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Evolutionary methods are well-known techniques for solving nonlinear constrained optimization problems. Due to the explora-
tion power of evolution-based optimizers, population usually converges to a region around global optimum after several genera-
tions. Although this convergence can be efficiently used to reduce search space, in most of the existing optimization methods,
search is still continued over original space and considerable time is wasted for searching ineffective regions. This paper proposes
a simple and general approach based on search space reduction to improve the exploitation power of the existing evolutionary
methods without adding any significant computational complexity. After a number of generations when enough exploration
is performed, search space is reduced to a small subspace around the best individual, and then search is continued over this
reduced space. If the space reduction parameters (red_gen and red_factor) are adjusted properly, reduced space will include global
optimum. The proposed scheme can help the existing evolutionary methods to find better near-optimal solutions in a shorter
time. To demonstrate the power of the new approach, it is applied to a set of benchmark constrained optimization problems and

the results are compared with a previous work in the literature.

1. Introduction

A significant part of today’s engineering problems are con-
strained optimization problems (COP). Although there exist
efficient methods like Simplex for solving linear COP, solving
nonlinear COP (NCOP) is still open for novel investiga-
tions. Different methods have been proposed for solving
NCOP. Among them, natural optimization and especially
population-based schemes are the most general and promis-
ing ones. These methods can be applied to all types of COP
including convex and nonconvex, analytical and non-
analytical, real-, integer- and mixed-valued problems. One of
the most applied techniques for solving NCOP are evolution-
ary methods.

Various techniques have been introduced for handling
nonlinear constrains by evolutionary optimization (EO)
methods. These approaches can be grouped in four major
categories [1, 2]: (1) methods based on penalty functions that
are also known as indirect constraint handling, (2) methods

based on a search of feasible solutions including repairing
unfeasible individuals [3, 4], superiority of feasible points
[5], and behavioral memory [6], (3) methods based on pre-
serving feasibility of solutions like preserving feasibility by
designing special crossover and mutation operators [7], the
GENOCOP system [8], searching the boundary of feasible
region [9], and homomorphous mapping [10], and (4)
Hybrid methods [11-13]. Also, decoding such as transform-
ing the search space can be considered as the fifth category
which is less common. None of these approaches are com-
plete and each of them has both advantages and weak-points.
For example, although the third method (preserving feasibil-
ity) might perform very well, it is usually problem dependent
and designing such a method for a given problem may be
difficult, computationally expensive, and sometimes impos-
sible. Among these approaches, the most general one is the
first technique.

Penalty-based constraint handling incorporates con-
straints into a penalty function that is added to the main



fitness function. By this work, the main constrained problem
is converted to an unconstrained problem. The main advan-
tage of this method is its generality and simplicity (problem-
independent penalty functions). Thus, this method is known
as the most common approach for handling nonlinear
constraints in EO.

Adding a penalty function to a fitness (objective)
function creates a new unconstrained problem that might
have further complexity. The introduction of penalties may
transform a smooth objective function into a rugged one
and the search may then become more easily trapped
in local optimum [14]. Therefore, several penalty-based
constraint handling methods have been proposed to improve
the performance of penalty-based constrained evolutionary
optimization. In [2], a survey has been performed on several
types of these methods including death penalty [2, 15], static
penalty [16, 17], dynamic penalty [18, 19], annealing penalty
[20, 21], adaptive penalty [22-24], segregated GA [25], and
coevolutionary penalty [26]. In addition to these types, other
hybrid (e.g., niched-penalty approach [27]) and heuristic
techniques (e.g., stochastic ranking [28]) could be found in
the literature.

Due to its generality and applicability, this paper focuses
on penalty-based constraint handling without loss of gener-
ality. However, the proposed approach is independent from
the type of constraint handling and optimization technique.
This paper demonstrates how the power of exploitation of
constrained EO (CEO) can be increased by reducing the
search space after enough exploration is performed. The
proposed approach is simple and general and does not add
any computational complexity to the original algorithm.
Also, it could be applied to other optimization techniques
like constrained PSO and hybrid methods.

This paper is organized as follows. In Section 2, the
proposed approach is described and the details are explained
and illustrated over a specific constrained optimization
problem introduced in [29]. In Section 3, the performance
of the proposed scheme is tested on eleven well-known test
problems and the results are compared with [10].

