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Multiobjective trajectory optimization and adaptive backstepping control method based on recursive fuzzy wavelet neural network
(RFWNN) are proposed to solve the problem of dynamic modeling uncertainties and strong external disturbance of the rubber
unstacking robot during recycling process. First, according to the rubber viscoelastic properties, theHunt-Crossley nonlinearmodel
is used to construct the robot dynamics model. Then, combined with the dynamic model and the recycling process characteristics,
the multiobjective trajectory optimization of the rubber unstacking robot is carried out for the operational efficiency, the running
trajectory smoothness, and the energy consumption. Based on the trajectory optimization results, the adaptive backstepping
control method based on RFWNN is adopted. The RFWNN method is applied in the main controller to cope with time-varying
uncertainties of the robot dynamic system. Simultaneously, an adaptive robust control law is developed to eliminate inevitable
approximation errors and unknown disturbances and relax the requirement for prior knowledge of the controlled system. Finally,
the validity of the proposed control strategy is verified by experiment.

1. Introduction

Countless rubber in the tire manufacturing and other indus-
tries has been applied, such as natural rubber and synthetic
rubber. Due to the need for a large number of manual
participation and taking into account the labor intensity and
low efficiency, it is urgent to use robotic technology instead
of artificial one to complete the rubber unstacking process.
As the heat refining of the rubber block needs to be operated
before the mixer processing, the rubber block will have a
certain degree of melting and resulting in uneven surface
of the rubber block which leads to the fact that adsorption
type fixture cannot be used. Therefore, the way that the
robot end effector directly is inserted into the rubber block
is utilized to complete the unstacking process. During this
process, the robot will be in sharp contact with the rubber,
time-varying contact force will seriously interfere with the
normal operation of the robot, and conventional trajectory
planning and controlmethods are difficult tomeet the system
performance requirements.

Efficiency, trajectory smoothness, and energy consump-
tion are important performance indicators of rubber unstack-
ing robot in trajectory planning. Particularly during recycling
process, due to the viscoelastic characteristics of rubber,
the faster the insertion velocity of the end effector, the
greater the reaction force. According to the characteristics
of robot operation, performance requirements, and corre-
sponding constraints, multiobjective optimization model is
established to obtain the optimal trajectory of the rubber
unstacking robot during recycling process. Many researches
have been done in this area [1–3]. Piazzi andVisioli developed
an approach based on interval analysis to find the global
minimum-jerk (MJ) trajectory of a robot manipulator within
a joint space scheme using cubic splines [4]. Chettibi et al.
discussed the problem of minimum cost trajectory planning
for robotic manipulators, which put a few free via points
uniformly distributed in time [5]. Korayem et al. converted
dynamic load-carrying capacity problem into a trajectory
optimization problem of cable-suspended parallel robots
which is fundamentally a constrained nonlinear optimization
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problem [6]. Abu-Dakka et al. addressed an indirect method
for trajectory planning for industrial robots operating in
workspaces with obstacles using an evolutionary algorithm
[7].

In the aspect of control strategy, due to the influence of
time-varying nonlinear contact force on the robot during the
process of inserting the rubber, the modeling error caused
by the stiffness of the robot bar, the friction of the joint,
and the external disturbance are highlighted, which seriously
affect the robot’s optimal trajectory tracking accuracy and
control performance. The adaptive robust controllers based
on hybrid neural networks can exhibit good properties as
an attempt to cope with the problem of modeling uncer-
tainty parameters and external disturbances. The neural
networks can deal with the unknown dynamics problems
of the rubber unstacking robot control system by exploiting
their universal approximation ability [8–10]. At the same
time, the approximate error of the neural network and
the interference of the external system are estimated and
compensated by adding the adaptive robust term in the
controller [11–13]. Chairez applied differential neural network
approach with activation functions described by wavelets in
a state observation problem when the dynamic model of
a plant contains uncertainties [14]. Yoo et al. proposed a
method for the robust control of flexible-joint robots with
model uncertainties which combined the adaptive dynamic
surface control technique and the self-recurrent wavelet
neural network [15]. Boukattaya et al. studied the trajectory
tracking control problem of mobile manipulators subject
to nonholonomic constraints, operating in task space, with
the presence of external torque disturbances and dynamic
uncertainties [16].

