a possible direction is to integrate usual programming
techniques with some meta-programming techniques. In

particular, the Java programming language supports meta-
programming through annotations and re�ection [11]. In
fact, while annotations allow the decoration of the Java code
with new concepts and idioms, re�ection allows the retrieval
of the information associated with annotations and then to
use them for either modifying the usual execution of the Java
code or for building new Java code.

In this paper, we present a soware framework, called
JOSI (Java and OWL for System Interoperability), whose
goal is to simplify the development of the soware libraries
for managing the data that implement the domain models
shared by the systems of a distributed enterprise application.
e next section introduces related work on the use of
annotations for the development of soware and on the
mapping between OWL ontologies and Java code. Section 3
describes the JOSI soware framework. Section 4 describes
how a domain model is represented. Section 5 presents how
an implementation of a domain model is built starting from
its JOSI representation. Section 6 introduces how domain
model implementations are used in a soware application.
Sections 7 and 8 represent and discuss the experimentation
of the JOSI soware framework. Finally, Section 9 concludes
the paper sketching some future research directions.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192419524?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Journal of Engineering

2. RelatedWork

e idea of using Java annotations for extending the Java
language is not new and several research teamsworked in that
direction.

AspectJ [12] is probably the �rst important work that
shows how Java annotation can provide ameta-programming
layer on the top of Java programming structures. In particu-
lar, AspectJ is an aspect-oriented extension of the Java pro-
gramming language that uses Java annotations for realizing
declaring aspects, point-cuts, and advices.

Andreae et al. [13] proposed a soware framework that
supports pluggable type systems in the Java programming
language by the de�nition of custom constraints on Java types
through Java annotations.

AVal [14] is a soware framework for the de�nition and
checking of rules for programs written by using an attribute
domain-speci�c built on the top of Java. is soware
framework allows the validation of such kinds of program
through a set of prede�ned Java annotations. Moreover, it
allows to the users of the framework to add new annotations
to provide new kinds of validation.

Bordin and Vardanega [15] used Java annotations to
embed in the source code a declarative speci�cation of
the required concurrent semantics and then for producing
the source code that implements the declared concurrent
semantics.

Cimadamore and Viroli [16] proposed a soware frame-
work that tried to simplify the seamless integration of
Prolog code into Java applications taking advantage of Java
annotations to incorporate the declarative features of Prolog
into Java programs.

A lot of work has been done also towards the mapping of
OWL ontologies into Java code and vice versa.

e�rst importantwork that shows the partial translation
of OWL ontologies in Java code is the Protégé Bean Gen-
erator [17]. In particular, it transforms Protégé frame-based
ontologies into Java source code for developing JADE agents
[18, 19].

RDFReactor [20] is a toolkit for dynamically accessing
an RDFmodel through domain-centric methods (getters and
setters). In particular, it allows the access to the RDF model
through a set of proxy objects that provide the methods for
querying and updating the RDF elements.

A more sophisticated approach was presented by Kalyan-
pur et al. [21]. is approach deals with issues as multiple-
inheritance by mapping OWL classes in Java interfaces.
However, there is not a soware tool which takes advantage
of this approach for mapping OWL ontologies into Java code.

SeRiDA [22] is a methodology for enabling a three-tier
mapping along ontologies, object-oriented java beans and
relational database. In particular, it allows the generation
of both an object-oriented and a relational model starting
from a domain conceptualization expressed in OWL. is
methodology has been experimented by realizing a soware
tool that generates programming interfaces as enterprise Java
beans and Hibernate object-relational mappings from OWL
ontologies.

Quasthoff and Meinel [23] presented a mechanism that
allows application developers, with limited knowledge about
RDF and OWL, to easily map arbitrary Java classes and
interfaces to corresponding OWL concepts by using Java
annotations. In particular, this mechanism has already been
experimented in the development of a social network appli-
cation testing new access control mechanisms on user-
generated content with the help of Semantic Web rules [19].