2. Proposed Approach

A general constrained nonlinear programming problem is
formulated as follows:

minimize f(x)

subject to  gi(x) <0, i=1,2,...,p
hi(x) =0, i=p+1,...,m )
i<xj<uj, j=1...,n

where x = (x1,x2,...x,) is the vector of decision variables,
f(x) is a scalar lower-bounded objective function, {g;(x),i =
L,...,p} is a set of p inequality constraints, {h;(x),i =
p+1,...,m} is a set of m- p equality constraints, and
[lj,u;] is the domain of the ith variable. f(x), gi(x), and
h;(x) are allowed to be either linear or nonlinear, convex or
nonconvex, differentiable or nondifferentiable, continuous
or discrete, and analytical or nonanalytical. Also, x can be
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either discrete or continuous or mixed-valued. Without loss
of generality, the problem is considered minimization since
max f(x) is equivalent to —min(— f(x)). As mentioned in
[10], it is a common practice to replace equation h;(x) = 0
by the inequality |h;(x)| < & for some small § > 0. This
replacement is considered in the rest of this paper, and,
consequently, the above problem consists of m inequality
constraints. For simplicity, all of the constraints are shown by
gi(x) < 0 wherei = 1,2,...,m. Note that bound constraints
l; < xj < u; can be directly handled in most of the
population-based optimization methods such as EO. Thus,
only gi(x) < 0(i = 1,2,...,m) are considered as the
constraints. Without loss of generality, to simplify the under-
standing of the proposed idea, its details are explained over
a specific constrained optimization problem as an illustrative
example chosen from the literature.

2.1. An Illustrative Example. Consider the following con-
strained nonlinear programming problem [29]:

Minimize f(x) = (x> +x, — 1)+ (a2 = 7)’
st = 4.84+(x; ~0.05) +(x;-2.5)" < 0 — gi(x) < 0
— X2 = (%257 +484 <0 — g(x) <0

0<x;<6, i=12

(2)

The feasible space and the global minimum of this
problem are displayed in Figure 1. In this paper, a simple
constrained GA (CGA) has been used for solving constrained
optimization problems. This CGA is composed of a simple
real-valued GA introduced in [30] and a static penalty
function that is added to the original objective (fitness)
function as follows:

fp(x) = f(x) + p > max{0,gi(x)}. (3)

i=1

In this equation, max{0, gi(x)} gives the violation value of
the constraint g;(x) < 0, and p is the penalty coefficient that
must be determined by the designer. In some cases, assigning
a proper value to p is difficult and this is known as the main
disadvantage of static penalty functions. As an alternative,
adaptive [22-24] and dynamic [18, 19] penalty functions
have been proposed. By defining f,(x), the constrained
nonlinear programming problem of (2) is converted to the
following unconstrained nonlinear programming problem:

2
Minimize f,(x) = f(x) + p Zmax{o,g,-(x)} @
i1

st. 0<x;<6, i=1,2.

This problem (4) is solved by the above-mentioned CGA.
The CGA routine utilizes a simple real-valued GA introduced
in [30] with population size of 50, selection rate of 0.5,
elitism with elite rate of 0.05, single-point crossover, and
uniform mutation with mutation rate of 0.2. The value
of penalty coefficient is 10 and the maximum number of
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FiGUure 1: The feasible space and the global minimum of the
problem of (2).

generations is allowed to be 10. Figure 2 indicates the best
individuals (solutions) of 20 independent runs. Regarding
this figure, all of these individuals have been converged
to the global minimum through 10 generations. Figure 3
illustrates these individuals on the original search space. A
new idea is emerged from considering these figures, that
is, the best individual will converge to the global optimum
after a number of generations. In other words, the global
optimum will locate in a small neighborhood of the best
individual after a number of generations. Consequently, after
a number of generations when enough exploration has been
performed, the search space can be reduced to a small
subspace around the best individual, and then the search
can be continued over this reduced space. The experimental
study of the next section demonstrates that if the space
reduction parameters (red_gen and red_factor) are adjusted
properly, the reduced space will include the global optimum.
Here, the reduced search space is defined as follows:

reduced_; = max{best_ind(red_gen)

—red_factor - (u; — I;),l;}, i=1,...,n,
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F1GURE 2: The best individuals (at generation 10) of 20 independent
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Figure 3: The original search space can be reduced to a small
subspace around the global optimum after a number of generations
when enough exploration has been performed.

reduced_u; = min{best_ind(red_gen)

+red_factor - (u; — I;),u;}, i=1,...,n

(5)

In these equations, [l;, ;] and [reduced_l;, reduced_u;] are
the original and reduced domains of variables, respectively.
best_ind(red_gen) is the best individual of the generation
red_gen. red_gen specifies the generation in which the
reduction of search space is performed. Here, this search
space reduction is done only one time at generation red_gen.
The size of the reduced search space is determined by
red_factor that varies between 0 and 1. Also, the value of
mutation rate can be changed after this reduction.

