PRINCIPAL TOROIDAL BUNDLES OVER CAUCHY-RIEMANN PRODUCTS

L. MARIA ABATANGELO
SORIN DRAGOMIR
Università degli Studi di Bari - Dipartimento di Matematica
Trav. 200 via Re David n.4, 70125 BARI ITALY

(Received December 13, 1988)

Abstract

The main result we obtain is that given $\pi: N \rightarrow M$ a T^{s}-subbundle of the generalized Hopf fibration $\bar{\pi}: \mathbf{H}^{2 n+s} \rightarrow \mathbb{C} P^{n}$ over a Cauchy-Riemann product $\mathrm{i}: M \subseteq \mathbb{C P}^{\mathbf{n}}$, i.e. $\mathrm{j}: \mathbf{N} \subseteq \mathrm{H}^{\mathbf{2 n + s}}$ is a diffeomorphism on fibres and $\bar{\pi} \circ j=\mathrm{i} \circ \pi$, if s is even and N is a closed submanifold tangent to the structure vectors of the canonical $\mathscr{R}_{\text {structure on }} \mathrm{H}^{2 \mathrm{n}+\mathrm{s}}$ then N is a Cauchy-Riemann submanifold whose Chen class is non-vanishing.

KEY WORDS AND PHRASES. Principal toroidal bundle, \mathscr{R}-manifold, generalized Hopf fibration, framed C.R. submanifold, characteristic form.
1980 MATHEMATICS SUBJECT CLASSIFICATION CODE: 53C40,53C55

1.- INTRODUCTION AND STATEMENT OF RESULTS.

As a tentative of unifying the concepts of complex and anti-invariant submanifolds of an almost Hermitian manifold, A. BEJANCU, [1], has introduced the notion of Cauchy-Riemann (C.R.) submanifold. This has soon proved to possess a largely rich number of geometrical properties; e.g. by a result of D.E.BLAIR \& B. Y.CHEN, [2], any C.R. submanifold of a Hermitian manifold is a Cauchy-Riemann manifold, in the sense of A.ANDREOTTI \& C.D.HILL, [3].
Let $M^{2 n+s}$ be a real $(2 n+s)$-dimensional manifold carrying a metrical f-structure $\left(\underline{f}, \xi_{a}, \eta_{a}, \mathscr{E}\right), 1 \leq a \leq s$, with complemented frames, cf. [4]. A submanifold $\mathrm{j}: \mathbf{N} \rightarrow \mathrm{M}^{2 \mathrm{n}+\mathrm{s}}$ is said to be a framed C.R. submanifold if it is tangent to each structure vector ξ_{a} of $M^{2 n+3}$ and it carries a pair of complementary (with respect to $G=j^{*} \mathscr{G}$) smooth distributions $\mathscr{D}, \mathscr{D}^{\perp}$ such that ${\underset{x}{x}}\left(\mathscr{D}_{\mathrm{x}}\right) \subseteq \mathscr{D}_{\mathrm{x}}$,
 of j. Cf. I.MIHAI, [5], L.ORNEA, [6]. Since f-structures are known to generalize both almost complex $(s=0)$ structures and almost contact $(s=1)$ structures, the notion of framed C.R. submanifold containes those of a C.R. submanifold (see e.g. [7], p.83) of an almost Hermitian manifold and of a
contact C.R. submanifold (see e.g. [7], p.48) of an almost contact metrical manifold.

Let $\bar{\pi}: H^{2 n+8} \rightarrow \mathbb{C} \mathbf{P}^{\mathrm{n}}$ be the generalized Hopf fibration, as given by D.E.BLAIR, [8]. Leaving definitions momentarily aside we may formulate the following:

THEOREM A

i) Let N be a framed C.R. submanifold of an $\mathscr{S}_{\text {-manifold }} \mathrm{M}^{2 \mathrm{n}+\mathrm{s}}$. Then the f-anti-invariant distribution \mathscr{D}^{\perp} of N is completely integrable.
ii) Any framed C.R. submanifold of $\mathbf{H}^{2 \mathrm{n}+3}$, (carrying the standard \mathscr{P}-structure) is either a C.R. submanifold (s even) or a contact C.R. submanifold (s odd). The converse holds.
iii) Let N be an f-invariant (i.e. $\mathscr{D}^{\perp}=(0)$) submanifold of $\mathrm{H}^{2 \mathrm{n}+\mathrm{s}}$. Then N is totally-geodesic if and only if it is an \mathscr{S}-manifold of constant f-sectional curvature $1-\frac{3}{4} \mathrm{~s}$.
iv) Any f-invariant submanifold of $\mathrm{H}^{2 \mathrm{n}+\mathrm{s}}$ having a parallel second fundamental form is totally-geodesic.

It is known that compact regular contact manifolds are S^{1} - principal fibre bundles over symplectic manifolds, cf. W.M. BOOTHBY \& H.C.WANG, [9]. Eversince this (today classical) paper has been published, several "Boothby-Wang type" theorems have been established, cf. e.g. A.MORIMOTO, [10], for the case of normal almost contact manifolds, S.TANNO, [11], for contact manifolds in the non-compact case; more recently, we may cite a result of I.VAISMAN, [12], asserting that compact generalized Hopf manifolds with a regular Lee field may be fibred over Sasakian manifolds, etc.

There exists today a large literature, cf. K.YANO \& M.KON, [7], concerned with the study of the geometry (of the second fundamental form) of a C.R. submanifold of a Kaehlerian ambient space. In particular, following the method of Riemannian fibre bundles (such as introduced by H.B.LAWSON, [13], towards studying submanifolds of complex space-forms, and developed successively by Y.MAEDA, [14], M.OKUMURA, [15]), K.YANO \& M.KON, [16], have taken under study contact C.R. submanifolds of a Sasakian manifold $M^{2 n+1}$ (where $M^{2 n+1}$ is previously fibred over a Kaehlerian manifold $M^{2 \boldsymbol{n}}$) which are themselves S^{1}-fibrations over C.R. submanifolds of $M^{2 n}$.

The last piece of the mosaic we are going to mend is the concept of canonical cohomology class (here after refered to as the Chen class) of a C.R. submanifold . Cf. B.Y.CHEN, [17], with any C.R. submanifold M of a Kaehlerian manifold there may be associated a cohomology class $c(M) \in H^{2 p}(M ; \mathbb{R})$, where p stands for the complex dimension of the holomorphic distribution of M . Although the canonical Hermitian structure (cf. [18]) of $\mathrm{H}^{2 n+z}$ is never Kaehlerian (cf. [8], p.174) we show that the Chen class of a C.R. submanifold may be constructed as well and obtain the following :
THEOREM B
Let $\mathrm{j}: \mathrm{N} \rightarrow \mathrm{H}^{2 \mathrm{n}+\mathrm{s}}$ be a closed (i.e. compact, orientable) submanifold tangent to the vector fields $\xi_{\mathrm{a}}, 1 \leq \mathrm{a} \leq s$, of the canonical $\mathscr{R}_{\text {-structure }}$ on $\mathrm{H}^{2 \mathrm{n}+\mathrm{s}}$ and assume there exists a T^{3} - principal bundle $\pi: \mathrm{N} \rightarrow \mathrm{M}$ over a Cauchy-

Riemann product $\left(\mathrm{M}, \mathscr{D}, \mathscr{D}^{\perp}\right), \mathrm{i}: \mathrm{M} \rightarrow \mathbb{C} \mathrm{P}^{\mathrm{n}},(\mathscr{D}$ is the holomorphic distribution $)$, such that $\bar{\pi} \circ \mathrm{j}=\mathrm{i} \circ \pi$ and j is a diffeomorphism on fibres. If s is even then N is a C.R. submanifold whose totally-real foliation is normal to the characteristic field of $\mathrm{H}^{2 \mathrm{n}+\mathrm{s}}$ and whose Chen class $\mathrm{c}(\mathrm{N}) \in \mathbf{H}^{2 \mathrm{p}+\mathrm{s}}(\mathrm{N} ; \mathbb{R}), \mathrm{p}=\operatorname{dim}_{\mathbb{C}} \mathscr{D}$, is non-vanishing.

2.- NOTATIONS, CONVENTIONS AND BASIC FORMULAE.

