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The regularization of the shock wave solution to the Riemann problem for the relativistic Burgers equation is considered. For
Riemann initial data consisting of a single decreasing jump, we find that the regularization of nonlinear convective term cannot
capture the correct shock wave solution. In order to overcome it, we consider a new regularization technique called the observable
divergence method introduced by Mohseni and discover that it can capture the correct shock wave solution. In addition, we take
the Helmholtz filter for the fully explicit computation.

1. Introduction

The Euler and Navier-Stokes equations are well known as the
fundamental laws governing fluid dynamics which still have
many challenges needed to be overcome. One reason lies in
that the nonlinear terms in the equations give rise to small
scale structures in the form of shock and turbulence. Thus it
is hoped that an efficientmethod should be created to capture
the small scale structures. The regularization idea through
convoluting some terms with the filter introduced by Chen
et al. [1–3] and Cheskidov et al. [4] has been well used to
deal with the above problems, which belongs to the class of
models known as the𝛼-model. In fact, it is similar to the Leray
idea [5] by using convolution to deal with the incompressible
Navier-Stokes equations and thus is usually named the Leray-
type regularization in the literature.

The 𝛼-type regularization in the context of various hydro-
dynamic models has been widely considered, for instance
in [6–12]. The 𝛼-type regularization technique has also
been extended to both the Euler equations [13–15] and the
Navier-Stokes equations [4, 9, 10, 16–19]. In addition, the
Lagrangian averaging approach has also been adopted to
capture the shock and turbulence for the Euler and Navier-
Stokes equations by using a filtered convective velocity in the
nonlinear terms, such as in [4, 15, 20, 21]. Recently, the 𝛼-type

regularization onhyperbolic systems of conservation laws has
also been carried out such as in [22–24].

The inviscid Burgers equation

𝑢
𝑡
+ (

𝑢
2

2

)

𝑥

= 0 (1)

is an important toymodel in computational fluid dynamics. It
is also the simplest example of nonlinear scalar conservation
laws and often serves as a model for more complicated
equations due to the fact that it shares the same nonlinear
convective term as the Euler and Navier-Stokes equations. It
is well known that the shock wave may appear in the solution
to (1) even for smooth initial data. Classically, the Burgers
equation (1) was regularized with a dissipative term such as
viscosity [25]. In addition, another well-known example of
the regularization to (1) is to add the linear dispersion term
which results in the KdV equations [26].

A filtered convective velocity in the nonlinear term of
Burgers equation as an alternative regularization technique

𝑢
𝑡
+ 𝑢𝑢
𝑥
= 0, (2)

𝑢 (𝑥, 𝑡) = 𝜓
𝛼
(𝑥) ∗ 𝑢 (𝑥, 𝑡) (3)

has been introduced in [27], in which the convolution is
only in the 𝑥 variable, 𝜓

𝛼
(𝑥) = (1/𝛼)𝜓(𝑥/𝛼), and 𝜓(𝑥) is
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a smoothing kernel and usually is assumed to be a smooth,
even, integrable function normalized to have total integral
equal to one. In particular, the Helmholtz filter is the most
important one for its convenient inversion techniques. With
this regularization, the convective velocity in the Burgers
equation in (1) is replaced with a filtered velocity in the
convectively filtered Burgers (abbrreviated as CFB) equation
(2). Recently, the Leray regularization technique used on the
Burgers equation (1) has been extensively studied such as
in [14, 28–30]. It has been shown that the existence and
uniqueness of the solutions to theCFB equation (2) have been
considered by Norgard and Mohseni [14, 30]. It was proved
in [30] that the solutions to the CFB equation (2) converge
to the entropy solution of the inviscid Burgers equation (1)
under certain initial conditions. In addition, Bhat and Fetecau
[28] have studied the Riemann problem for the CFB equation
(2) and discovered that the Leray regularization technique
captures the correct shock solution of the inviscid Burgers
equation (1) as 𝛼 → 0.

In this note, we consider the Leray regularization tech-
nique on the following relativistic Burgers equation:

𝑢
𝑡
+ (

√1 + 𝜀
2
𝑢
2
− 1

𝜀
2

)

𝑥

= 0, (4)

where 𝜀 denotes the inverse of the normalized speed of light.
It is derived in [31] from the Euler system of relativistic
compressible flows in a curved space time when all the
geometric effects are neglected. In addition, it also retains
several key features of the relativistic Euler equations. It is
clear to see that the flux function 𝑓(𝑢) = (√1 + 𝜀

2
𝑢
2
−

1)/𝜀
2 is strictly convex and then the conservation law is

genuinely nonlinear. Furthermore, its characteristic value,
namely, the convective velocity, is 𝜆 = 𝑓


(𝑢) = 𝑢/√1 + 𝜀

2
𝑢
2.

Formally, one recovers the inviscid Burgers equation (1) in
the nonrelativistic limit 𝜀 → 0 in (4). At first, we want
to consider the regularization of the convective velocity for
the relativistic Burgers equation (4) and confine ourselves
to the Riemann initial data only; namely, we consider the
Riemann problem for the convectively filtered relativistic
Burgers (abbreviated as CFRB) equation

𝑢
𝑡
+ (

𝑢

√1 + 𝜀
2
𝑢
2

) ⋅ 𝑢
𝑥
= 0 (5)

with the Riemann initial data

𝑢 (𝑥, 0) = {

𝑢
𝑙
, 𝑥 < 0,

𝑢
𝑟
, 𝑥 > 0.

