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The main purpose of this paper is to explore the principle components of Shanghai stock exchange 50 index by means of
functional principal component analysis (FPCA). Functional data analysis (FDA) deals with random variables (or process) with
realizations in the smooth functional space. One of the most popular FDA techniques is functional principal component analysis,
which was introduced for the statistical analysis of a set of financial time series from an explorative point of view. FPCA is the
functional analogue of the well-known dimension reduction technique in the multivariate statistical analysis, searching for linear
transformations of the random vector with the maximal variance. In this paper, we studied the monthly return volatility of Shanghai
stock exchange 50 index (SSE50). Using FPCA to reduce dimension to a finite level, we extracted the most significant components
of the data and some relevant statistical features of such related datasets. The calculated results show that regarding the samples as
random functions is rational. Compared with the ordinary principle component analysis, FPCA can solve the problem of different

dimensions in the samples. And FPCA is a convenient approach to extract the main variance factors.

1. Introduction

In the present study of data analysis we have learned, the
data we research is either cross-sectional data or panel data.
In the practical research, however, we often meet with such
data which has functional characteristics. Functional data
is multivariate data with an ordering on the dimensions
[1]. The data seem to deserve the label “functional” since
they so clearly reflect the smooth curves that we assume
generated them. The typical dataset of this sort consists
of time series and cross-sectional data, such as the time
series of stock price, and some datasets even may take on
curves or images. Advances in data collection and storage
have tremendously increased the presence of such functional
data, whose graphical representations are curves, images,
or shapes. The theoretical and practical developments in
functional data analysis are mainly from the last four decades,
due to the rapid development of computer recording and
storing facilities. As a new area of statistics, functional
data analysis extends existing methodologies and theories

from the fields of data analysis, generalized linear models,
multivariate data analysis, nonparametric statistics, and many
others. Recently, there were several impressive attempts to
analyze functional dataset such as Ramsay et al. [2-5], who
proposed some new concepts and methods in the field of
FDA.

FPCA is the functional analogue of the well-known
dimension reduction technique in the multivariate statistical
analysis and is useful in determining the common factors
or trends that are present in the dynamics of the underlying
recovered functions.

The advance of FPCA can be seen when Karhunen [7]
and Loeve [8] independently developed a theory on the
optimal series expansion of a continuous stochastic process.
Motivated by a dataset of growth curve, Rao [9] developed
some preliminary ideas on FPCA and proposed statistical
tests for the equality of average growth curves over a period of
time. Much later, Dauxois et al. [10] introduced a functional
exposition of PCA with applications to statistical inference.
Several other notable developments have arisen out of the
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TaBLE 1: The differences in notation between PCA and FPCA [6].
PCA FPCA
. U .
Variables X:[xl,xz,...,xn],xi:[xli,...,xp,-], i=1,...,n f(t):[fl(t),fz(t),...,fn(t)],t6[xl,xp]
Data Vectors € RY Curves€ L, [xl, xp]
Operator V bounded between x, and x,,,

Covariance Matrix V = Cov(X) € R” x R e (0) € L [x1,%, ] [7 VE (0 dt = L& (1)

V:L, [xl,xp] — L, [xl,xp]

Vector O, € R,

Ei truct
igen structure VO, = 1D, for 1 <k < min(n, p)

Function ¢ (t) € L, [xl,xp],
[72 Ve (t)dt = Mgy (), for 1 <k <n
E3 1

Components Random variables in R”

Random variablesin L, [xl, xP]

systematic research of the functional data analysis group
named the Toulouse School of Functional Data Analysis [11].

In recent years, Hall and Hosseini-Nasab [12, 13] showed
how the properties of functional principal component anal-
ysis can be elucidated through stochastic expansions and
related results. Yao et al. [14] proposed a FPCA procedure
via a conditional expectation method, which is aimed at
estimating functional principal component scores for sparse
longitudinal data. Hall and Vial [15] have investigated the
properties of FPCA and have given some insights into
methodology and convergence rates. Di et al. [16] introduced
multilevel FPCA, which is designed to extract the intra- and
intersubject geometric components of multilevel functional
data. Based on FPCA, Hyndman and Shang [17] proposed
graphical tools for visualizing functional data and detecting
functional outliers.