Let $M^{2 n+s}$ be a real $(2 n+s)$-dimensional C^{∞}-differentiable connected manifold. Let \underline{f} be an f-structure on $M^{2 n+s}$, i.e. a (1,1)-tensor field such that $\underline{\underline{f}}^{3}+\underline{f}=0$ and $\operatorname{rank}(\underline{f})=2 n$ everywhere on $M^{2 n+s}$, cf. K.YANO, [19]. Assume that $\underline{\mathbf{f}}$ has complemented frames, i.e. there exist the differential 1forms η_{a}^{\prime} and the dual vector fields ξ_{a}^{\prime} on $M^{2 n+s}$, i.e. $\eta_{a}^{\prime}\left(\xi_{b}^{\prime}\right)=\delta_{a b}, 1 \leq a, b \leq$ s , such that the following formulae hold:

$$
\begin{equation*}
\eta_{a}^{\prime} \circ \underline{\mathbf{f}}=0, \quad \underline{\mathbf{f}}\left(\xi_{a}^{\prime}\right)=0, \quad \underline{\mathbf{f}}^{2}=-\mathbf{I}+\eta_{a}^{\prime} \otimes \xi^{, \mathbf{2}} \tag{2.1}
\end{equation*}
$$

Throughout, one adopts the convention $\eta_{2}^{\prime}=\eta^{\prime 2}, \xi_{2}^{\prime}=\xi^{\prime 2}$.The f- structure is normal if $[\underline{f}, \underline{f}]+\left(\mathrm{d} \eta_{\mathbf{n}}^{\prime}\right) \otimes \boldsymbol{\xi}^{,}=0$, where $[\underline{f}, \underline{f}]$ denotes the Nijenhuis torsion of $\underline{\underline{f}}$, see e.g. H.NAKAGAWA, [20]. Let \mathscr{G} be a compatible Riemaniann metric on $M^{2{ }^{2+s}}$, i.e. one satisfying:

$$
\begin{equation*}
\mathscr{C}(\underline{\mathrm{X}}, \underline{\mathrm{f}} \mathrm{Y})=\mathscr{C}(\mathrm{X}, \mathbf{Y})-\eta_{\mathbf{2}}^{\prime}(\mathrm{X}) \eta^{\prime, \mathbf{2}}(\mathrm{Y}) . \tag{2.2}
\end{equation*}
$$

Compatible metrics always exist, cf. D.E.BLAIR, [4]. Such (f , $\left.\xi_{a}^{\prime}, \eta_{\mathrm{a}}^{\prime}, \mathscr{V}\right)$ has often been called a metrical f-structure with complemented frames. Let $\underline{\mathbf{F}}(\mathbf{X}, \mathbf{Y})=\mathscr{E}(\mathbf{X}, \underline{\mathbf{Y}} \mathbf{Y})$ be its fundamental 2 -form. Throughout we assume $\mathrm{M}^{2 \mathrm{n}+\mathrm{s}}$ to be an $\mathscr{R}_{\text {manifold, }}$ cf. the terminology in [4], i.e. the given f-structure is
normal, its fundamental 2 -form is closed and there exist s smooth real-valued functions $\alpha_{\mathrm{a}} \in \mathrm{C}^{\infty}\left(\mathrm{M}^{2 \mathrm{n}+\mathrm{s}}\right), 1 \leq \mathrm{a} \leq \mathrm{s}$, such that:

$$
\begin{equation*}
\mathrm{d} \eta_{\mathrm{z}}^{\prime}=\alpha_{\mathrm{a}} \mathrm{~F} \tag{2.3}
\end{equation*}
$$

We shall need, cf. [4], [21], the following result. Let $M^{2 n+8}, n>1$, be a connected manifold carrying the $\mathscr{R}_{\text {structure }}\left(f, \xi_{a}^{\prime}, \eta_{a}^{\prime}, \mathscr{E}\right), 1 \leq a \leq s$. Then α_{2} are real constants, ξ_{2} are Killing vector fields (with respect to \mathscr{B}) and the following relations hold:

$$
\begin{equation*}
\underline{\mathrm{D}}_{\mathrm{x}} \xi_{\mathrm{z}}^{\prime}=-\frac{1}{2} \alpha_{\mathrm{z}} \underline{\mathrm{f}} \mathrm{X} \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
\left(\mathrm{D}_{\mathrm{X}} \underline{\mathrm{f}}\right) \mathrm{Y}=\frac{1}{2} \alpha^{2}\left\{\left[\mathscr{E}(\mathrm{X}, \mathrm{Y})-\eta_{\mathrm{b}}^{\prime}(\mathrm{X}) \eta^{\prime \mathrm{b}}(\mathrm{Y})\right] \xi_{\mathrm{a}}^{\prime}-\left[\mathrm{X}-\eta_{\mathrm{b}}^{\prime}(\mathrm{X}) \xi^{, \mathrm{b}}\right] \eta_{\mathrm{a}}^{\prime}(\mathrm{Y})\right\} \tag{2.5}
\end{equation*}
$$

for any tangent vector fields X, Y on $M^{2 n+3}$. Here \underline{D} denotes the Riemannian connection of $\left(\mathrm{M}^{2 n+s}, \mathscr{E}\right)$, and $\alpha^{2}=\alpha_{a}, 1 \leq a \leq s$.

Let $M^{2 n+s}$ be an $\mathscr{R}_{\text {manifold }}$ with the structure tensors (f, $\left.\xi_{2}^{\prime}, \eta_{2}^{\prime}, \mathscr{B}\right)$. Let be the smooth s-distribution on $M^{2 n+8}$ spanned by $\xi_{a}^{\prime}, 1 \leq a \leq s$. By normality one has $\left[\xi_{\mathrm{a}}, \xi_{\mathrm{b}}\right]=0$, i.e. is involutive. If both and the structure vector fields ξ_{2} are regular (in the sense of R.PALAIS, [22]) then the $\mathscr{R}_{\text {structure }}$ itself is termed regular. We shall need the main result of D.E. BLAIR \& G.D.LUDDEN \& K.YANO, ([21], p.175). That is, let $M^{2 n+s}$ be a compact connected $(2 n+s)$-dimensional, $n>1, \mathscr{R}_{\text {manifold; }}$ then there is a T^{3}-principal fibre bundle $\bar{\pi}: M^{2 n+8} \rightarrow M^{2 n}=M^{2 n+3}$ and $M^{2 n}$ is a Kaehlerian
manifold. Here $\mathrm{M}^{2 \mathrm{n}}$ denotes the leaf space of the s -dimensional foliation and T^{s} is the s-torus. Also, cf. ([21], p.178), $\gamma=\left(\eta_{1}^{\prime}, \ldots, \eta_{s}^{\prime}\right)$ is a connection 1 -form in $\mathrm{M}^{2 \mathrm{n}+3}\left(\mathrm{M}^{2 \mathrm{n}}, \bar{\pi}, \mathrm{T}^{s}\right)$. If X is a tangent vector field on $\mathrm{M}^{2 \mathrm{n}}$, let X^{H} denote its horizontal lift with respect to γ. The Kaehlerian structure (\mathbf{J}, g) of $\mathrm{M}^{2 \mathrm{n}}$ is expressed by:

$$
\begin{align*}
\mathbf{J} \mathbf{X} & =\bar{\pi}_{*} \underline{\mathbf{f}} \mathbf{X}^{\mathbf{H}} \tag{2.6}\\
\overline{\mathbf{g}}(\mathbf{X}, \mathbf{Y}) & =\mathscr{\mathscr { C }}\left(\mathbf{X}^{\mathbf{H}}, \mathbf{Y}^{\mathbf{H}}\right) . \tag{2.7}
\end{align*}
$$

