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Previous numerical and experimental works show that time delay technique is efficient to reduce transmissibility of vibration
in a single pneumatic chamber by controlling the pressure in the chamber. The present work develops an analytical study to
demonstrate the effectiveness of such a technique in reducing transmitted vibrations. A quarter-car model is considered and
delayed hysteretic suspension is introduced in the system. Analytical predictions based on perturbation analysis show that a delayed
hysteretic suspension enhances vibration isolation comparing to the case where the nonlinear damping is delay-independent.

1. Introduction

Various strategies for reducing transmitted vibrations have
been proposed; see, for instance, [1–5] and references
therein. A standard technique using linear viscous damping
in the vibration isolation device reduces the transmissibility
near the resonance but increases it elsewhere. To enhance
vibration isolation in the whole frequency range, cubic
nonlinear viscous damping has been successfully introduced
[3]. It was shown, in the case of a single degree of freedom
(sdof) spring damper system, that cubic nonlinear damping
can effectively produce an ideal vibration isolation in the
whole frequency range [4]. Recently, a strategy based on
adding a nonlinear parametric time-dependent viscous
damping to the basic cubic nonlinear damper has been
proposed [5]. This method significantly enhances vibration
isolation comparing to the case where the nonlinear
damping is time-independent [3, 4]. Specifically, it was
reported that increasing the amplitude of the parametric
damping enhances substantially the vibration isolation over
the whole frequency range.

On the other hand, time delay control (TDC) [6, 7] was
applied to a pneumatic isolator to enhance the isolation

performance by controlling the pressure in chamber in the
low frequency range [8]. Effectiveness of this active control
technique in enhancement of transmissibility performance
was demonstrated using simulation as well as experiments
testing in the case of a single pneumatic chamber.

In the present paper, we use a delayed hysteretic suspen-
sion in the system and we examine its influence on vibration
isolation. In this TDC technique, the values of all the state
variables and their first derivatives have to be provided by
some means.

To achieve our analysis, we implement the multiple scales
method [9] on the equation of motion to derive the corre-
sponding modulation equations and we examine the steady
state solutions of this modulation equation to obtain indica-
tions on transmissibility (TR) versus the system parameters.

2. Equation of Motion

A representative model of a suspension system with non-
linear stiffness, nonlinear viscous damping, and delayed
hysteretic suspension under external excitation is proposed.
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Figure 1: Schematic diagram of pneumatic vibration isolator under ground excitation.

It consists of a sdof model, as shown in Figure 1, described
by

Ẍ + ω2X + B1X
3 +
(
B2Ẋ + B3Ẋ

3)

= −g + YΩ2 cosΩt + λ1Ẋ(t − τ)

+ λ2
(
Ẋ(t − τ)

)3
,

(1)

where ω2 = (k1/m), B1 = (k2/m), B2 = (c1/m), and
B3 = (c2/m). In the case of a single pneumatic chamber, as
shown in Figure 1, m is the body mass, k1 and k2 are the
linear and the nonlinear stiffness of vehicle suspension, c1

and c2 are the linear and the nonlinear equivalent viscous
damping, g is the acceleration gravity, and X is the relative
vertical displacement of the mass. The parameters Y and
Ω denote, respectively, the amplitude and the frequency of
the external excitation, while λ1 and λ2 denote the gains of
the linear- and the nonlinear-delayed viscous damping, and
τ is the time delay. This delayed viscous damping can be
practically implemented using delayed nonlinear dampers
based on magnetorheological fluid.

It is worthy to notice that the particular case of linear
stiffness (B1 = 0) and undelayed state feedback (λ1 = λ2 = 0)
was studied in [3], while the case of B1 /= 0, λ1 = λ2 =
0, and time-dependent (parametric) damping was treated
in [5]. It was demonstrated that adding nonlinear para-
metric damping to the basic nonlinear damping enhances
significantly the vibration isolation [5]. The purpose of the
present work is to study the effect of delayed nonlinear
damping on vibration isolation of system (1). Note also that
a similar delayed nonlinear system to (1) was investigated
near primary resonances [10]. Attention was focused on
performing an approach to analyze the dynamic of the
system with arbitrarily large gains. Note also that a delayed
feedback was used to quench undesirable vibrations in a van
der Pol type system [11].

3. Frequency Response and Transmissibility

To obtain the frequency-response equation and TR, we
perform a perturbation method. Introducing a bookkeeping
parameter ε and scaling Y = εỸ , B1 = εB̃1, B2 = εB̃2,B3 =
εB̃3, λ1 = ελ̃1, and λ2 = ελ̃2, (1) reads

z̈ + ω2z = −g + ε
[
ỸΩ2 cosΩt − B̃1z

3 − B̃2ż − B̃3ż
3

+λ̃1ż(t − τ) + λ̃2(ż(t − τ))3
]
.

(2)

Using the multiple scales technique [9], a two-scale expan-
sion of the solution is sought in the form

X(t) = z0(T0,T1) + εz1(T0,T1) + O
(
ε2), (3)

where Ti = εit. In terms of the variables Ti, the time
derivatives become d/dt = D0 + εD1 + O(ε2) and d2/dt2 =
D2

0 +2εD0D1 +O(ε2), where D
j
i = (∂j/∂jTi). Substituting (3)

into (2), we obtain

(
D2

0 + 2εD0D1
)
(z0 + εz1) + ω2(z0 + εz1)

= −g + ε
[
ỸΩ2 cos(Ωt)− B̃2(D0 + εD1)(z0 + εz1)

− B̃1(z0 + εz1)3 − B̃3((D0 + εD1)(z0 + εz1))3

+ λ̃1(D0 + εD1)(z0(t − τ) + εz1(t − τ))

+λ̃2((D0 + εD1)(z0(t − τ) + εz1(t − τ)))3
]

,

(4)
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and equating coefficients of the same power of ε, we obtain
at different orders

D2
0z0 + ω2z0 = −g,

D2
0z1 + ω2z1 + 2D1D0z0

= ỸΩ2 cos(Ωt)

− B̃1z
3
0 − B̃2D0z0 − B̃3(D0z0)3

+ λ̃1D0z0(t − τ) + λ̃2(D0z0(t − τ))3.

