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ABSTRACT. The main result we obtain is that given t N - M a TS-subbundle of

the generalized Hopf fibration t H2+’- cP over a Cauchy-Riemann product
M

_
cP, i.e. N

_
H2+’ is a diffeomorphism on fibres and oj= ot, if

s is even and N is a closed submanifold tangent to the structure vectors of

the canonical 5Zstructure on H2+s then N is a Cauchy-Riemann submanifold

whose Chen class is non-vanishing.
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1.- INTRODUCTION AND STATEMENT OF RESULTS.
As a tentative of unifying the concepts of complex and anti-invariant

submanifolds of an almost Hermitian manifold, A. BEJANCU, [1], has introduced

the notion of Cauchy-Riemann (C.R.) submanifold. This has soon proved to

possess a largely rich number of geometrical properties; e.g. by a result of

D.E.BLAIR & B. Y.CHEN, [2], any C.R. submanifold of a Hermitian manifold is a

Cauchy-Riemann manifold, in the sense of A.ANDREOTTI & C.D.HILL, [3].
Let M2n+ be a real (2n+s)-dimensional manifold carrying a metrical f-struc-

ture (.f ., /., ), 1 a s, with complemented frames, cf. [4]. A submani-

fold N - M2+ is said to be a framed C.R. submanifold if it is tangent
to each structure vector , of M2+ and it carries a pair of complementary

.L(with respect to G j smooth distributions , @ such that (x)
_

x,
(

_
T.(N)’L, for a11 x N, where T(N) +/- - N stands for the normal bundle

of j. Cf. I.MIHAI, [5], L.ORNEA, [6]. Since f-structures are known to

generalize both almost complex (s =0) structures and almost contact (s-- 1)
structures, the notion of framed C.R. submanifold containes those of a C.R.
submanifold (see e.g. [7], p.83) of an almost Hermitian manifold and of a
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contact C.R. submanifold (see e.g. [7], p.48) of an almost contact metrical

manifold.

Let r H2*/- cP* be the generalized Hopf fibration, as given by
D.E.BLAIR, [8]. Leaving definitions momentarily aside we may formulate the

following:
THEOREM A
i) Let N be a framed C.R. submanifold of an -manifold M2n+’. Then the

f-anti-invariant distribution .1. of N is completely integrable.

ii) Any framed C.R. submanifold of H2.+, (carrying the standard -structure)
is either a C.R. submanifold (s even) or a contact C.R. submanifold (s odd).
The converse holds.

iii) Let N be an f-invariant (i.e. .1. (0)) submanifoM of H2.+’. Then N is

totally-geodesic if and only if it is an ’-manifold of constant f-sectional

curvature 1

iv) Any f-invariant submanifoM of H2.+’ having a parallel second fundamental
form is totally-geodesic.

It is known that compact regular contact manifolds are St- principal
fibre bundles over sympleetie manifolds, el. W.M. BOOTHBY & H.C.WANG, [9].
Eversince this (today classical) paper has been published, several

"Boothby-Wang type theorems have been established, cf. e.g.A.MORIMOTO, [10],
for the case of normal almost contact manifolds, $.TANNO, [11], for contact

manifolds in the non-compact case; more recently, we may cite a result of

I.VAISMAN, [12], asserting that compact generalized Hopf manifolds with a

regular Lee field may be fibred over Sasakian manifolds, etc.

There exists today a large literature, cf. K.YANO & M.KON, [7], concerned
with the study of the geometry (of the second fundamental form) of a C.R. sub-
manifold of a Kaehlerian ambient space. In particular, following the method of

Riemannian fibre bundles (such as introduced by H.B.LAWSON, [13], towards

studying submanifolds of complex space-forms, and developed successively by

Y.MAEDA, [14], M.OKUMURA, [15]), K.YANO & M.KON, [16], have taken under study

contact C.R. submanifolds of a Sasakian manifold M2.+ (where M2.+ is

previously fibred over a Kaehlerian manifold M*) which are themselves

S-fibrations over C.R. submanifolds of M*.
The last piece of the mosaic we are going to mend is the concept of

canonical cohomology class (here after refered to as the Chen class) of a C.R.

submanifold Cf. B.Y.CHEN, [17], with any C.R. submanifold M of a Kaehlerian

manifold there may be associated a cohomology class c(M) E H’(M; s), where p
stands for the complex dimension of the holomorphic distribution of M.