The main objective of this work is related to multiobjec-
tive trajectory optimization and adaptive robust trajectory
tracking control of the rubber unstacking robot during the
recycling process. First, according to the nonlinearity, vis-
coelasticity, and anisotropy of the rubber, the Hunt-Crossley
foundation model was used to establish the mechanical
model while the end effector is inserted into the rubber
block. Then, aimed at the performance indexes such as
operation efficiency, running trajectory smoothness, and
energy consumption, the problem of motion planning is
transformed into multiobjective optimization problem. The
position of the floating via points for the B-spline trajectory
and the running time between adjacent points are optimized,
so the optimal trajectory in joint space is obtained. Finally,
a recursive fuzzy wavelet neural network is proposed to
estimate the uncertainty model of the system by combining
fuzzy andwavelet neural networks. At the same time, adaptive
backstepping control method is adopted to eliminate the
influence of uncertainties such as estimation error and
external disturbance on the tracking accuracy of the system
trajectory. The control performance is verified by simulation
analysis.

2. Robot System and Dynamic Model

The robot unstacking system is shown in Figure 1 which
includes unstacking robot, visual system, ultrasonic system,
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Figure 1: Composition of the robot unstacking system.

Table 1: Definition of main structural physical parameters.

Physical meaning Symbol Value
Waist joint angle/∘ 𝜃1 −165∼165
Big arm joint angle/∘ 𝜃2 5∼130
Forearm joint angle/∘ 𝜃3 60∼200
Length of big arm/mm 𝑙1 945
Length of forearm/mm 𝑙2 1025
Length of parallel arm/mm 𝑙3 400

six-axis force/torque sensor, and end effector with pointy tip.
The dynamic model of robot unstacking process is shown as
follows:

𝑀(𝜃) 𝜃̈ + 𝐶 (𝜃, 𝜃̇) 𝜃̇ + 𝐺 (𝜃) + 𝐽𝑇 (𝜃) 𝐹𝑠 = 𝜏, (1)

where 𝜃, 𝜃̇, and 𝜃̈ are the robot joint angle, angular velocity,
and angular acceleration, respectively, 𝑀(𝜃) is the inertia
matrix, 𝐶(𝜃, 𝜃̇) is Coriolis force item and centrifugal force
item, 𝐺(𝜃) is gravity item, 𝜏 is the generalized input torque,𝐽(𝜃) is Jacobian matrix for the conversion of joint space
to Cartesian space, and Fs represents the external force in
Cartesian space when the robot is inserted into the rubber.
Table 1 shows the definition of main structural physical
parameters of the unstacking robot.

As can be seen from (1), 𝑀(𝜃), 𝐶(𝜃, 𝜃̇), 𝐺(𝜃), and 𝐽(𝜃)
can be calculated according to the robot kinematics and
dynamics; however, it is difficult to describe Fs with a
simple linear mechanics model because the rubber has the
characteristics of nonlinearity, viscoelasticity, and anisotropy.
To obtain a more accurate viscoelastic model, Hunt and
Crossley [17] made a nonlinear combination of spring and
damping systems, and a nonlinear model was established as
follows:

𝐹𝑒 (𝑡) = 𝐾𝑥𝛽 (𝑡) + 𝜆𝑥𝛽𝑥̇ (𝑡) , (2)
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Figure 2: Mechanical model of the tip insertion stage.

where 𝐾 and 𝜆 are the elastic coefficient and the nonlinear
damping coefficient, respectively, 𝑥(𝑡) is the displacement
inserted in the rubber, 𝑥̇(𝑡) is insert speed, and 𝛽 is the
positive scalar.