Due to the theoretical and practical developments, FPCA
has been successfully applied to many practical problems,
such as the analysis of cornea curvature in the human eye
[18], the analysis of electronic commerce [19], the analysis
of growth curve [20], the analysis of income density [21],
the analysis of implied volatility surface in finance [22], the
analysis of longitudinal primary biliary liver cirrhosis [23],
and the analysis of spectroscopy data [24]. Furthermore,
Hyndman and Shahid Ullah [25] proposed a smoothed and
robust FPCA and used it to forecast age-specific mortality and
fertility rates.

The objective of this paper is to study the monthly
volatility of return of Shanghai 50 index which consists of
50 stocks. Treating stock price series as random function
in a space spanned by finite dimensional functional bases,
we intensively explore methods of functional data analysis,
especially functional principal component analysis.

In the area of finance, some impressive papers with
the functional data analysis are found such as Ramsay and
Ramsey [26], Muller and Ulrich [27], and Miao [28]. But, few
republications are found with research on the increasingly
flourishing Chinese financial market. This paper will fill the
blank both in theory and in application.

Our study can be described as an exploratory data
approach:

Data collection — Data Analysis — Conclusions.

This paper is organized as follows. In Section 2, we describe
the functional principal component analysis (FPCA), which

plays a significant role in the development of functional
data analysis. It is also an essential ingredient of functional
principal component regression (FPCR). Section 3 will illus-
trate the empirical study with the application of the theory
in Section 2. Some further discussion and a conclusion are
presented in Section 4.

2. Methodology

As mentioned before, an important tool in the functional
data analysis toolbox is FPCA, that is, functional principal
component analysis. The main idea of FPCA is just like
multivariate principal component analysis (PCA) but its
principal component weights or harmonics are functions of
time. They carry the main features of the functional data
object and can be interpreted separately.

The differences in notation between PCA and FPCA are
summarized in Table 1.

The basic assumption of FDA is that data generating
process can be described as a smooth function. FPCA
finds the set of orthogonal principal component function by
maximizing the variance along each component.

The first functional principal component ¢, (¢) is defined

by

2

max 1 &
_ 1 . 1
¢ () ”%@w:1N;<L¢@ﬁ“WQ M
subject to
Il = 1. @

The kth functional principal component ¢, (¢) can be found
analogously, subject to the additional constraint

JL ¢ () (t)dt =0, Vj<k (3)

The sample covariance function of f(x) = [f(x), f,(x),
e ’fn(x)]a X € [-xl, xp] is given by

N
V(0= D f) f0), ()
i=1

where function f;(¢) has usually been first centered.
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Covariance operator V extends the concept of a sample
covariance matrix to functional data; it is easy to show that V
is a positive compact symmetric linear operator. It is obvious
that

(Vo) () = A (8), Ay 2 Ay 2220, (5)

Detailed calculation procedure is provided below.

Step 1. The data we need in this paper is collected through
some public resources such as WIND database.

Step 2. The data we get may be dirty, so data preprocessing
is necessary. Then, the raw data are collected, cleaned, and
organized.

Step 3. The data are next converted to functional form.
Through this step, the raw data for observation i are used
to define a function f; that can be evaluated at all values of
t over interval [x;, xp]. In order to do this, a basis must be
specified. A nonparametric method is used to estimate f;(t)
fort € [x,x,],i=1,...,n

Then, we express each function as a linear combination
of basic functions and approximate each function by a finite
number of basis functions ¢;.. Consider

K
i)=Y By i=1...n (6)
k=1

Some popular basis functions, such as polynomial basis
functions, Bernstein polynomial basis functions, Fourier
basis functions, and wavelet basis function and B-spline, are
used to estimate the functions. B-spline is our first choice
because of its goodness of fitting nonperiodic data in our
study.

Step 4. The function may also need to be registered or aligned
in order to show some important features. Vertical amplitude
variation and horizontal variation can be separated by this
step. In our study, this step is not used due to our data
characteristics.

Step 5. Next, a variety of preliminary displays and sum-
mary statistics are developed. For example, first and second
derivative curves estimated from these data using techniques
discussed before are displayed and we can elude that some
curves have larger variation, while other curves are with less
impressed variation.

Step 6. Then exploratory analyses such as FPCA can be
carried out.
The first principal component can be found by solving
Vo, (t) = A1¢, (1), ”4’1 " =L 7)
Step 7. The kth functional principal component is a solution
of

Ve (1) = L (1), il = 1 (8)
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FIGURE 1: The monthly rate of return of 50 stocks.

subject to

[ 8080 -0 vi<k ©)

Step 8. Accumulative percentage of explained variance is
calculated, and some discussion and economic explanation
about the functional principal component are provided
finally.