Although the canonical Hermitian structure (cf. [18]) of H2.+’ is never

Kaehlerian (cf. [8], p.174) we show that the Cben class of a C.R. submanifold

may be constructed as well and obtain the following
THEOREM B

HO+sLet j N - be a closed (i.e. compact, orientable) submanifold tangent

to the vector fields gt a s, of the canonical -structure on H+

and assume there exists a T- principal bundle n N - M over a Cauchy-
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Riemann product (M, , .l.), M - cPn, ( /s the holomorphic distribution),

such that {z oj ion and is a diffeomorphism on fibres. If s is even then N

is a C.R. submanifold whose totally-real foliation is normal to the charac-

teristic field of H2n+s and whose Chen class c(N) E H2P+S(N; ), p dimc
,

is non-vanishing.

2.- NOTATIONS, CONVENTIONS AND BASIC FORMULAE.

Let M +’ be a real (2n+s)-dimensional C-differentiable connected

manifold. Let f be an f-structure on ..-M+s, i.e. a (1,1)-tensor field such

that _fz + _f 0 and rank(f) 2n everywhere on Mn+, cf. K.YANO, [19].

Assume that f has complemented frames, i.e. there exist the differential 1-

forms r/: and the dual vector fields on M2n+s, i.e. r/:() .b a,b

s, such that the following fomulae hold:

r/o f 0, f() 0, f2 I + r/ (R) ". (2.1)

Throughout, one adopts the convention r/ r/", ".The f- structure is

normal if If, f] + (dr/:) (R) ’" 0, where If, ] denotes the Nijenhuis

torsion of f, see e.g.H.NAKAGAWA, [20]. Let f0 be a compatible Riemaniann

metric on M+s, i.e. one satisfying:

O(_fX, _fY) O(X, Y) r/(X) r/’(Y). (2.2)

Compatible metrics always exist, of. D.E.BLAIR, [4]. Such

has often been called a metrical f-structure with complemented frames. Let
F(X, Y) f0(X, _fY) be its fundamental 2-form. Throughout we assume M2n+’ to

be an manifold, cf. the terminology in [4], i.e. the given f-structure is

normal, its fundamental 2-form is closed and there exist s smooth real-valued
functions , E C(M’-+’), a s, such that:

We shall need, cf. [4], [21], the following result. Let M2"+’, n > 1, be a

connected manifold carrying the structure g, 2, r/, ), 1 a "< s. Then

x are real constants, are Killing vector fields (with respect to f0

and the following relations hold:

D-D-x i x _fX (2.4)

for y tgnt vtor filds X, Y on M2"+’. Hr dnot,s th Rimnian

nntion of 2+,,
t M2a+’ an #mfold with th, stmctur t,nsors if, , , ).

t th, smith sMistfibution on M2n+’ sp by a s. By
nomMity one has [,
stmctur, vtor fi,lds 2 , r,l ( th, s,ns, of R.PALS, [22])
tben th stctur itself is tm regur. W shah n th, main rsult

of D.E. BLA & G.D.LUDDEN & K.YANO, ([21], p.175). That is, lt M2n+’ be a

mpact cot (2n+s)-dimnsionM, n > 1, manifold; th,n th,r, is a

-pfindpM fibre bundle M2+’ M20 M2+t/ and M2 is a Kaehlefian
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manifold. Here M2n denotes the leaf space of the s-dimensional foliation 11 and

T is the s-torus. Also, cf. ([21], p.178), y (ql t/ is a connection

1-form in M2+’(M",fr, T ). If X is a tangent vector field on M, let XH

denote its horizontal lift with respect to y. The Kaehlerian structure (J, g)

of M is expressed by:
J X f, _f XH (2.6)

(X, Y) (XH, yH). (2.7)

Let . be the smooth 2n-distribution on M+ defined by the Pfaffian equations

q’, 0, a s. Then . is precisely the horizontal distribution of y.