(6)

Like the method for the CFB equation (2) in [28], we
can also solve the Riemann problem for the CFRB equation
(5) by using the method of characteristics. In this note, we
are concerned with the shock capturing capabilities of the
regularization technique. Thus, we draw our attention to
the case 𝑢

𝑙
> 𝑢
𝑟
in which the shock wave appears in the

Riemann solution to (4) and (6). However, we discover that
this regularization is not a reasonable means to capture the
formation of shock wave due to the fact that the limits 𝛼 → 0

of the Reimann solutions to (5) and (6) do not converge to the
corresponding ones to (2) and (6) owing to the differential
shock speeds when 𝑢

𝑙
> 𝑢
𝑟
.

Thus, we can see that arbitrarily applying the regulariza-
tion technique does not lead to a satisfactory result, even
for a scalar conservation law [24] such as the relativistic
Burgers equation. In order to remedy it, we need to search
for a reasonable regularization of equation by means of
filtering variables. Inspired by the recent work by Mohseni
[32], Norgard and Mohseni [15], and Villavert and Mohseni
[23] we consider a new regularization technique called the
observable divergence method to the relativistic Burgers
equation (4) as

𝑢
𝑡
+ (

𝑓 (𝑢)

𝑢

) ⋅ 𝑢
𝑥
+ 𝑢 ⋅ (

𝑓 (𝑢)

𝑢

)

𝑥

= 0; (7)

namely

𝑢
𝑡
+ (

𝑢

√1 + 𝜀
2
𝑢
2
+ 1

) ⋅ 𝑢
𝑥
+ 𝑢 ⋅ (

𝑢

√1 + 𝜀
2
𝑢
2
+ 1

)

𝑥

= 0,

(8)

which is named the the observable relativistic Burgers (abbre-
viated as ORB) equation in this note.

The observable divergencemethod has been confirmed to
be an effective method for the one-dimensional homentropic
Euler and full Euler equations in [15]. Unlike the afore-
mentioned Leray-type regularization technique, the observ-
able divergence method can capture correctly the entropy
solutions for the shock-tube problem and appears to be a
valid shock regularization for the gas dynamic equations.
Motivated by such work, we make a further step to consider
the Riemann problem for the ORB equation (8) in detail.
We discover that it shares the same Riemann solution to
the relativistic Burgers equation (4) when 𝑢

𝑙
> 𝑢
𝑟
, which

implies that the Riemann solution to (8) and (6) has no
dependence on the regularization parameter 𝛼. It is clear
that the Riemann solution to (8) and (6) converges to the
corresponding Riemann solution to (4) and (6) as 𝛼 →

0. Thus the observable divergence method can capture the
shock wave solution correctly for the relativistic Burgers
equation (4). In addition, due to the special structure of the
Burgers equation (1), we notice the fact that we can obtain
the same form (2) when we regularize Burgers equation (1)
by using the regularization of the convective velocity or the
observable divergence method. Maybe this is the reason why
CFB equation (2) can capture the correct shockwave solution.

The different regularization methods have been exten-
sively used to study the motion of large eddies in a turbulent
flow, which usually adopt the approximation of local and
spacial averages in a turbulent flow, such as the Bardina
model and an approximate deconvolution model. The Bar-
dina model was proposed by Bardina et al. [33] by taking
the mean of the Navier-Stokes equations and then neglect-
ing the residual stress and its variations. In addition, the
simplified Bardina model was also proposed by Layton and
Lewandowski [34] and the existence anduniqueness of strong
solutions were obtained therein. It is worthwhile to notice
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that an approximate deconvolution model (abbreviated as
ADM) was proposed by Stolz and Adams [35] to study the
large-eddy simulation through employing an approximate
deconvolution of a filtered quantity by repeated filtering. The
main ingredient of ADM is to approximate the nonfiltered
field by using the truncated series expansion of the inverse
filter operator.We can also see [36] for the comparison among
the three 𝛼-models known as the LANS-𝛼, Leray-𝛼, and
Bardina models and [37] for the comparison between the
approximate deconvolution model and the Bardina model.
Compared with the above regularization methods, to study
the motion of large eddies in a turbulent flow, the regulariza-
tion method in this paper is expected to capture the correct
shock wave speed for hyperbolic conservation laws.

The paper is organized as follows. In Section 2, we deliver
theRiemann solution the relativistic Burgers equation (4) and
then depict the Leray-type regularization with the Helmholtz
mollifier. In Section 3, we consider the Riemann problem for
CFRB equation (5) and explain that the limit of Riemann
solution to (5) and (6) cannot converge to the corresponding
one to (4) and (6) as 𝛼 → 0. In Section 4, we consider the
Riemann problem for the ORB equation (8) and discover that
it has the same Riemann solution as the relativistic Burgers
equation (4) when 𝑢

𝑙
> 𝑢
𝑟
. Moreover, we prove rigorously

that the limit of Riemann solution to (5) and (6) converges to
the corresponding one to (8) and (6) as 𝛼 → 0. Finally, the
discussion is carried out in Section 5.