OWLET [24] is a Java soware environment based on an
object-oriented model, which allows a simple and complete
representation of ontologies de�ned by using OWL DL
pro�le, and provides a complete set of reasoning functions
together with a graphical editor for the creation and modi-
�cation of ontologies. OWLET supports the development of
heterogeneous and distributed semantic systemswhere nodes
differ for their capabilities (i.e., CPU power, memory size,
etc.). In fact, it offers a layered reasoning API that allows to
deploy a system where high power nodes take advantages of
all the OWLET reasoning capabilities, medium power nodes
take advantages of a limited set of OWLET reasoning capabil-
ities (e.g., reasoning about individuals) and low power nodes
delegate reasoning tasks to the other nodes of the system.

Finally, the OWL API can be considered the reference
Java API for managing ontologies [25, 26]. In fact, besides
providing the manipulation of ontologies, it offers: a general
purpose reasoner interfaces, the validators for the various
OWL pro�les, and the support for parsing and serializing
ontologies in a variety of syntaxes. e API also has a very
�exible design that allows third parties to provide alternative
implementations for all major components.

Differentworks copewith the problemof de�ningmodels
for integrating different data sources in enterprise informa-
tion systems.

Astrova and Kalja [27] proposed an approach for system
interoperability that maps relational database schemas into
OWL ontologies and allows an improvement of database
schemas by identifying “hidden” (implicit) semantic relation-
ships and bad design solutions.

Lin and Harding [28] proposed a general manufacturing
system engineering knowledge representation scheme to
facilitate communication and information exchange in inter-
enterprise, multidisciplinary engineering design teams. It
has been developed and encoded in the standard semantic
web language. e proposed approach focuses on how to
support information autonomy that allows the individual
team members to keep their own preferred languages or
information models rather than requiring them all to adopt
standardized terminology.

Salguero et al. [29] proposed a framework which encom-
passes the entire data integration process. e data source
schemas as well as the integrated schema are expressed
using an OWL extension which allows the incorporation of
metadata to support the integration process.

3. Software Framework Overview

JOSI (Java andOWL for System Interoperability) is a soware
framework that tries to simplify the development of the

Journal of Engineering 3

({ })
{

}

({ })
{

()
()
()

}
()
()

{
({ })

({ })
()

}

F 1: A simple naming domain model.

soware libraries for managing the data that implement
the domain models shared by the systems of a distributed
enterprise application.

e main features of such soware library are as follows:
(i) a strict separation between the representation of a domain
model and its implementation, (ii) an automatic generation
of an implementation of the representation of the domain
model in different programming languages; (iii) an automatic
generation of an OWL ontology from the representation of a
domainmodel and vice versa, and (iv) the possibility of using
an OWL string representation of the domain model data to
support the interoperability between systems implemented
in different programming languages and so the possibility
of translating domain model data to OWL string represen-
tations and vice versa.

JOSI is implemented in Java and takes advantage of
Java interfaces and annotations to build a representation
of a domain model and uses Java re�ection to drive the
processing of the information maintained by such interfaces
and annotations for generating the source code of the classes
that de�ne the concrete implementation of the domain
model.

e following sections will describe how a domainmodel
is represented through Java interfaces and annotations, how
the Java classes providing a concrete implementation of such
a domain model are generated from such interfaces and
annotations, and how such a soware framework enables an
application to use a concrete implementation of a domain
model.

T 1: Java annotations used in the representation of a domain
model.

@Abstract @Getter @Name @Symmetric
@AllValuesFrom @HasValue @Ordered @SomeValuesFrom
@Binding @Immutable @Set @Transitive
@Cardinality @InverseOf @Setter @Version

4. DomainModel Representation

A domain model is represented by a set of Java interfaces.
Each domain entity is represented by a Java interface (from
here called entity interface) that de�nes the two methods for
reading andmodifying its attributes. Moreover, an additional
Java interface (from here called factory interface) provides
both some general information about the domain model
and the factory methods for the creation of the Java classes
which implement the different entity interfaces. Figures 1
and 2 show some entities of two domain models represented
through the use of Java interfaces and annotations. Table
1 lists the Java annotations used in the representation of a
domain model.