Since r/: o f 0, the f-structure preserves the horizontal distribution.

Therefore (2.6) may be also written (J X)s _f Xa. Let ff be the Riemannian

connection of (M2, ). By ([21], p.179) one has:

__DXH yH (V x y)H+ "2 C (f X H, y H) , (2.8)

REMARK
Let 7t N - M be a Riemannian submersion, cf. B.O’NEILL, [23]. Then Ker(Tt,)
is the vertical distribution, while its complement (with respect to the

Riemannian metric of N) is the horizontal distribution of the Riemannian

submersion. As to our f: M2n+s - M2n a number of important coincidences occur.

M2nFirstly, if M2n is assigned the Riemannian metric (2.7), then M2n+s - is

a Riemannian submersion. Moreover 11 Ker(f,) and therefore the horizontal

distribution of the Riemannian submersion is precisely ..
Let N be an (m+ s)-dimensional submanifold of M2n+s, and M an

m-dimensional submanifold of M2n, such that there exists a fibering x N - Msuch that fr oj o 7r and is a diffeomorphism on fibres. Both M - M2n,
N - M2+’ stand for canonical inclusions. Let g i* *g, G be the

induced metrics on M and N, respectively. Also we denote by V, D the

corresponding Riemannian connections of (M, g) and (N, G), respectively. Let B
(resp. h) be the second fundamental form of (resp. j) and denote by A (resp.
W) the Weingarten forms. Let T(M)’L - M (resp. T(N)

j" - N) be the normal bundle
ofi (resp. j). We put tan (), .L nor (), where tan nor stand

(M2 nx+for the projections associated with the direct sum decomposition T s)
Tx(N) e Tx(N) "1" x E N Then the Gauss and Weingarten formulae, (cf. e.g
[24],p.39-40), of i, j and our (2.8) lead to:

HDXs yS (V, xY) H+ "2 C X H, y

Of ( XH, yH)h(Xn, yn) B(X, y)H + i

Wva yH x)H(Av i o ( XH, VH)
S .LDlxtl Vs ( v) S+ -2o f( X H, V

(2.9)

(2.10)

(2.11)

(2.12)

for any tangent vector fields X, Y on M, respectively any cross-section V in

T(M)’L - M. Here V J’, D .I. stand for the normal connections of i, j. Of course,
towards obtaining our (2.9) (2.12) one exploits the fact that (i, X)H is

tangent to N, while Vtl is a cross-section in T(N)’L - N.
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REMARKS

1) Let H(i) Trace (B) (resp. H(j) Trace(h)) be the mean curvature
m+|

vector of (resp. j). As an application of our (2.9) (2.12) one may derive:

a" nor( )-D (2.13)(m+s) H(j) m H(i)H + [ i .
provided that {’,.. < a : s} consists of mutually orthogonal unit vector

fields. In particular, if N i tandem to cack trctr vector l; : a

s, th N i minima! if al oMy if M i initial. IndeX, if X i tangem t

Dx , W.i. X a tan(f X) (2.14)

h(X,.) + DIx 2 at nor ( X). (2.15)

X sNow, if {," a s} are orthonormal, one uses a frame { i,, } (where {Xi:
m} is an orthonormal tangential frame of M) such as to compute H(j).

2) Generally, if N is a submanifold of the aZmanifold M2"+’ and N is normal to

some , with x 0 then tangent spaces at points of N are f-anti-invariant,

i.e. _fx(Tx(N))
_

Tx(N) x E N. Indeed, by (2.4) and the Weingarten formula

of N in M2"+’, one has (a f X, Y) 2 (_D_x Y) 2 f(WI X, Y) where

from WI= 0 and _f X is normal to N.