Let \mathscr{L} be the smooth 2 n -distribution on $\mathrm{M}^{2 \mathrm{n}+\mathrm{s}}$ defined by the Pfaffian equations $\eta_{2}^{\prime}=0,1 \leq a \leq s$. Then \mathscr{X} is precisely the horizontal distribution of γ. Since $\quad \boldsymbol{\eta}_{\mathbf{a}}^{\prime} \circ \underline{\mathbf{f}}=0$, the f -structure preserves the horizontal distribution. Therefore (2.6) may be also written (J X) ${ }^{\mathbf{H}}=\underline{\mathrm{f}} \mathrm{X}^{\mathbf{H}}$. Let $\overline{\mathrm{V}}$ be the Riemannian connection of ($\mathrm{M}^{2 \mathrm{n}}, \overline{\mathrm{g}}$). By ([21], p.179) one has:

$$
\begin{equation*}
\underline{\mathrm{D}}_{X^{H}} \mathbf{Y}^{\mathbf{H}}=\left(\nabla_{X} \mathbf{Y}\right)^{\mathbf{H}}+-_{2}^{1} \alpha^{2} \mathscr{G}\left(\underline{\mathbf{f}} \mathbf{X}^{\mathbf{H}}, \mathbf{Y}^{\mathbf{H}}\right) \xi^{\prime} . \tag{2.8}
\end{equation*}
$$

REMARK

Let $\pi: N \rightarrow M$ be a Riemannian submersion, cf. B.O'NEILL, [23]. Then $\operatorname{Ker}\left(\pi_{*}\right)$ is the vertical distribution, while its complement (with respect to the Riemannian metric of N) is the horizontal distribution of the Riemannian submersion. As to our $\bar{\pi}: M^{2 n+s} \rightarrow M^{2 n}$ a number of important coincidences occur. Firstly, if $M^{2 n}$ is assigned the Riemannian metric (2.7), then $M^{2 n+s} \rightarrow M^{2 n}$ is a Riemannian submersion. Moreover $=\operatorname{Ker}\left(\bar{\pi}_{*}\right)$ and therefore the horizontal distribution of the Riemannian submersion is precisely \mathscr{L}.

Let N be an $(m+s)$-dimensional submanifold of $M^{2 n+s}$, and M an m-dimensional submanifold of $M^{2 n}$, such that there exists a fibering $\pi: N \rightarrow M$ such that $\bar{\pi} \circ j=i \circ \pi$ and j is a diffeomorphism on fibres. Both $i: M \rightarrow M^{2 n}$, $\mathrm{j}: \mathrm{N} \rightarrow \mathrm{M}^{2 \mathrm{n}+\mathrm{s}}$ stand for canonical inclusions. Let $\mathrm{g}=\mathrm{i}^{*} \overline{\mathrm{~g}}, \mathrm{G}=\mathrm{j}^{*} \mathscr{B}$ be the induced metrics on M and N, respectively. Also we denote by ∇, D the corresponding Riemannian connections of (\mathbf{M}, g) and (N, G), respectively. Let B (resp. h) be the second fundamental form of i (resp. j) and denote by A (resp. W) the Weingarten forms. Let $T(M) \xrightarrow{\perp} \rightarrow M$ (resp. $T(N)^{\perp} \rightarrow N$) be the normal bundle of i (resp. j). We put $\xi_{a}=\tan \left(\xi_{a}^{\prime}\right), \xi_{a}^{\perp}=$ nor $\left(\xi_{a}^{\prime}\right)$, where $\tan _{x}$, nor ${ }_{x}$ stand for the projections associated with the direct sum decomposition ${ }_{x}^{x}\left(M^{2 n^{x}+s}\right)=$ $T_{x}(N) \oplus T_{x}(N)^{\perp}, x \in N$. Then the Gauss and Weingarten formulae, (cf. e.g. [24],p.39-40), of i, j and our (2.8) lead to:

$$
\begin{align*}
& \mathrm{D}_{\mathrm{X}^{\mathrm{H}}} \mathrm{Y}^{\mathrm{H}}=\left(\nabla_{\mathrm{X}} \mathbf{Y}\right)^{\mathbf{H}}+-_{2}^{1} \alpha^{2} \mathscr{E}\left(\underline{\mathbf{f}} \mathrm{X}^{\mathrm{H}}, \mathrm{Y}^{\mathrm{H}}\right) \boldsymbol{\xi} . \tag{2.9}\\
& h\left(X^{H}, Y^{H}\right)=B(X, Y)^{H}+\frac{1}{2} \alpha^{2} \mathscr{C}\left(\underline{(X} X^{H}, Y^{H}\right) \xi_{\mathrm{a}} \tag{2.10}\\
& W_{V^{H}} Y^{H}=\left(A_{V} X\right)^{H}-\frac{1}{2} \alpha^{2} \mathscr{E}\left(\underline{f} X^{H}, V^{H}\right) \xi_{\mathrm{a}} \tag{2.11}\\
& \mathrm{D}^{\perp} \mathrm{X}^{\mathrm{H}} \mathrm{~V}^{\mathrm{H}}=\left(\nabla \frac{\mathrm{X}}{\mathrm{X}} \mathrm{~V}\right)^{\mathrm{H}}+\frac{-1}{2} \alpha^{2} \mathscr{E}\left(\underline{(\underline{X}} \mathrm{X}^{\mathrm{H}}, \mathrm{~V}^{\mathrm{H}}\right) \boldsymbol{\xi} \stackrel{\perp}{\perp} \tag{2.12}
\end{align*}
$$

for any tangent vector fields X, Y on M, respectively any cross-section V in $T(M) \stackrel{\perp}{ } \rightarrow M$. Here $\nabla \stackrel{\perp}{ } \mathrm{D}^{\perp}$ stand for the normal connections of i, j. Of course, towards obtaining our (2.9) - (2.12) one exploits the fact that ($\left.i_{*} X\right)^{H}$ is tangent to N, while V^{H} is a cross-section in $\mathrm{T}(\mathrm{N})^{\perp} \rightarrow \mathrm{N}$.

REMARKS

1) Let $H(i)=\frac{1}{m} \operatorname{Trace}(B) \quad$ (resp. $H(j)=\frac{1}{m+s} \operatorname{Trace}(h)$) be the mean curvature vector of i (resp. j). As an application of our (2.9) - (2.12) one may derive:

$$
\begin{equation*}
(m+s) H(j)=m H(i)^{H}+\sum_{a=1}^{s}\left[\frac{1}{2} \alpha^{2} \operatorname{nor}\left(f \xi_{a}^{\perp}\right)-D_{\xi^{2}}^{\perp} \xi^{\perp}\right] \tag{2.13}
\end{equation*}
$$

provided that $\left\{\xi_{a}: 1 \leq a \leq s\right\}$ consists of mutually orthogonal unit vector fields. In particular, if N is tangent to each structure vector $\xi_{2}, 1 \leq a \leq$ s, then N is minimal if and only if M is minimal. Indeed, if X is tangent to N , then (2.4) and the Gauss - Weingarten formulae lead to:

$$
\begin{gather*}
D_{X_{a}}^{\xi}=W_{\xi} \perp X-\frac{1}{2} \alpha_{a} \tan (f X) \tag{2.14}\\
h\left(X, \xi_{a}\right)+D_{X}^{\perp} \xi_{a}^{\perp}=-\frac{1}{2} \alpha_{a} \operatorname{nor}(\underline{f} X) \tag{2.15}
\end{gather*}
$$

Now, if $\left\{\xi_{i}: 1 \leq a \leq s\right\}$ are orthonormal, one uses a frame $\left\{X_{i}, \xi_{a}^{H}\right\}$ (where $\left\{X_{i}\right.$: $1 \leq \mathrm{i} \leq \mathrm{m}\}$ is an orthonormal tangential frame of M) such as to compute $\mathrm{H}(\mathrm{j})$.
2) Generally, if N is a submanifold of the $\mathscr{R}_{\text {manifold }} M^{2 n+s}$ and N is normal to some ξ_{a} with $\alpha_{a}=0$ then tangent spaces at points of N are f-anti-invariant, i.e. $\underline{f}_{x}\left(T_{x}(N)\right) \subseteq T_{x}(N)^{\perp}, \quad x \in N$. Indeed, by (2.4) and the Weingarten formula of N in $M^{2 n+3}$, one has $\mathscr{G}\left(\alpha_{a} \underline{f} X, Y\right)=-2 \mathscr{G}\left(\underline{D}_{X} \xi_{a}^{\prime}, Y\right)=2 \mathscr{G}\left(W_{\xi} \perp X, Y\right)$ where from $W_{\xi_{a}} \perp=0$ and \underline{f} is normal to N.
3. \mathscr{R} MANIFOLDS AS HERMITIAN OR NORMAL ALMOST CONTACT

METRICAL MANIFOLDS.