(5)

In the case of the principal resonance, that is, Ω = ω + εσ ,
where σ is a detuning parameter, standard calculations yield
the first-order solution:

z(t) = − g

ω2
+ a cos

(
Ωt − γ

)
+ O(ε), (6)

where the amplitude a and the phase γ are given by the
modulation equations:

ȧ = ỸΩ2

2ω
sin
(
γ
)− s1a− s2a

3,

aγ̇ = ỸΩ2

2ω
cos
(
γ
)− s3a− s4a

3.

(7)

Here s1 = (B̃2/2) − (λ̃1 cos(ωτ)/2), s2 = (3B̃3ω2/8) −
(3λ̃2ω2 cos(ωτ)/8), s3 = (3B̃1/2)(g2/ω5)−σ−(λ̃1 sin(ωτ)/2),

and s4 = (3B̃1/8ω) − (3λ̃2ω2 sin(ωτ)/8). Periodic solutions
of (2) corresponding to stationary regimes (ȧ = γ̇ = 0)
of the modulation equations (7) are given by the algebraic
equation:

(
s2

2 + s2
4

)
a6 + (2s1s2 + 2s3s4)a4 +

(
s2

1 + s2
3

)
a2 −

(
YΩ2

2ω

)2

= 0.

(8)

On the other hand, the relationship between displacement
transmissibility and the system parameters is defined by

TR = X

Y
=
√(

1 +
a

Y
cos
(
γ
))2

+
(
a

Y

)2

sin2(γ
)
. (9)

4. Influence of Delayed Damping

The model we consider consists in quarter-car model
with softening spring in which m = 240 kg, k1 =
160000 N/m, k2 = −30000 N/m3, c1 = 250 N · s/m, and
c2 = 25 N · s3/m3. The amplitude of the excitation frequency
is fixed as Y = 0.11.

Figure 2 illustrates the relative amplitude of motion a
versus the frequency Ω, as given by (8) (solid line), and
for validation we plot the result obtained by numerical
integration using a Rung-Kutta method (circles).

In Figure 3(a) is shown the TR versus r = Ω/ω for various
feedback gain λ1 and for λ2 = 0. It can be seen in this figure
that as λ1 increases from 0.01 to 15, the TR reduces. The
effect of the feedback gain λ2 (with λ1 = 0) on the TR is also
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Figure 2: Amplitude a versusΩ, for λ1 = 0.01, λ2 = 0.01, and τ =
0.1. Analytical prediction: solid line; numerical simulation: circles.

illustrated in Figure 3(b) showing also a decrease of TR as
λ2 increases from 0.01 to 4. The plots in the figures indicate
that to ensure a significant decrease of TR, a small increase in
the nonlinear gain λ2 is sufficient while a larger value of the
linear gain λ1 is necessary to have an equivalent effect.

Figure 4 shows the variation of TR with respect to time
delay τ for different values of the gains λ1 and λ2. These
plots indicate that increasing the gains causes TR to reduce
in repeated periodic intervals of τ. Also, a small increase of
λ2 (λ2 = 0.5) produces this reduction (Figure 4(b)), while a
larger value of λ1 (λ1 = 10) should be introduced to obtain
a comparable effect (Figure 4(a)). To validate the analytical
predictions (solid lines), we show in Figures 5 and 6 compar-
isons with the numerical simulations (circles).

5. Conclusions

In this work, a strategy based on adding hysteretic nonlinear
suspension with time delay to control transmitted vibration
is presented. The analytical prediction, based on perturba-
tion method, shows clearly that increasing the amplitude
gains of the delayed damping reduces transmitted vibrations
to a support structure isolation. This analytical predic-
tion confirms previous numerical and experimental works
obtained in the case of a single pneumatic chamber [8].
The results revealed that the case where only the nonlinear
gain is acting improves greatly vibration isolation comparing
to the case where only the linear gain is applied. Vibration
isolation enhancement can be obtained for a small increase
of the nonlinear gain λ2, while a larger increase of the linear
gain λ1 is required to obtain a comparable effect. It is also
shown that for small values of the nonlinear gain, vibration
isolation can be reduced in repeated periodic intervals of
time delay, whereas larger values of the linear gain is needed
to obtain a similar result. The method performed in this
work provides an approximate expression of transmissibility
relating the parameters of the system, thereby showing the
explicit dependence between transmissibility and control
parameters which is important from monitoring view point.
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Figure 3: Transmissibility versus r for τ = 0.1. (a) λ2 = 0, and (b) λ1 = 0.

0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45 0.

5

0.
55 0.

6

0
1
2
3
4
5
6
7
8

λ1 = 1
λ1 = 5
λ1 = 10

T
R

τ

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6

λ2 = 0.01
λ2 = 0.1
λ2 = 0.5

τ

0

1

2

3

4

5

6

7

8

T
R

(b)

Figure 4: Transmissibility versus τ for r = 1. (a) λ2 = 0, and (b) λ1 = 0.
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Figure 5: Transmissibility versus τ for r = 1 and λ2 = 0.
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Figure 6: Transmissibility versus τ for r = 1 and λ1 = 0.
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