3. aZMANIFOLDS AS HERMITIAN OR NORMAL ALMOST CONTACT

METRICAL MANIFOLDS.
We denote by c # the complex projective space with constant holomorphic

sectional curvature 1 (with Fubini Study metric) and complex dimension n,

and by S2"+1 the (2n+l)-dimensional unit sphere carrying the standard Sasaldan

structure. Let 7t S2"+ - cl# be the Hopf fibration and set

Ha’+’ {(Pl P,) ( S=’+I X...X ’+1 xl(pl) --...--
We define a principal toroidal bundle by the commutative diagram:

H2,+, $2.+1 ...X 2.+!
71X X 7t

cl x...x c
A

where A denotes the diagonM map, we A studs for the cocM inclusion.

t q’ the stdd ntact 1-fo on a+ We put q A* A* q’, 1

a s where A- #+sx. "+t + e naturM projtions. t
the KacMcr 2-fo of c. en on one hd y (q] q ) is a tion

1-fo H2n+s(CW, , TS), d on the other dq * D, such that one may
apply threm 3.1 of [8], .163) such as to cld a naturM stcture on
H2n+s. (Of so [4], p.173). t , ,, qt’ the conicM stctc
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of H2+. If s is even one sets:

iffil

where i,= + , . If s is odd, one labels the 1-forms /. as follows:

70’ /i’ r/i,’ i, i+r, < r, s 2r+l, and similarly for the tangent

vector fields ,. We consider:

--f q" i (R) ’i*" i* (R) i }" (3.2)
i=l

The characteristic 1-form of H2+’, s even, is defined by"
s/2

co 2 Z {r/ r/. }. (3.3)
i-i

Let B co be the characteristic field, where , means raising of indices by 0.

REMARKS

1) If s is even then (H2n+s, , fO) is a Hermitian non-Kaehlerian manifold and

its characteristic form is parallel. Indeed, if s is even, then given by

(3.1) is a complex structure and (Hen+s or, $ turns to be a Hermitian

manifold, (cf. prop.4.1 in [8], p.174). Let F(X, Y) (X, or Y) be its Kaehler
s/2

2-form. By (3.1) it follows that F F- 2 7 r/i ^ r/i.; consequently (3.3)
i-I

leads to

dF o ^ _F (3.4)
s/2

,) Fi.e. is not a Kaehler metric. Now our (2.4) yields D 7. (ai &i
i-i

on an arbitrary Zmanifold, provided s is even. Yet for H2n+ one has a
a (cf.[8],p.173) i.e. (o is parallel.

2) Since d r/’ r" I2, a s, it follows that t is closed. Therefore

H2n+’, s even, admits the canonical foliation defined by the Pfaffian

equation ( 0. Each leaf of 3 is a totally-geodesic real hypersurface normal

to the characteristic field of H2n+.
H2n+s3) Consider the submanifolds M - cP and N - and assume that

a T-subbundle x N - M of the generalized Hopf fibration, i.e. oj iox

and is a diffeomorphism on fibres. Suppose N is tangent to the

structure vectors . of the 9manifold H2n+. Then M is a C.R. submanifold
of cP if and only if N is either a C.R. submanifold of (H2n+s, ,, g or a
contact C.R. submanifold of (H2n+s, , 0’ q0’ )" Note firstly that, if s
is odd, then (’ o’ q0’ is a normal, almost contact metrical (a. ct. m.)

on H2n+, (cf. [8], p.175). If ,a. 0, a s, and s is evenstructure

then:

r i i" r i* i $ XH (J X)H (3.5)
for any tangent vector field X on M, cf.(2.6). Let us define Y tan (r y),
tP"1" Y nor (r y), for any tangent vector field Y on N. Then:

1. i 0, Pi, 0, tP"i" Xs (F P X)s (3.6)
where F, P are defined by (1.1) in [7] (p.76). Suppose for instance that (M,, .1.) is a C.R. submanifold of cPn. Then P is @-valued, while F vanishes on
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fl, i.e. FP 0. By (3.6) one has a 0, and thus one may apply theor. 3.1

in [7] (p.87), such as to conclude that N is a C.R. submanifold of (H2n+’, ,r,
). Note that, although stated for submanifolds in Kaehlerian manifolds,

theor.3.1 of [7] (p.87) actually holds for the general case of an arbitrary

almost Hermitian ambient space. The case s odd follows similarly from theor.