2. Preliminaries

In this section, we first give some results on the Riemann
problem to the relativistic Burgers equation (4). It is noticed
that (4) is a special scalar conservation law with the convex
flux function, and thus it is well known how to solve the
Riemann problem (4) and (6). Obviously, it has only one
eigenvalue 𝜆 = 𝑓


(𝑢) = 𝑢/√1 + 𝜀

2
𝑢
2 and thus it is genuinely

nonlinear provided that 𝑢 ̸= 0.
For the case 𝑢

𝑙
< 𝑢
𝑟
, the Riemann solution consists of a

rarefaction wave which can be expressed as

𝑢 (𝑥, 𝑡) =

{
{
{
{

{
{
{
{

{

𝑢
𝑙
, 𝑥 < 𝑓


(𝑢
𝑙
) 𝑡,

𝜉

√1 − 𝜀
2
𝜉
2

, 𝑓

(𝑢
𝑙
) 𝑡 ≤ 𝑥 ≤ 𝑓


(𝑢
𝑟
) 𝑡,

𝑢
𝑟
, 𝑥 > 𝑓


(𝑢
𝑟
) 𝑡,

(9)

where 𝜉 = 𝑥/𝑡. For the case 𝑢
𝑙
> 𝑢
𝑟
, the Riemann solution is

a shock wave which can be expressed as

𝑢 (𝑥, 𝑡) = {

𝑢
𝑙
, 𝑥 < 𝜎𝑡,

𝑢
𝑟
, 𝑥 > 𝜎𝑡,

(10)

in which 𝜎 is the shock propagation speed and can be
obtained from the Rankine-Hugoniot condition of (4) as

𝜎 =

𝑢
𝑙
+ 𝑢
𝑟

√1 + 𝜀
2
𝑢
2

𝑙
+ √1 + 𝜀

2
𝑢
2

𝑟

. (11)

Thus, it is obvious to see that the limit of Riemann solution
to the relativistic Burgers equation (4) and (6) converges to

the corresponding Riemann solution to the Burgers equation
(1) and (6) in the nonrelativistic limit 𝜀 → 0 (namely, the
speed of light tends to infinity).

Now, we simply describe the acceptable filters used in
averaging the chosen quantities in the equations; see [14, 28]
for example. Several assumptions on the averaging kernel are
made, such as the fact that it is required to be a nonnegative
smooth and even function. Usually, we need also to assume
that it is nonincreasing with respect to the absolute value of
the argument and integrable normalized to have total integral
equal to one. For simplicity, the Helmholtz mollifier

𝜓 (𝑥) =

1

2

exp (− |𝑥|) (12)

is chosen here which is an averaging kernel of special interest
for its convenient inversion techniques. It is remarkable that
𝜓(𝑥) is not derivative at 𝑥 = 0. Furthermore, the kernel
should be equipped with a small parameter 𝛼 > 0 which acts
as a scaling of the kernel and controls the level of filtering,
which can be expressed as

𝜓
𝛼
(𝑥) =

1

𝛼

𝜓(

𝑥

𝛼

) =

1

2𝛼

exp (−








𝑥

𝛼









) . (13)

For a given real-valued function 𝑓, we can use the
Helmholtz mollifier (13) to define the filter of 𝑓(𝑥) by the
convolution operator which can be represented by a bar as

𝑓 (𝑥) = ∫

+∞

−∞

𝑓 (𝑥 − 𝑦)𝜓
𝛼
(𝑦) 𝑑𝑦, (14)

which satisfies

𝑓 (𝑥) = 𝑓 (𝑥) − 𝛼
2
Δ𝑓 (𝑥) . (15)

It is clear to see that the averaging kernel in (13) converges to
the Dirac delta function and consequently the filter 𝑓(𝑥) in
(14) converges to 𝑓(𝑥) as 𝛼 → 0.

Finally, let us simply discuss the observable divergence
method, such as the fact that we can see [15] for more details.
This method is based on a conservation law perspective and
addresses the cascade of energy generated by the nonlinear
terms. Suppose that there is single or multiple conservation
laws which can be written as

𝑄
𝑡
+ (𝑢𝑄)

𝑥
= 0. (16)

The observable divergencemethod is to expand the nonlinear
flux term by using the product rule and then apply a filter
to the differentiated quantities. Through the above process, it
leads to

𝑄
𝑡
+ 𝑢𝑄
𝑥
+ 𝑄𝑢
𝑥
= 0. (17)

In particular, if we adopt Helmholtz mollifier (13), then (17)
can be rewritten in the conservative form

𝑄
𝑡
+ (𝑢𝑄 + 𝑄𝑢 − 𝑢𝑄 + 𝛼

2
𝑢
𝑥
𝑄
𝑥
)
𝑥
= 0, (18)

in which (15) has been used.
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3. Riemann Problem for CFRB Equation (5)
In this section, we are mainly concerned with the Riemann
problem for the CFRB equation (5). In order to obtain the
exact solution of Riemann problem (5) and (6), let us fix 𝜓 to
be the Helmholtz filter (13). Based on the explicit expression,
we make a further step to discuss the limit of the Riemann
solution for (5) and (6) as 𝛼 → 0 and compare the result
with the corresponding Riemann solution for the relativistic
Burgers equation (4) and (6). Let us draw our attention
to the case 𝑢

𝑙
> 𝑢
𝑟
due to the fact that the shock wave

appears in the Riemann solution to (4) and (6).The Riemann
problem for the CFB equation (2) has been considered in
[28] where the technique of Leray-type regularization is a
reasonable means of capturing shock formation. The related
discussion on this topic was also carried out in [24] for
scalar conservation law where the technique of Leray-type
regularization cannot capture the correct shockwave solution
and thus it is unsuitable as a regularization for the general
scalar conservation law. Here we take relativistic Burgers
equation (4) by using the Helmholtz filter (13) for the Leray-
type regularization, which enables us to obtain a fully explicit
expression of the trajectories and solutions.