To support the creation of the implementation of such
entities, each Java interface is enriched by some Java anno-
tations and constant declarations.

e two annotations: @Getter and @Setter are applicable
to the entity interface methods and de�ne the reading and
modifying methods of a speci�c attribute. e type of the

4 Journal of Engineering

{

()
[]

[]
}

({ })
{

(())) ()

(())) ()
)
)

)
{ }

)
[]

)
{ })

[]
}

F 2: Two entities of a domain model describing the life-cycle of a soware agent.

attribute is identi�ed by both the return type of the reading
method and the type of the argument of the modifying
method (of course they need to identify the same type). In
particular, the value of any attribute must be: a Java primitive
data, an instance of the String class, an instance of a class
implementing an entity interface, or an array of the previous
kinds of value.

e four annotations: @Abstract, @Immutable, @OneOf,
and @Singleton, are applicable to the entity interfaces. e
�rst annotation identi�es an abstract entity, that is, an
entity that does not have any direct implementation. e
second annotation identi�es an entity that has an immutable
implementation, that is, the interface cannot de�ne methods
thatmodify the value of its attributes and the implementation
of its reading methods will be de�ned to return either the
value of an attribute (if it is an immutable value) or a copy of
the value (if it is amutable value).e third annotation is used
for identifying entities that have an extensional description
(e.g., that can be de�ned through an enumeration). Finally,
the forth annotation is used for the de�nition of some special
entities that can be represented by a single class object.

Oen the use of an implementation of a domain model
inside an application needs the availability of operations
for the comparison and ordering of their entities. In a Java
implementation, such operations can be performed by imple-
menting the compareTo, equals, and hashCodemethods. e

annotation@Comparator is introduced for this scope. In fact,
it identi�es the sequence of attributes on which the previous
three methods must work.

In a domain model oen is necessary both to restrict
the value that some attributes can assume and to establish a
relationship between the attributes of some entities. It is done
by associating some additional annotations to the reading
methods of the entity interfaces.

e four annotations: @AllValueFrom, @SomeValues-
From, @Cardinality, and @HasValue, de�ne the most known
constraints thatOWL applies to the properties of an ontology.
In particular, the �rst annotation constrains the values of
an attribute to belong to speci�c type (of course, an implicit
constraint of such a kind, is de�ned when the reading and
modifying methods of an attributed are de�ned. �owever,
an additional constraint can be added by imposing that the
values of an attributemust belong to a subtype of the declared
attribute type). e second annotation imposes that some
of the values of an attribute must belong to a speci�c type
(of course, such a type must be a subtype of the declared
attribute type).e third annotation imposes that an attribute
can have either a �xed number of values or a variable number
of values de�ned by a minimum and�or a maximum value.
Finally, the forth annotation imposes that an attribute must
always contain some values (in this case, for the limited set
of value types that can be associated with the attributes of an

Journal of Engineering 5

{

({

}

{
())

}

{

}

{

}
}

{

{

}

{
)

}

{

}
}

F 3: Java implementation of the entities of the naming domain model.

annotation, the values of such constraints are de�ned through
constant variables and the annotations refer to the names of
such constant variables).

In some cases it can be necessary to impose that an
attribute does not have duplicated values and that its values
are maintained ordered: the two annotations: @Set, and
@Ordered, impose the previous two constraints (in particular,
the second constraint is implemented either by using the
natural ordering between values or the ordering de�ned
by the compareTo method built through the @Comparator
annotation introduced above).

e three annotations: @InverseOf, @Symmetric, and
@Transitive, de�ne the most known constraints that ��L
applies to the relationship between properties of an ontology.
e �rst annotation de�nes an inverse relationship between
attributes. e second annotation de�nes a symmetric rela-
tionship between the entities that have such kind of attribute.
Finally, the third annotation de�nes a transitive relationship
between the entities that have such kind of attribute.

Finally, the two annotations: @Name and @Version, are
applicable to the factory interfaces: the �rst annotation
indicates the name associated with the domain model and
the second annotation identi�es the version of the model.
Lastly, the annotation @Binding is associated with a factory
method of a model interface. is annotation identi�es the
attribute that each argument of the factory method will
initialize.