2.1 of [7] (p.55) which may be easily refined from the Sasakian case to the

general case of a. ct. m. structures.

4) Let (M, , .1.) be a C.R. submanifold of cP", where (resp. "1") denotes the

holomorphic (resp. totally-real) distribution. Let 7r N -> M be a T-bundle
as in Remark 3). Let lq flN

& be the holomorphic and totally-real (resp. the

-invariant and -anti- invariant) distributions of N, provided that s is even

(resp. s is odd). Let /l.x the natural projection, on the first term of the

direct sum decomposition Tx(N N,x x E N. Cf. (3.7) in [7] (p.86),
(resp. cf. (2.10) in [7] (p.53)) if s is even (resp. if s is odd) then /s is

expessed by ll a2 (resp. by /s a2+ /0 (R) 0) where aY tan(ofY),
(resp. Y tan( Y)). In both cases one has:. , 1 a s, Xs (l X)I (3.7)
where ’ P2. As the sum nx + llx x E N, is direct one obtaines s, ax
llx, x N. Indeed, one inclusion follows from (3.7). Conversely, let X’ s
then X’-- (l X)H + (/.i. X)H + . , , COO(N), l.i. I /. By applying ll to

both members one proves X’ II. It is also straightforward that (.1.)
N

4.- FRAMED CAUCHY-RIEMANN SUBMANIFOLDS
S. GOLDBERG, [25], has inaugurated a program of unifying the treatment of

the cases s even, and s odd, and studied f-invariant submanifolds of cx)di-

mension 2 of an 9Zmanifold. To make the terminology precise, let (N, , .1. )

be a framed C.R. submanifold of M2+’ we call N an f-invariant (resp.

f-anti-invariant) submanifold if .1. (0), (resp. if (0)), for any x E N.

Let M2a+ be an ,9manifold; let x M2a+* and p

_
Tx(M ) a 2-plane.

(Cf.[8], p.159), p is an f-section if it is spanned by {X, 1 Xx} for some

unit tangent vector X ’x" The Riemannian sectional curvature of (M2n+’, $

restricted to f-sections is refered to as the f-sectional curvature of the

9Zmanifold. (Cf. also [21], p. 183).
At this point we may establish i) of the,or. A. Let X, V be respectively a

tangent vector field on N and a cross-section in T(N) "1" -> N. We set P X

tan(f X), F X nor(f V) and f V nor( V). The following identities hold

as direct consequences of definitions:
p2 + tF =-I + q, (R) ’, FP + fF --0, Pt + tf--0,

F t + fa I fl-- P /, F,’-- 0, (4.1)

f.L F.L, pi 0.

Using (2.5) and the Gauss Weingarten formulae of N in M2n+’ one obtaines"

(Dx P) Y WFy X + h(X, Y) +

+ a" {[o(x, Y) b(X9 ,bco] ,- iX- b(X) b] .(y)} (4.2)

for any tangent vector fields X, Y on N. Let X, Y .1.. As D is torsion-free
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and by (4.2) one obtains:

P[X, Y] WFX Y WFy X + a" { (X A Y) . + (q. A /b) (X, Y) b } (4.3)

At this point we may establish the following:

LEMMA
Let (N, , .l. be a framed C.R. submanifold of the ’-manifold M2n+s. Then:

WFX Y WFy X + ia {q(X) Y- r/(Y) X- [t/,(X) qa(Y) r/(Y) r/(X)] b} (4.4)

for any X, Y E .L.
Proof By (4.1), P vanishes on .1. Using (4.2) for any X, Y E @.l. Z T(N)

one has:
0 G((DZ P)X, Y) G(WFx Z, Y) + G(t h(Z, X), Y) +

"{" i a {G(Z, X) (Y) G(Z, Y) fa(X) -I [y/t(X) b(y) f/t(y) y/b(x)] b(Z)}
and finally G(t h(Z, X), Y) G(WFy X, Z) leads to (4.4).