Indeed, the value of red_gen determines the total number
of generations in CGA (constrained GA) that are devoted
to exploration in order to find a region around of the
global minimum. The value of red_gen determines a tradeoff
between exploration and exploitation and highly depends on
the general characteristics of the given optimization problem.



TaBLE 1: A comparison between the proposed approach, [22] and
[29] for the same number of function evaluations in solving the
problem of (2). The best results are indicated in boldface.

Best Mean Worst
Proposed approach 13.590846 13.61073 13.84861
[29] 13.59658 — 244.11616
[22] 13.59085 30.74880 152.54840

If the global minimum is inside a narrow (sharp) valley, CGA
usually needs more time to find the global valley, and thus a
large value of red_gen should be considered. Also, since the
valley is narrow, red_factor could be set to a small value.
In contrast, if the global minimum is inside a wide (flat)
valley, CGA usually needs less time to find the global valley,
and therefore smaller values can be used for red_gen. Also,
since the valley is wide, red_factor should be large. The value
of red_gen is usually increased by increasing the number of
decision variables. In most of the optimization problems,
since the general characteristics of the given problem can be
approximately identified by the designer, some appropriate
values for red_gen and red_factor can be heuristically guessed
by the designer. In general, red_gen and red_factor should
be large enough to guarantee that the global optimum is
included in the reduced search space.

For this example, the reduced search space is shown in
Figure 3 for red_factor = 0.05. The value of red_gen must
be determined by user. However, systematic or adaptive
schemes can be developed in further investigations. The
value of red_gen influences the power of exploration. This
value should be large enough to guarantee that after red_gen
number of generations, the best individual and the global
optimum are close together. Moreover, the size of the reduced
search space (the value of red_factor) must be large enough
to include the global optimum.

This example has been solved by the proposed approach
using the above-mentioned CGA. Here, the value of penalty
coefficient is 20, the maximum number of generations is 50,
red_factor = 0.05, and and red_gen = 5. The mutation rate
is 0.2 for the first five generations and after Generation 5
(red_gen), it is changed into 0.05. The results of 50 indepen-
dent runs are displayed in Table 1. The same experiment has
been also done by [22, 29] with the same number of function
evaluations. Table 1 compares the results of the proposed
approach with these two references where the best results are
indicated in boldface.Although the proposed approach has
been incorporated with a simple method of CEO which is
trivial in contrast to the other existing techniques of CEO
in the literature, it could get better results in this example for
the same number of function evaluations in comparison with
(22, 29].

According to the above-mentioned explanations, the
proposed method and formulation of this paper can
be directly applied to different continuous (real-valued)
optimization problems and incorporated with different
optimization methods. Moreover, since the main con-
tribution of this paper is the notion of search space
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reduction, that is general and problem-independent, the
proposed approach is flexible enough to be generalized
(with minor changes) to discrete and mixed-valued opti-
mization problems such as combinatorial optimization
problems where the domain is not continuous. In the
next section, the performance of the new scheme is
examined by a set of eleven well-known continuous test
problems.

3. Experimental Study

To demonstrate the power of the proposed approach to
improve the performance of constrained evolutionary meth-
ods, it is incorporated with the simple CEO of the previous
section and applied to a set of eleven well-known test
problems introduced in [1, 10]. These test problems consist
of objective functions of different types (linear, quadratic,
cubic, polynomial, and nonlinear) and various types and
numbers of constraints (linear inequalities, nonlinear equa-
tions, and inequalities). The ratio between the size of the
feasible search space |F| and the size of the whole search
space |S| for these test cases vary from 0% to almost 100%
and the topologies of feasible search spaces are also quite
different [10]. Table 2 summarizes the main characteristics
of these test cases.

The CGA routine is the same as the previous section
except for the following parameters. Here, population size
is 70 and the maximum number of generations is 5000.
The values of mutation rate, red_gen, red_factor, and penalty
coefficient are different for each test case as shown in Table 3.
Equality constraints (h(x) = 0) were converted into
inequality constraints by § = 0.0001 (|h(x)| < &). For each
test case, 20 independent runs were performed. The same
experiment has been done on this test set in [10]. It should
be mentioned that the authors in [10] utilizes the third
method of constraint handling (preserving feasibility by
homomorphous mapping). Table 4 indicates the results of
the proposed approach and its comparison with [10] for
the same number of function evaluations. The best results
are indicated in Boldface. For problem G5, we could not
find any suitable static penalty coefficient for handling the
constraints. This is due to the inadequacy of static penalty
functions. However, this problem could not be solved by [10]
too. It should be mentioned that this test case (G5) has been
solved in some other references [22, 28].