5. DomainModel Implementation

� domain model representation, de�ned as described in the
previous sections, contains all the information for building an
implementation of such a domain model. is implementa-
tion is realized by an annotation processor that builds a Java
class for each Java interface of the model. Figures 3 and 4
show the source code of the Java classes obtained through the
naming domain model introduced in the previous section.

6 Journal of Engineering

{

[] {
}

{

}

{

}

[] {

}

{
)

()

}

{

)

}
}

F 4: Java implementation of the model of the naming domain model.

e result of such an annotation processor is a set of Java
�les. Each Java �le contains the source code of a class that
implement an interface of the domain model representation.
Moreover, each class that implements an entity interface
provides amethod for building anOWL string representation
of an entity class instance, and each class that implements a
model interface provides amethod for building an entity class
instance from its OWL string representation.

e annotation processor used for generating the domain
model implementation is composed by two soware mod-
ules. e �rst module, called processing module, e�tracts
the information from the domain model representation,
generates an intermediate representation and then calls the
second module. en the second module, called generation
module, builds the domain model implementation from the
intermediate representation.

e intermediate representation is based on a two level
tree where the root object maintains the information about
the model interface and each leaf object maintains the
information about an entity interface.

e processing module is independent from the imple-
mentation of the generation module because it calls a gener-
ation module by a Java interface and the generation module
implementation is a parameter of the processing module
constructor.

erefore, it is very easy to provide different implemen-
tations of some domain model representations by de�ning
new generation modules able to process in different ways the
intermediate representation built by the processing module.
In particular, the current version of the soware framework
provides another generation module which builds OWL
ontologies from the domainmodel representations and stores
them in RDF format [30].

6. DomainModel Application

Aer the creation of an implementation of a domain model,
its use inside an application is very simple. In fact, the JOSI
soware framework provides a class, called DataStore, which
has the duty of both maintaining the information about the
different domain models available for the current application
and providing the access to their implementation through
the creation of an instance of the class that implements their
domain interface. In particular, the Datastore instance can
access to the list of the domainmodels used by the application
through a property �le.

erefore, aer the creation of an instance of the Data-
Store class, the code of the application can create instances
of any class implementing the factory interface of a domain
model and then use it for creating instances implementing

Journal of Engineering 7

F 5: Java code for creating instances of the entities of two domain models.

any entity interface of such a domain model. Figure 5 shows
a sample of Java code performing the operations described
above.

7. Experimentation

We are using the JOSI soware framework for the develop-
ment of the models and then the implementations of the
data necessary for supporting the basic interactions among
the components of a distributed system realized through the
HDS soware framework. Moreover, JOSI was experimented
for de�ning the domain models of some applications in
the �elds of distributed information sharing and social
networks.

HDS (Heterogeneous Distributed System) is a soware
framework that tries to simplify the realization of pervasive
applications by merging the client-server and the peer-to-
peer paradigms and by implementing all the interactions
among the processes of a system through the exchange of
typed messages and the use of composition �lters for driving
and dynamically adapting the behavior of the system [31].

Typedmessages are one of the elements that mainly char-
acterize such a soware framework. In fact, typed messages
can be considered an object-oriented “implementation” of
the types of message de�ned by an agent communication
language and so they are means that make HDS a suitable
soware framework both for the realization of multiagent
systems and for the reuse ofmultiagentmodel and techniques
in nonagent based systems.

In particular, the type of a message is de�ned by its con-
tent and its content is de�ned by an entity of a speci�c domain
model de�ned with the JOSI soware framework. erefore,
we used JOSI foe the de�nition of the domain models that
support the basic interaction among HDS processes, that
is, the managing of the processes themselves and of the
resources that can they used in a distributed application.
Moreover, we used JOSI for de�ning the domainmodels used
for realizing the typical coordination algorithms of intelligent
distributed systems.