Local and global existence can be obtained by applying
the method of characteristic, which is similar to the process
for CFB equation (2) in [28].The particle paths are defined by
the trajectories 𝜂(𝑋, 𝑡) which emit from the position𝑋 at the
time 𝑡 = 0 and obey

𝑑𝜂

𝑑𝑡

(𝑋, 𝑡) = 𝑓

(𝑢) = (

𝑢

√1 + 𝜀
2
𝑢
2

), (19)

which is the corresponding characteristic equations for CFRB
equation (5). The solution 𝑢 is a constant along the particle
path such that we have 𝑢(𝜂(𝑋, 𝑡), 𝑡) = 𝑢

0
(𝑋) for all 𝑡. More

precisely, (19) can be rewritten as

𝑑𝜂

𝑑𝑡

(𝑋, 𝑡) = ∫

+∞

−∞

𝜓
𝛼
(𝜂 (𝑋, 𝑡) − 𝑦) ⋅ 𝑢 (𝑦, 𝑡)

√1 + 𝜀
2
𝑢
2
(𝑦, 𝑡)

𝑑𝑦, (20)

through the change of variables 𝑦 = 𝜂(𝑌, 𝑡), which becomes

𝑑𝜂

𝑑𝑡

(𝑋, 𝑡)

= ∫

+∞

−∞

𝜓
𝛼
(𝜂 (𝑋, 𝑡) − 𝜂 (𝑌, 𝑡)) ⋅ 𝑢

0
(𝑌) ⋅ 𝜂

𝑌
(𝑌, 𝑡)

√1 + 𝜀
2
𝑢
2

0
(𝑌)

𝑑𝑌.

(21)

In particular, if we choose Helmholtz mollifier (13) and
consider the Riemann initial data (6), then (21) turns into

𝑑𝜂

𝑑𝑡

(𝑋, 𝑡)

= ∫

0

−∞

1

2𝛼

⋅ exp(−




𝜂 (𝑋, 𝑡) − 𝜂 (𝑌, 𝑡)






𝛼

) ⋅

𝑢
𝑙
⋅ 𝜂
𝑌
(𝑌, 𝑡)

√1 + 𝜀
2
𝑢
2

𝑙

𝑑𝑌

+ ∫

+∞

0

1

2𝛼

⋅ exp(−




𝜂 (𝑋, 𝑡) − 𝜂 (𝑌, 𝑡)






𝛼

) ⋅

𝑢
𝑟
⋅ 𝜂
𝑌
(𝑌, 𝑡)

√1 + 𝜀
2
𝑢
2

𝑟

𝑑𝑌.

(22)

One can obtain the explicit expression of the particle paths to
Riemann problem (5) and (6) with a similar calculation as in
[24, 28] as follows:

𝑑𝜂

𝑑𝑡

(𝑋, 𝑡)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑢
𝑙

√1 + 𝜀
2
𝑢
2

𝑙

+(

𝑢
𝑟

2√1 + 𝜀
2
𝑢
2

𝑟

−

𝑢
𝑙

2√1 + 𝜀
2
𝑢
2

𝑙

)

× exp(
𝜂 (𝑋, 𝑡) − 𝜂 (0, 𝑡)

𝛼

) , 𝑋 < 0,

𝑢
𝑙

2√1 + 𝜀
2
𝑢
2

𝑙

+

𝑢
𝑟

2√1 + 𝜀
2
𝑢
2

𝑟

, 𝑋 = 0,

𝑢
𝑟

√1 + 𝜀
2
𝑢
2

𝑟

+(

𝑢
𝑙

2√1 + 𝜀
2
𝑢
2

𝑙

−

𝑢
𝑟

2√1 + 𝜀
2
𝑢
2

𝑟

)

× exp(
𝜂 (0, 𝑡) − 𝜂 (𝑋, 𝑡)

𝛼

) , 𝑋 > 0.

(23)

Let us denote

𝜏 =

𝑢
𝑙

2√1 + 𝜀
2
𝑢
2

𝑙

+

𝑢
𝑟

2√1 + 𝜀
2
𝑢
2

𝑟

, (24)

with the initial condition 𝜂(0, 0) = 0 in mind; then it follows
directly from (23) that 𝜂(0, 𝑡) = 𝜏𝑡, which implies that the
trajectory emitting from the initial discontinuous point𝑋 = 0

is a line of slope 𝜏 which is exactly the shock speed to the
Riemann problem for CFRB equation (5). Let us also denote

𝜃 =

𝑢
𝑟

2√1 + 𝜀
2
𝑢
2

𝑟

−

𝑢
𝑙

2√1 + 𝜀
2
𝑢
2

𝑙

; (25)

then it is easy to get 𝜃 < 0 for 𝑢
𝑙
> 𝑢
𝑟
since 𝑓


(𝑢) =

𝑢/√1 + 𝜀
2
𝑢
2 is monotonically increasing with respect to 𝑢.
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Noticing the initial condition 𝜂(𝑋, 0) = 𝑋, the trajectories
𝜂(𝑋, 𝑡) to the Riemann problem (5) and (6) are given by

𝜂 (𝑋, 𝑡)

=

{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝜏𝑡 − 𝛼 ln [1 + ( − 1

+ exp(−𝑋
𝛼

)) ⋅ exp(𝜃𝑡
𝛼

)] , 𝑋 < 0,

𝜏𝑡, 𝑋 = 0,

𝜏𝑡 + 𝛼 ln [1 + ( − 1

+ exp(𝑋
𝛼

)) ⋅ exp(𝜃𝑡
𝛼

)] , 𝑋 > 0.