We denote by $C P^{n}$ the complex projective space with constant holomorphic sectional curvature 1 (with Fubini - Study metric) and complex dimension n, and by $S^{2 n+1}$ the $(2 n+1)$-dimensional unit sphere carrying the standard Sasakian structure. Let $\pi^{1}: S^{2 n+1} \rightarrow C P^{n}$ be the Hopf fibration and set $H^{2 n+s}=\left\{\left(p_{1}, \ldots, p_{s}\right) \in S^{2 n+1} \times \ldots \times S^{2 n+1} \mid \pi^{1}\left(p_{1}\right)=\ldots=\pi^{1}\left(p_{s}\right)\right\}$. We define a principal toroidal bundle by the commutative diagram:

where $\boldsymbol{\Delta}$ denotes the diagonal map, while $\hat{\boldsymbol{\Delta}}$ stands for the canonical inclusion. Let η^{\prime} be the standard contact 1 -form on $S^{2 n+1}$. We put $\boldsymbol{\eta}_{\mathrm{a}}^{\prime}=\hat{\Delta}^{*} \Delta_{\mathrm{a}}^{*} \boldsymbol{\eta}^{\prime}, 1$ $\leq \mathrm{a} \leq \mathrm{s}$ where $\Delta_{a}: S^{2 n+1}{ }_{x} \ldots \mathrm{x} S^{2 n+1} \rightarrow S^{2 n+1}$ are natural projections. Let Ω be the Kaehler 2 -form of $C P^{n}$. Then on one hand $\gamma=\left(\eta_{1}^{\prime}, \ldots, \eta_{z}^{\prime}\right)$ is a connection 1-form in $H^{2 n+3}\left(\mathrm{CP}^{\mathrm{n}}, \bar{\pi}, \mathrm{T}^{3}\right)$, and on the other $\mathrm{d} \eta_{\mathrm{a}}^{\prime}=\bar{\pi}^{*} \Omega$, such that one may apply theorem 3.1 of [8], (p.163) such as to yield a natural $\mathscr{R}_{\text {structure }}$ on $H^{2 n+s}$. (Cf also [4], p.173). Let (f, $\xi_{a}, \eta_{a}, \mathscr{G}$) be the canonical $\mathscr{R}_{\text {structure }}$
of $\mathrm{H}^{2 \mathrm{n}+8}$. If s is even one sets:

$$
\begin{equation*}
\mathscr{S}=\underline{\mathbf{f}}+\sum^{\mathbf{s}}\left\{\eta_{i} \otimes \xi_{i}-\eta_{i} \otimes \xi_{i}\right\} \tag{3.1}
\end{equation*}
$$

where $\mathrm{i} *=\mathrm{i}+\frac{\mathrm{s}}{2}, 1 \leq \mathrm{i} \leq \frac{\mathrm{s}}{2}$. If s is odd, one labels the 1 -forms η_{a} as follows: $\eta_{0}, \eta_{\mathrm{i}}, \eta_{\mathrm{i}}, \mathrm{i}^{*}=\mathrm{i}+\mathrm{r}, 1 \leq \mathrm{i} \leq \mathrm{r}, \mathrm{s}=2 \mathrm{r}+1$, and similarly for the tangent vector fields ξ_{a}. We consider:

$$
\begin{equation*}
\left.\varphi=\underline{\mathbf{f}}+\sum_{\mathrm{i}=1}^{\mathrm{r}} \quad \eta_{\mathrm{i}} \otimes \xi_{\mathrm{i}} \cdot-\eta_{\mathrm{i}}, \xi_{\mathrm{i}}\right\} \tag{3.2}
\end{equation*}
$$

The characteristic 1 -form of $\mathrm{H}^{2 \mathrm{n}+\mathrm{s}}$, s even, is defined by:

$$
\begin{equation*}
\omega=2 \sum_{i=1}^{s / 2}\left\{\eta_{i}-\eta_{i}\right\} \tag{3.3}
\end{equation*}
$$

Let $\mathrm{B}=\omega^{\dagger}$ be the characteristic field, where + means raising of indices by \mathscr{G}. REMARKS

1) If s is even then $\left(\mathrm{H}^{2 \mathrm{n}+\mathrm{s}}, \mathscr{E}, \mathscr{E}\right)$ is a Hermitian non-Kaehlerian manifold and its characteristic form is parallel. Indeed, if s is even, then \mathscr{A} given by (3.1) is a complex structure and $\left(\mathrm{H}^{2 \mathrm{n}+\mathrm{s}}, \mathscr{D}, \mathscr{G}\right)$ turns to be a Hermitian manifold, (cf. prop.4.1 in [8], p.174). Let $F(X, Y)=\mathscr{C}(X, \mathscr{S} Y)$ be its Kaehler 2-form. By (3.1) it follows that $\tilde{F}=F-2 \sum_{i=1}^{s / 2} \boldsymbol{\eta}_{i} \wedge \boldsymbol{\eta}_{\mathrm{i}}$; consequently (3.3) leads to

$$
\begin{equation*}
\mathrm{dF}=\omega \wedge \underline{\mathrm{F}} \tag{3.4}
\end{equation*}
$$

i.e. \mathscr{G} is not a Kaehler metric. Now our (2.4) yields $\underline{\mathrm{D}} \omega=\frac{1}{2} \sum_{i}^{8 / 2}\left(\alpha_{i}-\bar{\alpha}_{i}\right) \underline{F}$ on an arbitrary $\mathscr{R}^{\text {manifold, provided }} s$ is even. Yet for $H^{2 \mathrm{i}+\mathrm{s}^{1}}$ one has $\alpha_{1}=$ $\ldots=\alpha_{z}$, (cf.[8],p.173), i.e. ω is parallel.
2) Since $\mathrm{d} \eta^{\prime}=\bar{\pi}^{*} \Omega, 1 \leq \mathrm{a} \leq \mathrm{s}$, it follows that ω is closed. Therefore $\mathbf{H}^{2 \mathrm{n}+\mathrm{s}}$, s even, admits the canonical foliation S_{F} defined by the Pfaffian equation $\omega=0$. Each leaf of \mathcal{F} is a totally-geodesic real hypersurface normal to the characteristic field of $\mathrm{H}^{2 \mathrm{n}+3}$.
3) Consider the submanifolds $i: M \rightarrow \mathbb{C} P^{n}$ and $j: N \rightarrow H^{2 n+8}$ and assume that a T^{s}-subbundle $\pi: N \rightarrow M$ of the generalized Hopf fibration, i.e. $\bar{\pi} \circ j=\mathrm{i} \circ \pi$ and j is a diffeomorphism on fibres. Suppose N is tangent to the structure vectors ξ_{a} of the $\mathscr{R}_{\text {manifold }} \mathrm{H}^{2 \mathrm{n}+8}$. Then M is a C.R. submanifold of $\mathbb{C} \mathrm{P}^{\mathrm{n}}$ if and only if N is either a C.R. submanifold of $\left(\mathrm{H}^{2 \mathrm{n}+\mathrm{s}}, \mathscr{L}, \mathscr{G}\right)$ or a contact C.R. submanifold of $\left(\mathrm{H}^{2 \mathrm{n}+8}, \varphi, \xi_{0}, \eta_{0}, \mathscr{G}\right)$. Note firstly that, if s is odd, then $\left(\varphi, \xi_{0}, \eta_{0}, \mathscr{G}\right)$ is a normal almost contact metrical (a. ct. m.) structure on $\mathrm{H}^{2 \mathrm{n}+\mathrm{s}}$, (cf. [8], p.175). If $\xi_{a}^{\perp}=0,1 \leq a \leq \mathrm{s}$, and s is even then:

$$
\begin{equation*}
\mathscr{D} \xi_{i}=\xi_{i *}, \quad \mathscr{D} \xi_{i *}=-\xi_{i}, \quad \mathscr{D} \mathbf{X}^{\mathrm{H}}=(\mathbf{J} \mathbf{X})^{\mathbf{H}} \tag{3.5}
\end{equation*}
$$

for any tangent vector field X on M, cf.(2.6). Let us define $\mathscr{F} Y=\tan (\mathscr{S} Y$), $\mathscr{F} \mathbf{Y}=$ nor $(\mathscr{G} Y)$, for any tangent vector field Y on N. Then:

$$
\begin{equation*}
\mathscr{P}^{\perp} \mathscr{P} \xi_{i}=0, \quad \mathscr{P} \mathcal{P} \xi_{i}=0, \quad \mathscr{P}^{\perp} \mathscr{F} \mathrm{X}^{\mathrm{H}}=(\mathrm{F} P \mathrm{P})^{\mathrm{H}} \tag{3.6}
\end{equation*}
$$

where F, P are defined by (1.1) in [7] (p.76). Suppose for instance that (M, $\mathscr{D}, \mathscr{D}^{\perp}$) is a C.R. submanifold of $\mathbb{C} P^{\mathbf{n}}$. Then P is \mathscr{D}-valued, while F vanishes on
\mathscr{D}, i.e. $\mathrm{FP}=0$. By (3.6) one has $\mathscr{P}^{\perp} \mathscr{F}=0$, and thus one may apply theor. 3.1 in [7] (p.87), such as to conclude that N is a C.R. submanifold of $\left(H^{2 n+3}, \mathscr{D}\right.$, \mathscr{E}). Note that, although stated for submanifolds in Kachlerian manifolds, theor.3.1 of [7] (p.87) actually holds for the general case of an arbitrary almost Hermitian ambient space. The case s odd follows similarly from theor. 2.1 of [7] (p.55) which may be easily refined from the Sasakian case to the general case of a. ct. m. structures.
4) Let $\left(\mathrm{M}, \mathscr{D}, \mathscr{D}^{\perp}\right.$) be a C.R. submanifold of $\mathbb{C} P^{\mathrm{n}}$, where \mathscr{D} (resp. \mathscr{D}^{\perp}) denotes the holomorphic (resp. totally-real) distribution. Let $\pi: N \rightarrow M$ be a $\mathbf{T}^{\text {b}}$-bundle as in Remark 3). Let $\mathscr{D}_{\mathrm{N}}, \mathscr{D} \frac{\perp}{\mathrm{N}}$ be the holomorphic and totally-real (resp. the φ-invariant and φ-anti- invariant) distributions of N, provided that s is even (resp. s is odd). Let $/_{N, x}$ the natural projection on the first term of the direct sum decomposition $\mathrm{T}_{\mathrm{x}}^{\prime}(\mathrm{N})=\mathscr{D}_{\mathrm{N}, \mathrm{x}} \oplus \mathscr{D}_{\mathrm{N}, \mathrm{x}}^{\perp}, \mathrm{x} \in \mathrm{N}$. Cf. (3.7) in [7] (p.86), (resp. cf. (2.10) in [7] (p.53)) if s is even (resp. if s is odd) then $/ \mathrm{N}$ is expessed by $\ell_{\mathrm{N}}=-\mathscr{F}^{2}$ (resp. by $\ell_{\mathrm{N}}=-\mathscr{S}^{2}+\eta_{0} \odot \zeta_{0}$) where $\mathscr{F} \mathrm{Y}=\tan (\mathscr{S} \mathrm{Y})$, (resp. $\mathscr{F} \mathbf{Y}=\tan (\varphi \mathbf{Y})$). In both cases one has:

$$
\begin{equation*}
\ell_{N} \xi_{a}=\xi_{a}, \quad 1 \leq a \leq s, \quad \zeta_{N} X^{H}=(\ell X)^{H} \tag{3.7}
\end{equation*}
$$

where $l=-P^{2}$. As the $\operatorname{sum} \mathscr{D}_{x}^{\mathrm{H}}+\ln _{\mathrm{x}}, \mathrm{x} \in \mathrm{N}$, is direct one obtaines $\mathscr{D}_{\mathrm{N}, \mathrm{x}}=\mathscr{D}_{\mathrm{x}}^{\mathrm{H}} \oplus$ $z_{x}, x \in N$. Indeed, one inclusion follows from (3.7). Conversely, let $X \in \mathscr{D}_{N}$, then $X^{\prime}=(\ell X)^{H}+\left(\mu^{\perp} X\right)^{H}+\lambda^{2} \xi_{a}, \lambda^{2} \in C^{\infty}(N), l^{\perp}=I-l$. By applying ${ }_{N}^{N}$ to both members one proves $X^{\prime} \in \mathscr{D}^{\mathbf{H}} \oplus$. It is also straightforward that $\left(\mathscr{D}^{\perp}\right)^{H}=$ $\mathscr{D}_{\mathbf{N}}^{\perp}$.
4.- FRAMED CAUCHY-RIEMANN SUBMANIFOLDS
S. GOLDBERG, [25], has inaugurated a program of unifying the treatment of the cases s even, and s odd, and studied f-invariant submanifolds of codimension 2 of an $\mathscr{R}_{\text {manifold. To make the terminology precise, let }\left(N, \mathscr{D}, \mathscr{D}^{\perp}\right) ~}^{\text {) }}$ be a framed C.R. submanifold of $M^{2 n+z}$; we call N an f-invariant (resp. f-anti-invariant) submanifold if $\mathscr{D}_{x}^{\perp}=(0)$, (resp. if $\mathscr{D}_{x}=(0)$), for any $x \in N$.

Let $M^{2 n+z}$ be an $\mathscr{R}_{\text {manifold; }}$ let $x \in M^{2 n+z}$ and $p \subseteq T_{x}\left(M^{n+z}\right)$ a 2-plane. (Cf.[8], p.159), p is an f-section if it is spanned by $\left\{X, f X_{x}\right\}$ for some unit tangent vector $X \in \mathscr{X}_{x}$. The Riemannian sectional curvature of $\left(M^{2 n+3}, \mathscr{G}\right)$ restricted to f-sections is refered to as the f-sectional curvature of the $\mathscr{R}_{\text {manifold. (Cf. also [21], p.183). }}$

At this point we may establish i) of theor. A. Let X, V be respectively a tangent vector field on N and a cross-section in $T(N)^{\perp} \rightarrow N$. We set $P X=$ $\tan (\underline{f}), \quad F X=\operatorname{nor}(\underline{f} \mathbf{V})$ and $\mathbf{f} V=\operatorname{nor}(\underline{f} V)$. The following identities hold as direct consequences of definitions:

$$
\begin{align*}
& \mathbf{P}^{\mathbf{2}}+\mathbf{t} \mathbf{F}=-\mathrm{I}+\boldsymbol{\eta}_{\mathrm{a}} \otimes \boldsymbol{\xi}^{\mathbf{a}}, \quad \mathbf{F P}+\mathbf{f} \mathbf{F}=0, \quad \quad \mathbf{P} \mathbf{t}+\mathbf{t} \mathbf{f}=\mathbf{0}, \\
& \mathrm{Ft}+\mathrm{f}^{\mathbf{2}}=-\mathrm{I}, \quad \mathrm{f} \ell=\mathrm{P} \ell, \quad \mathrm{~F} \ell=0 \text {, } \tag{4.1}\\
& \underline{\perp}=\mathrm{F} \stackrel{\perp}{ } \text {, } \\
& P{ }^{\perp}=0 \text {. }
\end{align*}
$$

Using (2.5) and the Gauss - Weingarten formulae of N in $M^{2 n+s}$ one obtaines:

$$
\begin{align*}
\left(D_{X} P\right) Y & =W_{F Y} X+t h(X, Y)+ \\
& +\frac{1}{2} \alpha^{a}\left\{\left[G(X, Y)-\eta_{b}(X) \eta^{b}(Y)\right] \xi_{a}-\left[X-\eta_{b}(X) \xi^{b}\right] \eta_{a}(Y)\right\} \tag{4.2}
\end{align*}
$$

for any tangent vector fields X, Y on N. Let $X, Y \in \mathscr{D}^{\perp}$. As D is torsion-free
and by (4.2) one obtains:

$$
\begin{equation*}
\mathbf{P}[\mathbf{X}, \mathbf{Y}]=\mathrm{W}_{\mathbf{F X}} \mathbf{Y}-\mathrm{W}_{\mathbf{F Y}} \mathbf{X}+\alpha^{2}\left\{\frac{1}{2}(\mathbf{X} \wedge \mathbf{Y}) \xi_{\mathrm{a}}+\left(\eta_{\mathrm{a}} \wedge \eta_{\mathrm{b}}\right)(\mathbf{X}, \mathbf{Y}) \xi^{b}\right\} \tag{4.3}
\end{equation*}
$$