RAIS (Remote Assistant for Information Sharing) is a
peer-to-peer multiagent system supporting the sharing of
information among a community of users connected through
the Internet [32]. RAIS offers search facility similar to Web
search engines, but it avoids the burden of publishing the
information on the Web and it guaranties a controlled and
dynamic access to information through the use of agents.

e use of agents in such a system is very important
because it simpli�es the realization of the threemain services:
(i) the �ltering of the information coming from different
users on the basis of the previous experience of the local
user; (ii) the pushing of the new information that can be of
possible interest for a user; and (iii) the delegation of access
capabilities on the basis of a network of reputation built by
the agents on the community of users.

RAIS is composed of a dynamic set of agent platforms
connected through the Internet. In this case, JOSI has been
used for the de�nition of the domain models supporting the
de�nition of the interaction of agents for the retrieval and
pushing of the information and for the management of the
user pro�les.

About the applications in the �eld of the social networks,
we are starting the development a system for the study of the
most known social networks and, in particular, of the social
networks that provide semantic support for the management
of both the pro�les and the information published by the
users [33].

In particular, we built a system that can simulate the
behavior of some of the most known social networks and
can compare them with some enhanced versions of such
networks that provide semantic support through the use of
JOSI domain models. In particular, we de�ned some domain
models for representing the user pro�les of different social
networks and some domain models for supporting users in
the publishing and retrieval of information related to some
sample topics (e.g., computer science and music).

8. Experimental Results

e results of the experimentation of the soware framework
showed that the de�nition of a domain model can be done
by any programmer with knowledge about the Java program-
ming language, but does not require any knowledge about
any knowledge engineering and semantic Web techniques
and technologies. Moreover, if the entities of a domainmodel
are de�ned as immutable objects, then the performance of
managing such entities is similar to the one of managing
JavaBean objects.

Other important results come from some tests that
compared the result of the work of groups of students,
which developed domain models using JOSI, with the
work of other groups of students, which developed domain
models without using it. In fact, while the �rst set of

8 Journal of Engineering

groups developed the domain model in few time spending
a very limited part of it for code correction, the second
set of groups developed the domain model in a very long
time spending its large part for code correction. Moreover,
the performance measures of the tests showed that the
implementations of the domain model based on the JOSI
framework provided better measures or at least similar to
the ones provided by the “custom” implementations. Of
course, while the use of JOSI guaranteed implementations
in different programming languages (currently Java and
C++) without additional costs, it was not true for “custom”
implementations.

9. Conclusion

is paper presented a soware framework, called JOSI (Java
and OWL for System Interoperability), that has the goal
of simplifying the development of the soware libraries for
managing the data that implement the domainmodels shared
by the systems of a distributed enterprise application.

is soware framework allows to represent a domain
model through Java interfaces and annotations and then
to use such a representation for automatically generating
a Java implementation of the domain model. Moreover, it
provides the interoperability with other kinds of systems both
automatically mapping the Java domain representation in an
OWL ontology and providing an automatic translation of
each object de�ned by the domain model representation in
an OWL string representation.

JOSI derived from O3L (Object-Oriented Ontology
Library), a soware library that provides a complete repre-
sentation of ontologies compliant with OWL 2 W3C [34].
O3L has not the goal to be used for the creation and manip-
ulation of ontologies, but provides a simpli�ed and e�cient
API for the realization of applications, that interoperate
through the use of shared ontologies, and allows: (i) the use of
OWL individuals as data of the applications, (ii) the exchange
of OWL individuals between applications, (iii) the reasoning
about OWL individuals, and (iv) the classi�cation of OWL
classes and properties. e experimentation of O3L showed
that it is a powerful means for developing applications
but with two main limits: developers must have a good
knowledge of semantic techniques and technologies and
oen applications cannot provide the required performances.

Current and future research activities are dedicated,
besides to continue the experimentation of the current
implementation of JOSI, to: (i) the development of a soware
generation module that allows the automatic generation of
a C++ and Python implementation from a JOSI model
representation, (ii) the generation of a JOSI model repre-
sentation from an OWL ontology compliant with the JOSI
domain model representation, (iii) the generation of OWL
ontologies compliant with such a representation from OWL
ontologies that contain classes and properties that cannot
be de�ned through the annotations de�ned in the JOSI
soware framework, (iv) the introduction of new annotations
for increasing the expressive power of the JOSI model
representation.