3. Application

We now represent the monthly rate of return of 50 stocks in
Figure 1, which constitute the SSE50 index.

As we can see, almost nothing can be seen in this form of
plot. So, some work must be taken to study the data.

Then, the datasets are converted to functional form,
which means functions that can be evaluated at all values of T
over some interval. The 50 functions are displayed in Figure 2,
with the estimated mean function in bold. There are features
in this data too subtle to see in this type of plot.

An impression is that some curves are high (with good
investment return) and that some curves are low (with not so
good investment return).

We therefore conclude that some of the variation from
curve to curve can be explained at the level of certain
derivatives. The fact that derivatives are of interest is further
reason to think of the records as functions, rather than vectors
of observations in discrete time.

Next, we will give the fitted curve of the 50 curves we have
got. With the stock code 600019, we can see that the fitted
result is pretty good as illustrated in Figure 3.

Figures 4 and 5 display the first and second derivative
curves estimated from these data using techniques discussed
before. We can elude that some curves have larger variation,
while other curves are with less impressed variation.

Now, in Figure 6, we illustrate the variance-covariance
structure of return rate. The peak point at the middle of the
diagonal represents the largest variance in October.

At last, the principal component functions are repre-
sented in Figures 7-11 as perturbations of the mean function
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TABLE 2: Accumulative percentage of explained variance.

PC The percentage of explained variance
PC1 30.22%

PC2 22.07%

PC3 19.91%

PC4 11.02%

PC5 7.54%

Total 90.76%

by adding and subtracting a multiple of each principal
component function.

Table 2 includes accumulative percentage of explained
variance.

We can see that the first principal component function
(Figure 7), which accounts for 30.22 percent of the variation,
has always had an obvious positive effect on the mean func-
tion between February and April 2011. In fact, the concept
of high-speed rail provoked the Chinese financial market
vigorously during that period. Therefore, we can reasonably
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FIGURE 8: The second principal component function.

believe that the first principal component represents the
speculation boom.

The second principal component function (Figure 8),
which accounts for 22.07 percent of the variance, is seen to
pick up the influence of tighten monetary policy to control
the excessive price rises, especially the price of real estate.

With the stock price getting lower and lower, more and
more investors believe the current price is worth taking risk,
which forms some power of buying driving price briefly
rebounded. The third principal component (Figure 9), which
accounts for 19.91 percent of the variation, is believed to be
the representative of the influence.

With the excess drop in price, a growing number of
blue chips are underestimated and the investment value will
promote a price return. The effect is summarized to the fourth
principal component (Figure 10), which accounts for 11.02
percent of the variation.
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FIGURE 9: The third principal component function.
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The fifth principal component (Figure 11), which accounts
for only 75 percent of the variation, having little effect on the
mean function, will not be discussed in this paper.

4. Conclusion and Further Discussion

FPCA attempts to find the dominant modes of variation
around an overall trend function and is thus a key technique
in functional data analysis. As we described before, modern
data analysis has benefited and will continue to benefit
greatly from the development of functional data analysis.
In this paper, we mainly illustrate the functional principal
components analysis by the research on monthly return
rate of stocks constituting Shanghai 50 index. We extracted
the main variance factors over time by extracting principal
component regarding the samples as random functions,
which has strong theoretical and practical value. A functional
feature of the proposed approach that distinguishes it from
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established methods for spot volatility analysis is that it is
geared towards the analysis of observations drawn from all
realizations of the volatility process, rather than observations
from a single realization. As we described before, the first
principal component function has always had an obvious
positive effect on the mean function and thus could be
summarized as the representation of the speculation boom.
The second principal component function, on the other hand,
having outstanding negative effect on the mean function
between May to July 2011, is seen to pick up the influence of
fiscal austerity to curb the fast rising prices.

In addition, the proposed FPCA method is easy to pro-
gram and implement. By smoothing the underlying functions
or curves, the principal components we need are extracted
easily. The fast computational speed of our method makes it
feasible to be applied in empirical studies with a large number
of observations.

Besides the proposed method in this paper, several other
methods, such as curves classification, nonparametric analy-
sis, and functional depth analysis, can be utilized to analyze
functional data. These methods will be considered in the next
study. Moreover, in order to emphasize the interest of doing
the functional approach and compare the corresponding
results, we will treat the curves as high dimensional standard
vectors in the future work.
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