(26)

It follows directly from (26) that (𝜕𝜂/𝜕𝑋)(𝑋, 𝑡) > 0 for
any fixed 𝑡 and 𝛼 and thus 𝜂(𝑋, 𝑡) is monotonically increasing
with respect to 𝑋 which implies that the characteristic
curves cannot intersect in finite time. Furthermore, we have
lim
𝑡→+∞

(𝜂(𝑋, 𝑡) − 𝜏𝑡) = 0 for any given 𝑋 and 𝛼, which
implies that all the characteristic curves take the line 𝑥 = 𝜏𝑡

as their asymptote and cannot pass through it. In addition, we
let 𝑋 and 𝑡 be fixed and take the limit 𝛼 → 0. If 𝑋 < 0, then
we have

lim
𝛼→0

𝜂 (𝑋, 𝑡) =

{
{
{

{
{
{

{

𝑋 +

𝑢
𝑙
𝑡

√1 + 𝜀
2
𝑢
2

𝑙

, 𝑡 <

𝑋

𝜃

,

𝜏𝑡, 𝑡 >

𝑋

𝜃

,

(27)

which implies that the limit trajectory starting from the initial
point 𝑋 follows the line of slope 𝑢

𝑙
/√1 + 𝜀

2
𝑢
2

𝑙
until it meets

the shock; consequently it follows along the shock line 𝑥 = 𝜏𝑡

after this time. Similarly, if𝑋 > 0, then we also have

lim
𝛼→0

𝜂 (𝑋, 𝑡) =

{
{
{

{
{
{

{

𝑋 +

𝑢
𝑟
𝑡

√1 + 𝜀
2
𝑢
2

𝑟

, 𝑡 < −

𝑋

𝜃

,

𝜏𝑡, 𝑡 > −

𝑋

𝜃

.

(28)

The values of 𝑢 are simply transported along the trajecto-
ries. So if 𝑥 < 𝜏𝑡, it lies on a characteristic starting from some
point 𝑋 < 0. Otherwise if 𝑥 > 𝜏𝑡, it lies on a characteristic
starting from some point𝑋 > 0. Thus, we can conclude that

𝑢 (𝑥, 𝑡) = {

𝑢
𝑙
, 𝑥 < 𝜏𝑡,

𝑢
𝑟
, 𝑥 > 𝜏𝑡.

(29)

Both the shock wave speed 𝜏 and the solution 𝑢(𝑥, 𝑡) in (29)
have no dependence on 𝛼 such that the limit 𝛼 → 0 of
the solution 𝑢(𝑥, 𝑡) in (29) is trivial and not the entropy
solution of relativistic Burgers equation (4) due to the fact
that they have different shock speeds 𝜏 ̸= 𝜎. The reason
lies in the fact that we adopt the averaging of the convective
velocity [24, 28] (i.e., a Leray-type averaging) for (4) which
leads to the different shock speed to the original one. In
fact, for a convex scalar conservation law, the averaging of
the convective velocity is equivalent to the characteristically

averaged method proposed in [21]. Obviously, the Leray-
type regularization does not lead to a reasonable result for
relativistic Burgers equation (4) and thus it is not an efficient
regularization method here.

On the other hand, in the nonrelativistic limit 𝜀 → 0, it
can be deduced from (24) that lim

𝜀→0
𝜏 = (𝑢

𝑙
+ 𝑢
𝑟
)/2. It is

easy to check that the limits 𝜀 → 0 of 𝜂(𝑋, 𝑡) are exactly the
trajectories to the Riemann problem for CFB equation (2).
Thus, when 𝑢

𝑙
> 𝑢
𝑟
, we can see that the Riemann solution for

CFRB equation (5) converges to the corresponding one for
CFB equation (2) in the nonrelativistic limit 𝜀 → 0.

Finally, let us compare the different convergence results
to the regularization of the convective velocity for rela-
tivistic Burgers equation (4) and the Burgers equation (1).
For relativistic Burgers equation (4), the shock speed is
determined by the Rankine-Hugoniot conditions. While, for
CFRB equation (5), the discontinuity speed is determined
by the speed of the averaged characteristics at the location
of discontinuity. Thus, when 𝑢

𝑙
> 𝑢
𝑟
, the Riemann solution

for CFRB equation (5) cannot converge to the corresponding
one for relativistic Burgers equation (4) due to their different
speeds of discontinuities. However, when 𝑢

𝑙
> 𝑢
𝑟
, the Rie-

mann solution for CFB equation (2) converges to the corre-
sponding one for Burgers equation (1) due to the fact that they
have the same speeds of discontinuities; namely, the equality

𝑓

(𝑢
𝑙
) + 𝑓

(𝑢
𝑟
)

2

=

𝑓 (𝑢
𝑟
) − 𝑓 (𝑢

𝑙
)

𝑢
𝑟
− 𝑢
𝑙

(30)

holds when 𝑓(𝑢) = 𝑢
2
/2. In order to remedy it, we adopt

the observable divergence of the vector field to relativistic
Burgers equation (4) in the following section.

4. Riemann Problem for ORB Equation (8)
In this section, we investigate the Riemann problem for ORB
equation (8). In fact, we also restrict ourselves to Helmholtz
filter (13) and then look for the exact Riemann solution to (8)
and (6) when 𝑢

𝑙
> 𝑢
𝑟
. Consequently, we consider the limit

𝛼 → 0 of the Riemann solution to (8) and (6) and check
that it is exactly the corresponding one for relativistic Burgers
equation (4) and (6).

At first, in order to study the weak solutions to ORB
equation (8) with the Riemann initial data (6), we should
consider the conservative form of (8). Thanks to (18), if we
take Helmholtz filter (13), then ORB equation (8) can be
rewritten in the following conservative form:

𝑢
𝑡
+ ((

𝑢

√1 + 𝜀
2
𝑢
2
+ 1

) ⋅ (𝑢 − 𝑢) +

𝑢𝑢

√1 + 𝜀
2
𝑢
2
+ 1

+ 𝛼
2
𝑢
𝑥
⋅ (

𝑢

√1 + 𝜀
2
𝑢
2
+ 1

)

𝑥

)

𝑥

= 0.