References

[1] P. A. Bernstein and L. M. Haas, “Information integration in
the enterprise,” Communications of the ACM, vol. 51, no. 9, pp.
72–79, 2008.

[2] M. Ciocoiu, D. S. Nau, and M. Gruninger, “Ontologies for
integrating engineering applications,” Journal of Computing and
Information Science in Engineering, vol. 1, no. 1, pp. 12–22, 2001.

[3] R. García-Castro and A. Gómez-Pérez, “Interoperability results
for semantic web technologies using OWL as the interchange
language,” Web Semantics, vol. 8, no. 4, pp. 278–291, 2010.

[4] S. Heiler, “Semantic interoperability,” ACM Computing Surveys,
vol. 27, no. 2, pp. 271–273, 1995.

[5] D. Oberle, S. Staab, R. Studer, and R. Volz, “Supporting applica-
tion development in the semantic web,” ACM Transactions on
Internet Technology, vol. 5, no. 2, pp. 328–358, 2005.

[6] M. Quasthoff, H. Sack, and C. Meinel, “Who reads and writes
the social web?A security architecture forWeb 2.0 applications,”
in Proceedings of the 3rd International Conference on Internet
and Web Applications and Services (ICIW ’08), pp. 576–582,
Athens, Greece, June 2008.

[7] M. Uschold, “Ontology-driven information systems: past,
present and future,” in Proceedings of the 5th International
Conference on Formal Ontology in Information Systems (FOIS
’08), pp. 3–18, Amsterdam, e Netherlands, 2008.

[8] N. F. Noy, “Semantic integration: a survey of ontology-based
approaches,” SIGMOD Record, vol. 33, no. 4, pp. 65–70, 2004.

[9] B. C. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider,
and U. Sattler, “OWL 2: the next step for OWL,”Web Semantics,
vol. 6, no. 4, pp. 309–322, 2008.

[10] D. L. McGuinness and F. van Harmelen, OWL web ontol-
ogy language overview, W3C Recommendation, 2004, http://
www.w3.org/TR/owl-features/.

[11] B. Joy, J. Gosling, G. Steele, and G. Bracha, e Java Language
Speci�cation, Addison-Wesley, NewYork, NY,USA, 3rd edition,
2005.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold, “An overview of AspectJ,” in Proceedings of
the 15th European Conference on Object-Oriented Programming
(ECOOP ’01), vol. 2072 of Lecture Notes in Computer Science,
pp. 327–354, Springer, Berlin, Germany, 2001.

[13] C. Andreae, J. Noble, S. Markstrum, and T. Millstein, “A frame-
work for implementing pluggable type systems,” in Proceedings
of the 21st Annual ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications
(OOPSLA ’06), pp. 57–74, New York, NY, USA, October 2006.

[14] C. Noguera and R. Pawlak, “AVal: an extensible attribute-
oriented programming validator for Java,” Journal of Soware
Maintenance and Evolution, vol. 19, no. 4, pp. 253–275, 2007.

[15] M. Bordin and T. Vardanega, “Real-time Java from an auto-
mated code generation perspective,” in Proceedings of the 5th
International Workshop on Java Technologies for Real-Time and
Embedded Systems (JTRES ’07), pp. 63–72, New York, NY, USA,
September 2007.

[16] M. Cimadamore and M. Viroli, “A Prolog-oriented extension
of Java programming based on generics and annotations,” in
Proceedings of the 5th International Symposium on the Principles
and Practice of Programming in Java (PPPJ ’07), pp. 197–202,
New York, NY, USA, September 2007.

[17] C. van Aart, R. Pels, G. Caire, and F. Bergenti, “Creating and
using ontologies in agent communication,” in Proceedings of the

Journal of Engineering 9

Workshop on Ontologies in Agent Systems, Bologna, Italy, July
2002.

[18] F. Bellifemine, A. Poggi, and G. Rimassa, “Developing multi
agent systems with a FIPA-compliant agent framework,” So-
ware Practice & Experience, vol. 31, no. 2, pp. 103–128, 2001.