The mechanical model of the robot end effector insertion
rubber block process was established on the basis of the
selected HC nonlinear basic model and combined with the
mechanical characteristics of rubber block. The insertion
process is divided into two stages, namely, tip part insertion
stage and rod part insertion stage. Figure 2 showed the former
mechanical model. Where 𝑅 is the maximum bottom radius
of the tip cone, 𝐻 is the tip cone height, 𝛼 is the tip cone
angle, 𝑥̇𝑓(𝑡), 𝑥̇𝑟(𝑡) are the velocity component parallel and
perpendicular to the direction of the conical bus, respectively,
f T is the tip friction of robot end effector, 𝑓𝑇ℎ and 𝑓𝑇𝑟 are,
respectively, the axial and radial frictional forces, FT is tip
positive pressure of the end effector (𝐹󸀠𝑇 is the reaction force),𝑓𝑇ℎ and 𝑓𝑇𝑟 are, respectively, the axial and radial positive
pressure components, and𝜇 is the friction coefficient between
the rubber and actuator.

According to Figure 2 and HC nonlinear viscoelastic
model, the mechanical model equations of the tip part
insertion stage (𝑥(𝑡) ≤ 𝐻) are as follows:

𝑟𝑖 = 𝑥𝑖 tan𝛼cos𝛼 ,
𝑥̇𝑟 (𝑡) = 𝑥̇ (𝑡) sin𝛼,
𝐹𝑒𝑖 = 𝐾𝑟𝑖𝛽 + 𝜆𝑟𝑖𝛽𝑥̇𝑟 (𝑡) ,
𝐹𝑇 = ∫𝑥(𝑡)0

𝐹𝑒𝑖 2𝜋𝑥𝑖 tan𝛼cos𝛼 𝑑𝑥𝑖

= 2𝜋𝛽 + 2 (𝐾 + 𝜆𝑥̇ (𝑡) sin𝛼) ( tan𝛼cos𝛼)
𝛽+1 𝑥 (𝑡)𝛽+2 ,

𝑓𝑇 = 𝜇𝐹𝑇,
𝐹𝑠 (𝑡) = 𝑓𝑇 cos𝛼 + 𝐹𝑇 sin𝛼.

(3)

Figure 3 showed the mechanical model of the rod part
insertion stage, in which 𝑓𝑅 is the rod friction of robot end
effector, and 𝐹𝑅 is the rod positive pressure of the end effector
(𝐹󸀠𝑅 is the reaction force).

According to Figure 3 and HC nonlinear viscoelastic
model, the mechanical model equations of the tip insertion
stage (𝑥(𝑡) > 𝐻) are as follows:

𝐹𝑇 = 2𝜋𝛽 + 2 (𝐾 + 𝜆𝑥̇ (𝑡) sin𝛼) ( tan𝛼cos𝛼)
𝛽+1𝐻𝛽+2,

𝑓𝑇 = 𝜇𝐹𝑇,
𝐹𝑅𝑖 = 𝐾𝑅𝛽,
𝐹𝑅 = ∫𝑥(𝑡)−𝐻0

𝐹𝑅𝑖2𝜋𝑅𝑑𝑥𝑖 = 2𝜋𝐾𝑅𝛽+1 (𝑥 (𝑡) − 𝐻) ,
𝑓𝑅 = 𝜇𝐹𝑅,

𝐹𝑠 (𝑡) = 𝑓𝑇 cos𝛼 + 𝐹𝑇 sin𝛼 + 𝑓𝑅.

(4)

The mechanical model of the robot end effector inserted
into the rubber process can be obtained after solving (3) and
(4):
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Figure 3: Mechanical model of the rod insertion stage.

𝐹𝑠 (𝑡) =
{{{{{{{

2𝜋𝛽 + 2 ( tan𝛼cos𝛼)
𝛽+1 (𝜇 cos𝛼 + sin𝛼) ⋅ (𝐾 + 𝜆 sin𝛼𝑥̇ (𝑡)) 𝑥 (𝑡)𝛽+2 , (𝑥 (𝑡) ≤ 𝐻) ;