(31)

We know from [15] that (31) preserves the conservative
structure of the original equation (4). It is clear to see that
(31) becomes formally relativistic Burgers equation (4) if we
take 𝛼 = 0 in (31). A natural question is whether solutions
of relativistic Burgers equation (4) can be approximated
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properly by those of (31) with the regularization parameter
𝛼 > 0, especially for the Riemann initial data (6). In what
follows, it will be shown that, for arbitrary 𝛼 > 0, the
conservative form (31) for the ORB equation (8) has the same
traveling wave solution to (4) and (6) when 𝑢

𝑙
> 𝑢
𝑟
. Namely,

we need to check that solution (10) with (11) to the Riemann
problem (4) and (6) is also a weak solution to Riemann
problem (31) and (6) as well.

It follows from (13) with (14) that

𝑢 (𝑥, 𝑡) = ∫

+∞

−∞

1

2𝛼

exp(−








𝑦

𝛼









) 𝑢 (𝑥 − 𝑦, 𝑡) 𝑑𝑦,

(

𝑢

√1 + 𝜀
2
𝑢
2
+ 1

) (𝑥, 𝑡)

= ∫

+∞

−∞

1

2𝛼

exp (−








𝑦

𝛼









)(

𝑢 (𝑥 − 𝑦, 𝑡)

√1 + 𝜀
2
𝑢(𝑥 − 𝑦, 𝑡)

2

+ 1

)𝑑𝑦.

(32)

By substituting 𝑢(𝑥, 𝑡) defined as in (10) with (11) into (32), we
can obtain that

𝑢 (𝑥, 𝑡) =

{
{
{
{
{

{
{
{
{
{

{

𝑢
𝑙
+

𝑢
𝑟
− 𝑢
𝑙

2

exp(𝑥 − 𝜎𝑡
𝛼

) , 𝑥 < 𝜎𝑡,

𝑢
𝑟
+ 𝑢
𝑙

2

, 𝑥 = 𝜎𝑡,

𝑢
𝑟
+

𝑢
𝑙
− 𝑢
𝑟

2

exp(𝜎𝑡 − 𝑥
𝛼

) , 𝑥 > 𝜎𝑡,

(33)

(

𝑢

√1 + 𝜀
2
𝑢
2
+ 1

) (𝑥, 𝑡)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑢
𝑙

√1 + 𝜀
2
𝑢
2

𝑙
+ 1

+

1

2

(

𝑢
𝑟

√1 + 𝜀
2
𝑢
2

𝑟
+ 1

−

𝑢
𝑙

√1 + 𝜀
2
𝑢
2

𝑙
+ 1

)

× exp (𝑥 − 𝜎𝑡
𝛼

) , 𝑥 < 𝜎𝑡,

1

2

(

𝑢
𝑟

√1 + 𝜀
2
𝑢
2

𝑟
+ 1

+

𝑢
𝑙

√1 + 𝜀
2
𝑢
2

𝑙
+ 1

) , 𝑥 = 𝜎𝑡,

𝑢
𝑟

√1 + 𝜀
2
𝑢
2

𝑟
+ 1

+

1

2

(

𝑢
𝑙

√1 + 𝜀
2
𝑢
2

𝑙
+ 1

−

𝑢
𝑟

√1 + 𝜀
2
𝑢
2

𝑟
+ 1

)

× exp (𝜎𝑡 − 𝑥
𝛼

) , 𝑥 > 𝜎𝑡.

(34)

Furthermore, we have

𝑢
𝑥
(𝑥, 𝑡) =

{
{
{

{
{
{

{

𝑢
𝑟
− 𝑢
𝑙

2𝛼

exp(𝑥 − 𝜎𝑡
𝛼

) , 𝑥 < 𝜎𝑡,

𝑢
𝑟
− 𝑢
𝑙

2𝛼

exp(𝜎𝑡 − 𝑥
𝛼

) , 𝑥 > 𝜎𝑡,

(35)

(

𝑢

√1 + 𝜀
2
𝑢
2
+ 1

)

𝑥

(𝑥, 𝑡)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

1

2𝛼

(

𝑢
𝑟

√1 + 𝜀
2
𝑢
2

𝑟
+ 1

−

𝑢
𝑙

√1 + 𝜀
2
𝑢
2

𝑙
+ 1

)

× exp(𝑥 − 𝜎𝑡
𝛼

) , 𝑥 < 𝜎𝑡,

1

2𝛼

(

𝑢
𝑟

√1 + 𝜀
2
𝑢
2

𝑟
+ 1

−

𝑢
𝑙

√1 + 𝜀
2
𝑢
2

𝑙
+ 1

)

× exp(𝜎𝑡 − 𝑥
𝛼

) , 𝑥 > 𝜎𝑡.

(36)

The Rankine-Hugoniot condition states that, in order for
𝑢(𝑥, 𝑡) defined as in (10) with (11) to be a weak solution of the
Riemann problem for the conservation law (31), the speed of
discontinuity 𝜎must satisfy

𝜎 = [(

𝑢

√1 + 𝜀
2
𝑢
2
+ 1

) ⋅ (𝑢 − 𝑢) +

𝑢𝑢

√1 + 𝜀
2
𝑢
2
+ 1

+ 𝛼
2
𝑢
𝑥
⋅ (

𝑢

√1 + 𝜀
2
𝑢
2
+ 1

)

𝑥

]

× [𝑢]
−1
.