[19] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa, “JADE: a
soware framework for developing multi-agent applications.
Lessons learned,” Information and Soware Technology, vol. 50,
no. 1-2, pp. 10–21, 2008.

[20] M. Volkel, “RDFReactor: from ontologies to programmatic data
access,” in Proceedings of the Jena User Conference, Bristol, UK,
2006.

[21] A. Kalyanpur, D. J. Pastor, S. Battle, and J. Padget, “Automatic
mapping of OWL ontologies into Java,” in Proceedings of the
16th International Conference on Soware Engineering and
Knowledge Engineering, pp. 98–103, Banff, Canada, 2004.

[22] I. N. Athanasiadis, F. Villa, and A. Rizzoli, “Enabling knowl-
edge-based soware engineering through semantic-object-
relational mappings,” in Proceedings of the 3rd International
Workshop on Semantic Web-Enabled Soware Engineering, 4th
European Semantic Web Conference, pp. 16–30, Innsbruck,
Austria, 2007.

[23] M. Quasthoff and C. Meinel, “Semantic web admission
free—obtaining RDF and OWL data from application source
code,” in Proceedings of the 4th International Workshop on
Semantic Web Enabled Soware Engineering, pp. 17–25, Karl-
sruhe, Germany, 2008.

[24] A. Poggi, “OWLET: an object-oriented environment for OWL
ontology,” in Proceedings of the 11th WSEAS International
Conference on Computers (ICCOMP ’07), pp. 44–49, Stevens
Point, Wis, USA, 2007.

[25] S. Bechhofer, R. Volz, and P. Lord, “Cooking the semantic web
with the OWL API,” in Proceedings of the 2nd International
Semantic Web Conference (ISWC ’03), D. Fensel, K. Sycara, and
J. Mylopoulos, Eds., vol. 2870 of Lecture Notes in Computer
Science, pp. 659–675, Springer, Berlin, Germany, 2003.

[26] M. Horridge and S. Bechhofer, “e OWL API: a Java API
for working with OWL 2 ontologies,” in Proceedings of the 5th
International Workshop on OWL: Experiences and Directions
(OWLED ’09), Chantilly, Va, USA, 2009.

[27] I. Astrova andA. Kalja, “Mapping of SQL relational schemata to
OWLontologies,” inProceedings of the 6thWSEAS International
Conference on Applied Informatics and Communications (AIC
’06), pp. 376–380, Stevens Point, Wis, USA, August 2008.

[28] H. K. Lin and J. A. Harding, “A manufacturing system
engineering ontology model on the semantic web for inter-
enterprise collaboration,” Computers in Industry, vol. 58, no. 5,
pp. 428–437, 2007.

[29] A. Salguero, F. Araque, and C. Delgado, “Ontology based
framework for data integration,”WSEAS Transactions on Infor-
mation Science andApplications, vol. 5, no. 6, pp. 953–962, 2008.

[30] J. Z. Pan, “Resource description framework,” in International
Handbook on Ontologies, S. Staab and R. Studer, Eds., Hand-
books on Information Systems, Part 1, pp. 71–90, Springer,
Berlin, Germany, 2009.

[31] A. Poggi, “HDS: a soware framework for the realization of
pervasive applications,”WSEASTransactions onComputers, vol.
9, no. 10, pp. 1149–1159, 2010.

[32] F. Bergenti and A. Poggi, “Building distributed and pervasive
information management systems with HDS,” in Advances in
Distributed Agent-Based Retrieval Tools, V. Pallotta, A. Soro, and

E. Vargiu, Eds., vol. 361 of Studies in Computational Intelligence,
pp. 129–142, Springer, Berlin, Germany, 2011.

[33] F. Bergenti, E. Franchi, andA. Poggi, “Selectedmodels for agent-
based simulation of social networks,” in Proceedings of the Social
Networks and MultiAgent Systems Symposium (SNAMAS ’11),
pp. 27–32, York, UK, 2011.

[34] A. Poggi, “Developing ontology based applications with O3L,”
WSEASTransactions on Computers, vol. 8, no. 8, pp. 1286–1295,
2009.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