.L
By (4.3) and the above lemma we conclude P[X, Y] 0, i.e. D is

involutivc.

Let us prove now ii) in theor. A. We analyse for instance the case s

even. Let N a framed C.R. submanifold of H2+s. Let
s/2

W= P + i (R) i." i. (R) i }’ F (4.5)
i-I

Next 9 F P 0, and one applies theor.3.1 of [7], p.87. The case s odd

being similar is left as an exercise to the reader To prove the converse of

ii) in theor.A we need to characterize framed C.R. submanifolds as follows.

Let N be a framed C.R. submanifold of an .9manifold M2+. Then (4.1) leads to

P ’ P, F P 0, f F 0, etc. One obtaines the following statement Let N be

a submanifold of the manifold M2+’ such that N is tangent to the structure

vectors ,. Then N is a flamed C.R. smanifold of M2n+s if and only if F P
0. We have proved the necessity already. Viceversa, let us put by definition /

p2 + q (R) , L I- Z Since F P 0, the projections < l. make N
into a framed C.R. submanifold, Q.E.D. Now the converse of ii) in theor. A is

easily seen to hold, i.e. both C.R. submanifolds of (H2+’, af, fg), s even, and

contact C.R. submanifolds of (H2n+s, , 0’ qo’ fg), s odd, are framed C.R.
submanifolds.

REMARKS
1) Let (N, , .!.) be a framed C.R. submanifold of H2n+’. By (4.5) one ob-

tains: . 2 p2 q (R) .. (4.6)
Now the notion of framed C.R. submanifold appears to be essentially on old

concept. For not only N becomes a C.R. submanifold of the Hermitian manifold

H2a+’, if for instance s is even, but its holomorphic and totally-real
distributions are precisely , .L. Indeed, by (4.6) one has = K Q.E.D.
2) Due to (3.4) there is a certain similarity between manifolds and locally
conformal Kaehler manifolds, cf. P.LIBERMANN, [26]. See also [12]. For

instance, we may use the ideas in [2] (of. also theor. 3.4 of [7], p.89) to
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give an other proof of the integrability of the f-anti-invariant distribution
of a framed C.R. submanifold. Indeed, let N be a framed C.R. submanifold of

H2+’, seven. Let X E , Z,W E .1.. By (3.4)one has0-- --3(d F)(X,Y,W)
G([Z, W], J X). Hence [Z, W] .1.. Note that, although N is C.R. in the

usual sense one could not apply theor.3.4 or theor.4.1 of [7] (p.89-90) since
H2+’ is neither locally conformal Kaehler nor Kaehler.

To establish iii) let N be an f-invariant submanifold of H2+’. As
a consequence of (2.5), for any tangent vector fields X, Y on N one has:

(DX 0 Y i {[G(X, Y) qb(X) rib(Y)] ,- [X- qb(X) b] qt(y)} (4.7)

h(X, f Y) f h(X, Y). (4.8)
Let k(X, Y) be the Riemannian sectional curvature of the 2-plane spanned by

the orthonormal pair {X, Y} on N; using the Gauss equation, i.e. equation

(2.6) in [24], (p.45), and the notations in [4], (p.161), i.e. H(X) k(X,

fX), X W, one obtains:

(4.9)s H(X) + 211 h(X, X) II 2

as H2n+’ has constant f-sectional curvature, (cf.[8], p.173). By (2.15) and

f-invariance one has h(X, ,) x, nor( X) 0; a standard argument based

on (4.8) leads to the proof.
To prove iv) one uses D h 0, (2.15) and f-invariance, i.e. one has

h((DX
., Y) 0. Thus x. h(X, Y) 0, by (2.14). For some a. 0 one uses

(4.7). Finally, apply once more f and notice that q vanish on normal

vectors. Thus h 0.