At this point we may establish the following:
LEMMA
Let $\left(N, \mathscr{D}, \mathscr{D}^{\perp}\right)$ be a framed C.R. submanifold of the \mathscr{S}-manifold $\mathrm{M}^{2 \mathrm{n}+\mathrm{s}}$. Then:
$\mathbf{W}_{\mathrm{FX}} \mathbf{Y}=\mathrm{W}_{\mathrm{FY}} \mathrm{X}+\frac{1}{2} \alpha^{2}\left\{\eta_{\mathrm{a}}(\mathrm{X}) \mathrm{Y}-\eta_{\mathrm{a}}(\mathrm{Y}) \mathrm{X}-\left[\eta_{\mathrm{a}}(\mathrm{X}) \eta_{\mathbf{a}}(\mathrm{Y})-\eta_{\mathrm{a}}(\mathrm{Y}) \eta_{\mathrm{a}}(\mathrm{X})\right] \xi^{\mathrm{b}}\right\}$
for any $\mathbf{X}, \mathbf{Y} \in \mathscr{D}^{\perp}$.
Proof. By (4.1), P vanishes on \mathscr{D}^{\perp}. Using (4.2), for any $\mathrm{X}, \mathrm{Y} \in \mathscr{D}^{\perp}, \mathrm{Z} \in \mathrm{T}(\mathrm{N})$, one has:

$$
\begin{aligned}
& \mathbf{0}=\mathbf{G}\left(\left(D_{\mathbf{Z}} \mathbf{P}\right) \mathbf{X}, \mathbf{Y}\right)=\mathbf{G}\left(\mathbf{W}_{\mathbf{F X}} \mathbf{Z}, \mathbf{Y}\right)+\mathbf{G}(\mathbf{t} \mathbf{h}(\mathbf{Z}, \mathbf{X}), \mathbf{Y})+ \\
& +\frac{1}{2} \alpha^{\mathbf{a}}\left\{\mathrm{G}(\mathrm{Z}, \mathrm{X}) \eta_{\mathrm{a}}(\mathrm{Y})-\mathrm{G}(\mathrm{Z}, \mathrm{Y}) \eta_{\mathrm{a}}(\mathrm{X})+\left[\eta_{\mathrm{a}}(\mathrm{X}) \eta^{\mathrm{b}}(\mathrm{Y})-\eta_{\mathrm{a}}(\mathrm{Y}) \eta^{\mathrm{b}}(\mathrm{X})\right] \eta_{\mathrm{b}}(\mathrm{Z})\right\}
\end{aligned}
$$

and finally $G(t h(Z, X), Y)=-G\left(W_{F Y} X, Z\right)$ leads to (4.4).
By (4.3) and the above lemma we conclude $P[X, Y]=0$, i.e. D^{\perp} is involutive.

Let us prove now ii) in theor. A. We analyse for instance the case s even. Let N a framed C.R. submanifold of $\mathrm{H}^{2 \mathrm{n}+\mathrm{s}}$. Let

$$
\begin{equation*}
\left.\mathscr{P}=\mathrm{P}+\sum_{\mathrm{i}=1}^{2 / 2 ،} \eta_{\mathrm{i}} \oplus \xi_{\mathrm{i}^{*}}-\boldsymbol{\eta}_{\mathrm{i}^{*}} \oplus \xi_{\mathrm{i}}\right\}, \quad \mathscr{P}^{\perp}=\mathrm{F} \tag{4.5}
\end{equation*}
$$

Next $\mathscr{F}^{\perp} \mathscr{F}=$ F P $=0$, and one applies theor.3.1 of [7], p.87. The case s odd being similar is left as an exercise to the reader. To prove the converse of ii) in theor.A we need to characterize framed C.R. submanifolds as follows. Let N be a framed C.R. submanifold of an $\mathscr{R}_{\text {manifold }} \mathrm{M}^{2 \mathrm{n}+\boldsymbol{z}}$. Then (4.1) leads to $\mathbf{P} \ell=\mathbf{P}, \mathbf{F} \mathbf{P}=0, \mathbf{f}=\mathbf{0}$, etc. One obtaines the following statement. Let N be a submanifold of the $\mathscr{S}_{\text {-manifold }} \mathrm{M}^{2 \mathrm{n}+8}$ such that N is tangent to the structure vectors ξ_{i}. Then N is a framed C.R. submanifold of $\mathrm{M}^{2 \mathrm{n}+\mathrm{s}}$ if and only if $\mathrm{F} \mathbf{P}=$ 0 . We have proved the necessity already. Viceversa, let us put by definition / $=-P^{2}+\eta_{2} \otimes \xi^{2}, \downarrow^{L}=I-$. Since $F P=0$, the projections ℓ, \downarrow make N into a framed C.R. submanifold, Q.E.D. Now the converse of ii) in theor. A is easily seen to hold, i.e. both C.R. submanifolds of $\left(H^{2 n+8}, \mathscr{L}, \mathscr{Z}\right), s$ even, and contact C.R. submanifolds of $\left(\mathrm{H}^{2 n+3}, \varphi, \xi_{0}, \eta_{0}, 8\right), s$ odd, are framed C.R. submanifolds.

REMARKS

1) Let $\left(N, \mathscr{D}, \mathscr{D}^{\perp}\right)$ be a framed C.R. submanifold of $H^{2 n+8}$. By (4.5) one obtains:

$$
\begin{equation*}
\mathscr{F}^{2}=\mathbf{P}^{2}-\eta^{2} \otimes \zeta^{2} . \tag{4.6}
\end{equation*}
$$

Now the notion of framed C.R. submanifold appears to be essentially on old concept. For not only N becomes a C.R. submanifold of the Hermitian manifold $\mathrm{H}^{2 \mathrm{a}+\mathrm{s}}$, if for instance s is even, but its holomorphic and totally-real distributions are precisely $\mathscr{D}, \mathscr{D}^{\perp}$. Indeed, by (4.6) one has $<_{\mathrm{N}}=$, Q.E.D.
2) Due to (3.4) there is a certain similarity between $\mathscr{R}_{\text {manifolds }}$ and locally conformal Kaehler manifolds, cf. P.LIBERMANN, [26]. See also [12]. For instance, we may use the ideas in [2] (cf. also theor. 3.4 of [7], p.89) to
give an other proof of the integrability of the f-anti-invariant distribution of a framed C.R. submanifold. Indeed, let N be a framed C.R. submanifold of $H^{2 n+8}, \mathrm{~s}$ even. Let $\mathrm{X} \in \mathscr{D}, \mathrm{Z}, \mathrm{W} \in \mathscr{D}^{\perp}$. By (3.4) one has $0=3(\mathrm{~d} \tilde{\mathrm{~F}})(\mathrm{X}, \mathrm{Y}, \mathrm{W})$ $=-\mathbf{G}([\mathrm{Z}, \mathrm{W}], \mathrm{J} \mathbf{X})$. Hence $[\mathrm{Z}, \mathrm{W}] \in \mathscr{D}^{\perp}$. Note that, although N is C.R. in the usual sense one could not apply theor.3.4 or theor.4.1 of [7] (p.89-90) since $\mathrm{H}^{2 \mathrm{n}+3}$ is neither locally conformal Kaehler nor Kaehler.