(37)

Due to the fact that all the 𝑢, (𝑢/(√1 + 𝜀2𝑢2 + 1)), 𝑢
𝑥
, and

(𝑢/(√1 + 𝜀
2
𝑢
2
+ 1))
𝑥
are continuous across the discontinuity

line 𝑥 = 𝜎𝑡, (37) can be reduced to

𝜎 = [(

𝑢

√1 + 𝜀
2
𝑢
2
+ 1

) ⋅ 𝑢 +

𝑢𝑢

√1 + 𝜀
2
𝑢
2
+ 1

]

× [𝑢]
−1
;

(38)

namely

𝜎 = ((

𝑢

√1 + 𝜀
2
𝑢
2
+ 1

) (𝜎𝑡, 𝑡) ⋅ [𝑢]

+ 𝑢 (𝜎𝑡, 𝑡) ⋅ [

𝑢

√1 + 𝜀
2
𝑢
2
+ 1

])

× [𝑢]
−1
.

(39)
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Substituting (33) and (34) into (39) yields

𝜎 =

1

2

(

𝑢
𝑟

√1 + 𝜀
2
𝑢
2

𝑟
+ 1

+

𝑢
𝑙

√1 + 𝜀
2
𝑢
2

𝑙
+ 1

)

+

𝑢
𝑟
+ 𝑢
𝑙

2 (𝑢
𝑟
− 𝑢
𝑙
)

⋅ (

𝑢
𝑟

√1 + 𝜀
2
𝑢
2

𝑟
+ 1

−

𝑢
𝑙

√1 + 𝜀
2
𝑢
2

𝑙
+ 1

)

=

1

𝑢
𝑟
− 𝑢
𝑙

(

𝑢
2

𝑟

√1 + 𝜀
2
𝑢
2

𝑟
+ 1

−

𝑢
2

𝑙

√1 + 𝜀
2
𝑢
2

𝑙
+ 1

)

=

1

𝑢
𝑟
− 𝑢
𝑙

(

√1 + 𝜀
2
𝑢
2

𝑟
− √1 + 𝜀

2
𝑢
2

𝑙

𝜀
2

)

=

𝑢
𝑙
+ 𝑢
𝑟

√1 + 𝜀
2
𝑢
2

𝑙
+ √1 + 𝜀

2
𝑢
2

𝑟

.

(40)

This verifies our claim that, for arbitrary 𝛼 > 0, the
conservative form (31) for ORB equation (8) has the same
traveling wave solution as relativistic Burgers equation (4).

In the following theorem, we will see that 𝑢(𝑥, 𝑡) defined
as in (10) with (11) is indeed the weak solution to Riemann
problem (31) and (6).

Theorem 1. Suppose that 𝑢
𝑙
> 𝑢
𝑟
, for arbitrary 𝛼 > 0; then

𝑢(𝑥, 𝑡) defined in (10) with (11) is indeed the weak solution the
Riemann problem (31) and (6), in which (31) is the conservative
form for ORB equation (8) with Helmholtz filter (13).

Proof. In order to prove that 𝑢(𝑥, 𝑡) defined in (10) with (11)
is indeed the weak solution to Riemann problem (31) and (6),
let us take a smooth test function 𝜓(𝑥, 𝑡) ∈ 𝐶

∞

𝑐
(𝑅 × 𝑅

+
) and

then check that the equality

⟨𝑢
𝑡
+ ((

𝑢

√1 + 𝜀
2
𝑢
2
+ 1

) ⋅ (𝑢 − 𝑢)

+

𝑢𝑢

√1 + 𝜀
2
𝑢
2
+ 1

+ 𝛼
2
𝑢
𝑥

⋅ (

𝑢

√1 + 𝜀
2
𝑢
2
+ 1

)

𝑥

)

𝑥

, 𝜓 (𝑥, 𝑡)⟩ = 0

(41)

holds in the weak (or distribution) sense. To prove the above
claim, we need to compute each term on the left hand of (41)
and consequently verify that their sum is zero. At first, we
have

⟨𝑢
𝑡
, 𝜓⟩ = −∫

∞

0

∫

∞

−∞

𝑢 (𝑥, 𝑡) 𝜓
𝑡
(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

= −∫

∞

0

∫

𝜎𝑡

−∞

𝑢
𝑙
𝜓
𝑡
(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

− ∫

∞

0

∫

∞

𝜎𝑡

𝑢
𝑟
𝜓
𝑡
(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡.

(42)

If 𝜎 > 0, by exchanging the ordering of integration, then we
have

⟨𝑢
𝑡
, 𝜓⟩ = −∫

0

−∞

∫

∞

0

𝑢
𝑙
𝜓
𝑡
(𝑥, 𝑡) 𝑑𝑡 𝑑𝑥

− ∫

∞

0

∫

∞

𝑥/𝜎

𝑢
𝑙
𝜓
𝑡
(𝑥, 𝑡) 𝑑𝑡 𝑑𝑥

− ∫

∞

0

∫

𝑥/𝜎

0

𝑢
𝑟
𝜓
𝑡
(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

= ∫

∞

0

(𝑢
𝑙
− 𝑢
𝑟
) 𝜓 (𝑥,

𝑥

𝜎

) 𝑑𝑥

= ∫

∞

0

𝜎 (𝑢
𝑙
− 𝑢
𝑟
) 𝜓 (𝜎𝑡, 𝑡) 𝑑𝑡,

(43)

in which we have used the change of variables and the fact
that 𝜓 is compact support. Similarly, if 𝜎 < 0, then we also
have