REMARK
Let be the canonical foliation of H2+’. Let N be a framed C.R. submanifold

of H2n+’, as above. Then .1.
_

r, i.e. the totally-real foliation of N

(regarded as a C.R. submanifold, s even) is normal to the characteristic field
2

H2n+2 E (i i*) of Indeed, since , .i., the q. vanish on .1. Thus
i-I

O O " 0.

5.- THE CHEN CLASS OF A CAUCHY-RIEMANN SUBMANIFOLD.
Let M be a C.R. submanifold of el:. Let 7r N - M be a TL fibration, as

in theor. B. Assume s is even. Then N is a C.R.submanifold of H2n+’ and its

totally-real distribution is integrable. We shall need the following:
LEMMA
The holomorphic distribution of N is minimal.

Proof.
Note that we may not use lemma 4. in [17] (p.169) since its proof makes

essential use of the Kaehler property. Neither could one use corollary 2.3 of

[27] (p.291), (although since (of, fO) fails to be locally conformal

Kaehler. Now (2.4) (2.5), (3.1) lead to:

(.D_x y {[x, Y)- rib(X) nbo’)] -{F(X, Y) B -- (.DC f X } (5.1)Ix rib(X) (] nCO}
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wher= ff . if. r/*. Let X E N’ Z E N" Using (5.1) wc hare:

(Z,x ,= z’gxx) Z,xg (wx’gx)"
uS: (Z, X X + 0 d @ follows to minimal. t p dimc @.

t {Xa: A }2 a reMohonoM fre of @, where Xi+v =X
1 p. en {X .} is ohonomM fre of @N" t , A 2p,

differenti 1-fos on N defin by X(Xs) sx ( 0, for y

Y . t i At A...A A t A...A s. en is a globally defin

(2p+s)-fo on N, as N is oentable. We leave it as exercise to the

reader to foow the ideas [17] .170) d show that sin N is mimal

d inteable the (2p+s)-fo is clo. us detenes a cohomolo
class c( [] H+’(N; ) refer to as the en cs of N.

To prove thor. B supse M is a C.R. pruct, i.e. M is lly a

prMuct of a mplex submafold d a toty-re submanifold of cP, s
e.g. [28], .63). Now C.R. pructs have inteable holomoMc
distbution d a M toty-re distbution. By (2.8), for any

tgent vtor fields X, Y on c one has:

iXH, yH] IX, y]H. X" e(xH, yH) ., , (5.2)
IXH XnlThen (5.2) used for X X Y Xs leads to , s flN Next, as

Xs 0 on= has

W= n=exl the following
LEMMA
The covariant derivative (Dx .l.) y DX .L y. DX y of / expressed

/,y.-

(Dx ) Y h (X, 9Y) + fh (X, Y) o (Y) F X (5.4)

for any tangent vector fields X, Y on N. Here f V nor(of V)for any
cross-section V in T(N)" -> N.

Proof.
Let also V tan (otr V). Using the Gauss and Weingarten formulae of N in

H2"+s on= has:

(_D_x oq)Y (Dx aY- Wal.Y X- th(X, Y) +
+ (DX .l.)y + h(X, 9 Y)- f h(X, Y) (5.5)

Let us us= (5.1) to substitute in (5.5); a comparisson between the normal

components in (5.5) leads to (5.4), Q.E.D.
Now w= may use the abe== lemma to end the proof of th= involutivity of

flN" Indeed, by (5.4) and (2.4) our (5.3) turns into:

X) h .l o(X)F ,.+ x" a/if X (5.6)1"[X
and by (2.15) one obtainos a#" [X ,] 0.

The last step is to establish minimality of . Let q dim .i., M.
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If {El: 1 q} is an orthonormal frame of .1. then (2.8) yields:
q q

N Eu E1
i-i

But .l. is minimal, so the right hand member of (5.7) is zero. Finally, one may
follow the ideas in [17], (p.170) to show that since N is integrable and N
minimal the (2p+s)-form A is coclosed. As N is compact, A is harmonic. Thus

c(N) [A] 0, and our the.or. B is completely proved.
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