To establish iii) let N be an f-invariant submanifold of $H^{2 n+3}$. As a consequence of (2.5), for any tangent vector fields X, Y on N one has:

$$
\begin{gather*}
\left(\mathrm{D}_{\mathbf{X}} \underline{f}\right) \mathbf{Y}=\frac{1}{2} \alpha^{\mathbf{2}}\left\{\left[\mathrm{G}(\mathbf{X}, \mathrm{Y})-\eta_{\mathrm{b}}(\mathrm{X}) \eta^{\mathrm{b}}(\mathrm{Y})\right] \xi_{\mathrm{a}}-\left[\mathrm{X}-\eta_{\mathrm{b}}(\mathrm{X}) \xi^{\mathrm{b}}\right] \eta_{\mathrm{a}}(\mathrm{Y})\right\} \tag{4.7}\\
\mathbf{h}(\mathbf{X}, \underline{\mathbf{f}} \mathbf{Y})=\underline{\mathbf{f}} \mathbf{h}(\mathbf{X}, \mathbf{Y}) . \tag{4.8}
\end{gather*}
$$

Let $\mathbf{k}(\mathbf{X}, \mathrm{Y})$ be the Riemannian sectional curvature of the 2-plane spanned by the orthonormal pair $\{\mathrm{X}, \mathrm{Y}\}$ on N ; using the Gauss equation, i.e. equation (2.6) in [24], (p.45), and the notations in [4], (p.161), i.e. $H(X)=k(X$, $\mathbf{f X}), \mathbf{X} \in \mathscr{L}$, one obtains:

$$
\begin{equation*}
1-\frac{3}{4} s=H(X)+2\|h(X, X)\|^{2} \tag{4.9}
\end{equation*}
$$

as $\mathrm{H}^{2 \mathrm{n}+\mathrm{z}}$ has constant f -sectional curvature, (cf.[8], p.173). By (2.15) and f-invariance one has $h\left(X, \xi_{\mathrm{z}}\right)=-\frac{1}{2} \alpha_{\mathrm{a}} \operatorname{nor}(\underline{f} \mathbf{X})=0$; a standard argument based on (4.8) leads to the proof.

To prove iv) one uses $D \mathrm{~h}=0$, (2.15) and f-invariance, i.e. one has $\mathbf{h}\left(\left(_{\mathbf{D}} \boldsymbol{\xi}_{\mathrm{a}}, \mathrm{Y}\right)=0\right.$. Thus $\alpha_{\mathbf{a}} \mathbf{h}(\underline{f} \mathbf{X}, \mathrm{Y})=0$, by (2.14). For some $\alpha_{\mathrm{a}}=0$ one uses (4.7). Finally, apply once more \underline{f} and notice that η_{2}^{\prime} vanish on normal vectors. Thus $h=0$.

REMARK

Let \mathscr{F} be the canonical foliation of $\mathrm{H}^{2 \mathrm{n}+2}$. Let N be a framed C.R. submanifold of $\mathrm{H}^{2 \mathrm{n}+3}$, as above. Then $\mathscr{D}^{\perp} \subseteq \mathscr{F}$, i.e. the totally-real foliation of N (regarded as a C.R. submanifold, s even) is normal to the characteristic field $2 \sum_{i=1}^{s / 2}\left(\xi_{i}-\xi_{i}\right)$ of $H^{2 n+3}$. Indeed, since $\xi_{i} \in \mathscr{D}^{\perp}$, the η_{a} vanish on \mathscr{D}^{\perp} Thus $\omega \circ \wedge^{\perp}=0$.

5.- THE CHEN CLASS OF A CAUCHY-RIEMANN SUBMANIFOLD.

Let M be a C.R. submanifold of $\mathbf{C P}{ }^{\mathbf{n}}$. Let $\pi: N \rightarrow M$ be a T^{3} - fibration, as in theor. B. Assume s is even. Then N is a C.R.submanifold of $H^{2 n+3}$ and its totally-real distribution is integrable. We shall need the following:

LEMMA

The holomorphic distribution of N is minimal.
Proof.
Note that we may not use lemma 4. in [17] (p.169) since its proof makes essential use of the Kaehler property. Neither could one use corollary 2.3 of [27] (p.291), (although $\mathscr{D}_{\mathrm{N}}^{\perp} \subseteq \mathscr{F}$) since ($(8,8)$ fails to be locally conformal Kaehler. Now (2.4) - (2.5), (3.1) lead to:

$$
\begin{align*}
\left(\mathrm{D}_{\mathrm{X}} \mathscr{D}\right) & \mathrm{Y} \\
& -\frac{1}{2}\left\{\left[\mathscr{(X}(\mathrm{X}, \mathrm{Y})-\eta_{\mathrm{b}}(\mathrm{X}) \eta^{\mathrm{b}}(\mathrm{Y})\right] \xi-\right. \tag{5.1}\\
& \left.\left.\left.-\eta_{\mathrm{b}} \mathrm{X}\right) \xi^{\mathrm{b}}\right] \eta(\mathrm{Y})\right\}-\frac{1}{4}\{\mathbf{F}(\mathrm{X}, \mathrm{Y}) \mathrm{B}+\omega(\mathrm{Y}) \underline{\mathrm{f}} \mathrm{X}\}
\end{align*}
$$

where $\eta=\sum_{a=1}^{s} \eta_{a}, \xi=\eta^{\dagger}$. Let $\mathrm{X} \in \mathscr{D}_{\mathrm{N}}, \mathrm{Z} \in \mathscr{D}_{\mathrm{N}}^{\perp}$. Using (5.1) we have:

Thus: $\mathscr{C}\left(Z, \underline{\mathrm{D}}_{\mathbf{X}} \mathrm{X}+\underline{\mathrm{D}}_{\mathscr{A}} \mathscr{X} \mathrm{X}\right)=0$ and $\mathscr{D} \frac{1}{\mathrm{~N}}$ follows to be minimal. Let $\mathrm{p}=\operatorname{dim}_{\mathbb{C}} \mathscr{D}$. Let $\left\{X_{A}: 1 \leq A \leq 2 p\right\}$ be a real orthonormal frame of \mathscr{D}, where $X_{i+p}=\mathscr{D} X_{i}$, $1 \leq \mathrm{i} \leq \mathrm{p}$. Then $\left\{\mathrm{X}_{\mathbf{A}}^{\mathrm{H}}, \xi_{\mathrm{a}}\right\}$ is an orthonormal frame of \mathscr{D}_{N}. Let $\lambda^{A}, 1 \leq \mathrm{A} \leq 2 \mathrm{p}$, be differential 1 -forms on N defined by $\lambda^{A}\left(X_{B}\right)=\delta_{B}^{A}, \lambda^{\wedge}(Y)=0$, for any $Y \in \mathscr{D} \frac{1}{N}$. Let $\lambda==\lambda^{1} \wedge \ldots \wedge \lambda^{2 p} \wedge \eta^{1} \wedge \ldots \wedge \eta^{2}$. Then λ is a globally defined $(2 p+s)$-form on N, as \mathscr{D}_{N} is orientable. We leave it as an exercise to the reader to follow the ideas in [17] (p.170) and show that since \mathscr{D}_{N} is minimal and $\mathscr{D} \frac{\perp}{N}$ integrable the $(2 p+s)$-form λ is closed. Thus λ determines a cohomology class $\mathbf{c}(N)=[\lambda] \in H^{2 p+s}(N ; \mathbb{R})$ refered to as the Chen class of N.

To prove theor. B suppose M is a C.R. product, i.e. M is locally a product of a complex submanifold and a totally-real submanifold of $C P^{n}$, see e.g. [28], (p.63). Now C.R. products have an integrable holomorphic distribution and a minimal totally-real distribution. By (2.8), for any tangent vector fields X, Y on $C P^{\mathbf{n}}$ one has:

$$
\begin{equation*}
\left[X^{\mathbf{H}}, \mathbf{Y}^{\mathbf{H}}\right]=\left[\mathbf{X}, \mathbf{Y}^{\mathbf{H}}-\alpha^{\mathbf{a}} \underline{\mathbf{F}}\left(\mathbf{X}^{\mathbf{H}}, \mathbf{Y}^{\mathbf{H}}\right) \underline{\xi}\right. \tag{5.2}
\end{equation*}
$$

Then (5.2) used for $X=X_{A}, Y=X_{B}$ leads to $\left[X_{A}^{H}, X_{B}^{H}\right] \in \mathscr{D}_{N}$. Next, as $\mathscr{P}^{\text {l }}$ $X_{A}^{H}=0$ one has

$$
\begin{equation*}
\mathscr{F}^{\perp}\left[X_{A}^{H}, \xi_{a}\right]=\left(\underline{D}_{\xi_{a}} \mathscr{F}^{\perp}\right) X_{A}^{H}-\mathscr{F}_{A}^{\perp} \underline{D}_{X^{H}} \xi_{a} \tag{5.3}
\end{equation*}
$$