⟨𝑢
𝑡
, 𝜓⟩ = −∫

0

−∞

∫

𝑥/𝜎

0

𝑢
𝑙
𝜓
𝑡
(𝑥, 𝑡) 𝑑𝑡 𝑑𝑥

− ∫

0

−∞

∫

∞

𝑥/𝜎

𝑢
𝑟
𝜓
𝑡
(𝑥, 𝑡) 𝑑𝑡 𝑑𝑥

− ∫

∞

0

∫

∞

0

𝑢
𝑟
𝜓
𝑡
(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

= ∫

0

−∞

(𝑢
𝑟
− 𝑢
𝑙
) 𝜓 (𝑥,

𝑥

𝜎

) 𝑑𝑥

= ∫

∞

0

𝜎 (𝑢
𝑙
− 𝑢
𝑟
) 𝜓 (𝜎𝑡, 𝑡) 𝑑𝑡.

(44)

Secondly, we deduce that

⟨((

𝑢

√1 + 𝜀
2
𝑢
2
+ 1

) ⋅ (𝑢 − 𝑢))

𝑥

, 𝜓⟩

= −∫

∞

0

∫

∞

−∞

(

𝑢

√1 + 𝜀
2
𝑢
2
+ 1

) ⋅ (𝑢 − 𝑢) 𝜓
𝑥
(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

= −∫

∞

0

∫

𝜎𝑡

−∞

(

𝑢
𝑙

√1 + 𝜀
2
𝑢
2

𝑙
+ 1

+

1

2

(

𝑢
𝑟

√1 + 𝜀
2
𝑢
2

𝑟
+ 1

−

𝑢
𝑙

√1 + 𝜀
2
𝑢
2

𝑙
+ 1

)

× exp(𝑥 − 𝜎𝑡
𝛼

))

×

𝑢
𝑙
− 𝑢
𝑟

2

exp (𝑥 − 𝜎𝑡
𝛼

)𝜓
𝑥
(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡
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− ∫

∞

0

∫

∞

𝜎𝑡

(

𝑢
𝑟

√1 + 𝜀
2
𝑢
2

𝑟
+ 1

+

1

2

(

𝑢
𝑙

√1 + 𝜀
2
𝑢
2

𝑙
+ 1

−

𝑢
𝑟

√1 + 𝜀
2
𝑢
2

𝑟
+ 1

)

× exp(𝜎𝑡 − 𝑥
𝛼

))

×

𝑢
𝑟
− 𝑢
𝑙

2

exp(𝜎𝑡 − 𝑥
𝛼

)𝜓
𝑥
(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡,

(45)

in which (10), (33), and (34) have been used.
Thirdly, in view of (10) and (33) again, we have

⟨(

𝑢𝑢

√1 + 𝜀
2
𝑢
2
+ 1

)

𝑥

, 𝜓⟩

= −∫

∞

0

∫

∞

−∞

(

𝑢𝑢

√1 + 𝜀
2
𝑢
2
+ 1

)𝜓
𝑥
(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

= −∫

∞

0

∫

𝜎𝑡

−∞

(

𝑢
𝑙

√1 + 𝜀
2
𝑢
2

𝑙
+ 1

)

× (𝑢
𝑙
+

𝑢
𝑟
− 𝑢
𝑙

2

exp (𝑥 − 𝜎𝑡
𝛼

))𝜓
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(46)

Finally, by virtue of (35) and (36), we arrive at

⟨(𝛼
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(47)

Collecting (45), (46), and (47) together, one can see that
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(48)

in which we have used the result in (40). Thus, it is clear that
the addition of (48) and (43) for 𝜎 > 0 (or (48) and (44) for
𝜎 < 0) leads to equality (41).

It can be drawn from the above theorem that 𝑢(𝑥, 𝑡)
defined in (10) with (11) is indeed the weak solution to
Riemann problem (31) and (6), which implies that it has no
dependence on the regularization parameter 𝛼. It is clear to
see that that the Riemann solution to (31) and (6) converges
to the corresponding one to (4) and (6) as 𝛼 → 0, which is
the desirable result. It is remarkable that the shock position is
invariant for Riemann problem (31) and (6) during the limit
process 𝛼 → 0. Thus, the observable divergence method
is reasonable to capture the shock solution for relativistic
Burgers equation (4).

5. Conclusions

From the above results, we can see that a Leray-type aver-
aging, namely, an averaging of the convective velocity, is
successful to regularize Burgers equation (1) due to the fact
that (1) obeys special condition (30). Thus, this averaging
cannot be extended to the general scalar conservation laws,
not tomention systems of hyperbolic conservation laws. Here
we take relativistic Burgers equation (4) as an example to
explain it.

In order to remedy it, Mohseni has developed the observ-
able divergence method to study the shock regularization for
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systems of hyperbolic conservation laws. In this paper, we
take relativistic Burgers equation (4) as the detailed example
to check and confirm that it is an efficient regularization
technique due to the fact that it preserves the shock speed
of the original equation. In particular, we use the Helmholtz
filter such that regularized system (8) can be still written
in conservative form (31), and thus it preserves the original
conservation properties of relativistic Burgers equation (4).
It is clear to see that the results in this paper can be
extended to the convex (or concave) scalar conservation law.
Furthermore, compared with a Leray-type averaging, the
observable divergence method may be more appropriately
extended to systems of conservation laws.
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models,” Séminaire Laurent Schwartz—EDP et Applications
(2011-2012), pp. 1–12, 2012.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