According to comparative results of Table 4, although the
proposed approach had been incorporated with a simple
method of CEO which is trivial in contrast to the other
existing techniques of CEO in the literature, its performance
(finding a better near-optimal solution) is better than [10]
in 70% of cases in this benchmark experimental study.
Since the number of function evaluations is the same in
this study and in the study of [10], it can be concluded
that the proposed approach can also improve the efficiency
(convergence speed) of the CEO in 70% of cases in contrast
to [10].
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TaBLE 2: Summary of eleven test problems [10].

Type of problem n  Typeoff  Linearinequality Nonlinear equality Nonlinear inequality — |F|/[S] Optimum value

Gl Minimum 13 Quadratic 9 0 0 0.0111% -15.0
G2 Maximum 20 Nonlinear 0 0 2 99.8474% 0.803553
G3 Maximum 10  Polynomial 0 1 0 0.0000% 1.0

G4 Minimum 5 Quadratic 0 0 6 52.1230% —30655.5
G5 Minimum 4 Cubic 2 3 0 0.0000% 5126.4981
G6 Minimum 2 Cubic 0 0 2 0.0066% —-6961.8
G7 Minimum 10 Quadratic 3 0 5 0.0003% 24.306
G8 Maximum 2 Nonlinear 0 0 2 0.8560% 0.0958250
G9 Minimum 7 Polynomial 0 0 4 0.5121% 680.63
G10 Minimum 8 Linear 3 0 3 0.0010% 7049.33
Gl11 Minimum 2 Quadratic 0 1 0 0.0000% 0.75

TaBLE 3: The values of mutation rate, red_gen, red_factor, and penalty coefficient for each test problem.

Mutation rate

(before and after red_gen) red_gen red_factor Penalty coefficient
Gl 0.2-0.05 1000 0.05 10
G2 0.2-0.05 1500 0.1 10
G3 0.2-0.1 2000 0.1 1000
G4 0.2-0.05 1000 0.05 1500
G5 — — — —
G6 0.2-0.1 1000 0.02 10000
G7 0.2-0.05 2000 0.05 10
G8 0.2-0.05 1000 0.05 1000
G9 0.2-0.05 1000 0.05 10
GI10 0.2-0.1 2500 0.2 15000
Gl1 0.2-0.05 1000 0.05 10

TaBLE 4: The performance of the proposed approach in comparison with [10] on eleven test problems. The number of function evaluations
is the same in both studies. The best results are indicated in boldface.

Best Mean Worst Optimal

Gl Proposed approach —14.99145 —14.96119 —14.81634 150
[10] —14.7207 —14.4609 —14.0566 '

@ Proposed approach 0.78727 0.74244 0.67530 0.803553
[10] 0.79506 0.79176 0.78427

G3 Proposed approach 0.98704 0.92063 0.72812 10
[10] 0.9983 0.9965 0.9917 '

G4 Proposed approach —30665.259 —30662.639 —30648.807 306555
[10] —30662.5 —30643.8 —-30617.0

G5 Proposed approach — — — 5126.4981
[10] — — —

Gé Proposed approach —6917.85904 —6862.02084 —6425.38018 —6961.8
[10] —6901.5 —6191.2 —4236.7 '

G7 Proposed approach 24.52525 26.12999 29.24032 24,306
[10] 25.132 26.619 38.682

Gs Proposed approach 0.09582504 0.09582504 0.095825036 0.0958250
[10] 0.095825 0.0871551 0.0291434

G9 Proposed approach 680.74163 681.00480 681.53181 680.63
[10] 681.43 682.18 682.88

G10 Proposed approach 7132.98320 7543.48592 8845.85330 7049.33
[10] 7215.8 9141.7 11894.5

Gl Proposed approach 0.75 0.75085 0.75655 0.75

[10] 0.75 0.75 0.75




4. Conclusions

This paper proposes a general and computationally simple
approach to improve the performance of evolution-based
optimization methods for solving nonlinear constrained
optimization problems. After a number of generations when
enough exploration is performed, the search space is reduced
to a small subspace around the best individual, and the search
is continued over this reduced space. If the reduction param-
eters (red_gen and red_factor) are adjusted properly, the
reduced search space will include the global optimum. Here,
this method was incorporated with a simple constrained
GA and its performance was tested and compared with the
method in [10] on a set of eleven benchmark test problems.
The comparative results of the experimental study demon-
strate that the proposed approach can considerably improve
the performance (finding better near-optimal solutions) and
efficiency (convergence speed) of the simple constrained GA
in comparison with [10] without adding any considerable
computational complexity to the original algorithm. The
proposed scheme is general and can be incorporated with
other population-based optimization methods for solving
nonlinear programming problems.
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