We need the following :
LEMMA
The covariant derivative $\left(\mathrm{D}_{\mathbf{X}} \mathscr{F}^{\perp}\right) \mathbf{Y}=\mathrm{D}_{\mathbf{X}}^{\perp} \mathscr{F}^{\perp} \mathrm{Y}-\mathscr{F}^{\perp} \mathrm{D}_{\mathbf{X}} \mathrm{Y}$ of \mathscr{F}^{\perp} is expressed by:

$$
\begin{equation*}
\left(\mathrm{D}_{\mathbf{X}} \mathscr{P}^{\mathcal{L}}\right) \mathbf{Y}=-\mathbf{h}(\mathbf{X}, \mathscr{P} \mathbf{Y})+\mathbf{f} \mathbf{h}(\mathbf{X}, \mathbf{Y})-\frac{1}{4} \omega(\mathbf{Y}) \mathbf{F X} \tag{5.4}
\end{equation*}
$$

for any tangent vector fields X, Y on N . Here $\mathrm{f} \mathrm{V}=$ nor $(\mathbb{V} \mathrm{V})$ for any cross-section V in $\mathrm{T}(\mathrm{N})^{\perp} \mathrm{N}$.
Proof.
Let also ${ }_{\mathrm{t}}^{\sim} \mathrm{V}=\tan (\mathscr{L})$. Using the Gauss and Weingarten formulae of N in $\mathrm{H}^{2 \mathrm{n}+\mathrm{s}}$ one has:

$$
\begin{align*}
\left(\mathrm{D}_{\mathbf{X}} \mathscr{D}\right) \mathrm{Y} & =\left(\mathrm{D}_{\mathbf{X}} \mathscr{S}\right) \mathbf{Y}-\mathrm{W}_{\mathscr{S}_{\mathbf{I}}} \mathbf{X}-\mathrm{th}(\mathbf{X}, \mathbf{Y})+ \\
+ & \left(\mathrm{D}_{\mathbf{X}} \mathscr{F}^{\mathrm{L}}\right) \mathbf{Y}+\mathrm{h}(\mathbf{X}, \mathscr{F} \mathbf{Y})-\mathbf{f} \mathbf{h}(\mathbf{X}, \mathbf{Y}) \tag{5.5}
\end{align*}
$$

Let us use (5.1) to substitute in (5.5); a comparisson between the normal components in (5.5) leads to (5.4), Q.E.D.

Now we may use the above lemma to end the proof of the involutivity of $\mathscr{D}_{\mathrm{N}^{-}}$Indeed, by (5.4) and (2.4) our (5.3) turns into:

and by (2.15) one obtaines $\boldsymbol{P}^{\mathbf{1}}\left[\mathrm{X}_{\mathrm{A}}^{\mathrm{H}}, \xi_{\mathrm{a}}\right]=0$.
The last step is to establish minimality of $\mathscr{D} \frac{\perp}{N}$. Let $q=\operatorname{dim}_{\mathbb{R}} \mathscr{D}_{\mathrm{x}}^{\perp}, \mathrm{x} \in \mathrm{M}$.

If $\left\{\mathrm{E}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{q}\right\}$ is an orthonormal frame of \mathscr{D}^{\perp} then (2.8) yields:

$$
\begin{equation*}
\iota_{N} \sum_{i=1}^{q} \underline{D}_{E_{i}^{H}} E_{i}^{H}=\left\{\ell \sum_{i=i}^{q}{\underset{i}{i}}_{-} E_{i}^{H}\right\} . \tag{5.7}
\end{equation*}
$$

But \mathscr{D}^{\perp} is minimal, so the right hand member of (5.7) is zero. Finally, one may follow the ideas in [17], (p.170) to show that since $\mathscr{D}_{\mathbf{N}}$ is integrable and $\mathscr{D}_{\mathrm{N}}^{\perp}$ minimal the $(2 p+s)$-form λ is coclosed. As N is compact, λ is harmonic. Thus $c(N)=[\lambda] \neq 0$, and our theor. B is completely proved.

REFERENCES

1 A.BEJANCU, C.R. submanifolds of a Kaehler manifold, I-II, Proc. A.M.S.. 69 (1978), 134-142. Trans. A.M.S., 250 (1979),335-345.
2 D.E.BLAIR \& B.Y.CHEN, On C.R. submanifolds of Hermitian manifolds, Israel L. Math. 34 (1979), 353-363
3 A.ANDREOTTI \& C.D.HILL, Complex characteristic coordinates and tangential Cauchy-Riemann equations, Ann. Scuola Norm. Sup. Pisa, 26 (1972), 299-324.

4 D.E.BLAIR, Geometry of manifolds with structural group $U(n) \times O(s), L$ Diff. Geometry (2) 4 (1970), 155-167.
5 I.MIHAI, C.R. Submanifolds of a framed f-manifold, Stud. Cerc. Mat., 35 (1982), 127-136.

6 L.ORNEA, Generic C.R. submanifolds of $\mathscr{R}_{\text {manifolds, Stud. Cerc. Mat. } 36} 36$ (1984), 135-443.

7 K.YANO \& M.KON, C.R. submanifolds of Kaehlerian and Sasakian manifolds, Progress in Math.. Vol. 30. Birkhäuser, Boston-Bascel-Stuttgart, 1983.
8 D.E.BLAIR, On a generalization of the Hopf fibration, An. St. Univ. "Al. I. Cuza' 17 (1971), 171-177.

9 W.M.BOOTHBY \& H.C.WANG, On contact manifolds, Ann. Math., (3) 68 (1958), 721-734.
10 A.MORIMOTO, On normal almost contact stuctures, L Math. Soc. Japan 15 (1963), 420-436.

11 S.TANNO, On fiberings of some noncompact contact manifolds, Tohoku Math. L. 15 (1963), 289-297.

12 I.VAISMAN, Locally conformal Kaehler manifolds with parallel Lee form, Rendiconti di Matem.. 12 (1979), 263-284.

13 H.B. LAWSON, Rigidity theorems in rank-1 symmetric spaces, L Diff. Geometry, 4 (1970), 349-357.
14 Y.MAEDA, On real hypersurfces of a complex projective space, L Math. Soc. Japan, 28 (1976), 529-540.
15 M.OKUMURA, On some real hypersurfaces of a complex projective space, Trans. A.M.S., 212 (1975), 355-364.
16 K.YANO \& M.KON, Differential geometry of C.R. submanifolds, Geom. Dedicata. 10 (1981), 369-391.
B.Y.CHEN, Cohomology of C.R. submanifolds, Ann, Fac. Sci. Toulose, 3 (1981), 167-172.

18 S.GOLDBERG \& K.YANO, On normal globally framed f-manifolds, To hoku Math. J. 22 (1970), 362-370.
19 K.YANO On a structure defined by a tensor field f of type (1,1) satisfying $f^{3}+f=0$, Tensor. N.S., 14 (1963), 99-109.
H.NAKAGAWA, f-structures induced on submanifolds in spaces, almost Hermitian or almost Kaehlerian, Ködai Math. Sem. Rep. 18 (1966), 161-183.
21 D.E.BLAIR \& G.D.LUDDEN \& K.YANO, Differential geometric stuctures on principal toroidal bundles, Trans.A.M.S., 181 (1973), 175-184.
22 R.S.PALAIS, A global formulation of the Lie theory of transformation groups. Memoirs A.M.S., vol.22, 1957.
23 B.O'NEILL, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469.

24 B.Y.CHEN, Geometry of submanifolds. M.Dekker, Inc., New York, 1973.
25 S.GOLDBERG, Invariant submanifolds of codimension 2 of framed manifolds, An, St. Univ. "Al. I. Cuza"' '17 (1971), 157-165.
26 P.LIBERMANN, Sur les structures presque complexes et autres structures infinitesimales reguliers, Bull. Soc. Math. France. 83 (1985), 195-224.
27 B.Y.CHEN \& P.PICCINNI, The canonical foliations of a locally conformal Kaehler manifold, Ann. Matem. pura appl.. (4) CXLI (1985), 289-305.
28 A.BEJANCU, Geometry of C.R. submanifolds. D. Reidel Publ. Co., Dordrecht- Boston-Lancaster-Tokyo, 1986.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
$\xrightarrow{\square}$
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