2𝜋𝛽 + 2 ( tan𝛼cos𝛼)
𝛽+1 (𝜇 cos𝛼 + sin𝛼) ⋅ (𝐾 + 𝜆 sin𝛼𝑥̇ (𝑡))𝐻𝛽+2 + 2𝜋𝜇𝐾𝑅𝛽+1 (𝑥 (𝑡) − 𝐻) , (𝑥 (𝑡) > 𝐻) , (5)

where 𝛼, H, R, and 𝜇 are known quantities and their values
are 𝛼 = 20∘, H = 48mm, R = 17.5mm, and 𝜇 = 0.45, x(t)
and 𝑥̇(𝑡) are input variables, K, 𝛽, and 𝜆 can be obtained by
experimental parameter identification, and their values are K
= 16.32 KN/m, 𝛽 = 1.15, and 𝜆 = 7.36KN∗s/m2.

3. Multiobjective Trajectory
Optimization Algorithm

3.1. B-Spline Trajectory Planning in Joint Space. Robot joint
space trajectory planning is based on a series of key constraint
points to plan robot motion trajectory which are 𝜃𝑚𝑖 ={𝜃𝑚𝑖(𝑡𝑖+1), 𝑖 = 0, 1, . . . , 𝑛, 𝑗 = 1, 2, . . . ,𝑀}, where 𝜃𝑚𝑖(𝑡)
represents the ith trajectory segment of joint 𝑚. 𝜃𝑚𝑖 is the
angle at the 𝑖 + 1 via point of joint m that is the angle at 𝑡𝑖+1,
andM is the number of robot joints.Thenumber of constraint
points for any joint trajectory curve is 𝑛+1, which are starting
point, end point, and 𝑛 − 1 via points, respectively.

The unstacking robot joint space trajectory is described
using the nonuniform B-spline curve. Based on determining

the order k and the node vector U = [𝑢0, 𝑢1, . . . , 𝑢𝑛+𝑘+1], B-
spline curve recursive equation using the de Boer algorithm
is achieved as follows [18]:

𝑝 (𝑢) = 𝑖∑
𝑗=𝑖−𝑘+1

𝑑𝑙𝑗𝑁𝑗,𝑘−1 (𝑢) = ⋅ ⋅ ⋅ = 𝑑𝑘𝑖 , 𝑢𝑖 ≤ 𝑢 < 𝑢𝑖+1,
𝑑𝑙𝑗
= {{{

𝑑𝑗, 𝑙 = 0
(1 − 𝛼𝑙𝑗) 𝑑𝑙−1𝑗−1 + 𝛼𝑙𝑗𝑑𝑙−1𝑗 , 𝑙 = 1, 2, . . . , 𝑘; 𝑗 = 𝑖 − 𝑘 + 𝑙, . . . , 𝑖,

𝛼𝑙𝑗 = 𝑢 − 𝑢𝑗𝑢𝑗+𝑘+1−𝑙 − 𝑢𝑗 ,

(6)

where 𝑑𝑖 ∈ R𝑀×1 is the control vertices of the joint spline
trajectory, 𝑢 ∈ [𝑢𝑖, 𝑢𝑖+1] is the normalized time node
vector of spline curve in segment i, and 𝑁𝑖,𝑘(𝑢) is 𝑘-order
specification B-spline basis function. According to the local
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Figure 4: Recycling process trajectory before optimization.

support character of the B-spline curve, the r-order derivative
of 𝑝(𝑢) is obtained
𝑝𝑟 (𝑢) = 𝑖∑

𝑗=𝑖−𝑘+𝑟
𝑑𝑟𝑗𝑁𝑗,𝑘−𝑟 (𝑢) , 𝑢𝑖 ≤ 𝑢 < 𝑢𝑖+1,

𝑑𝑙𝑗

= {{{{{{{

𝑑𝑗, 𝑙 = 0
(𝑘 + 1 − 𝑙) 𝑑𝑙−1𝑗 − 𝑑𝑙−1𝑗−1𝑢𝑗+𝑘+1−𝑙 − 𝑢𝑗 , 𝑙 = 1, 2, . . . , 𝑟; 𝑗 = 𝑖 − 𝑘 + 𝑙, . . . , 𝑖.

(7)

According to (7), robot joint space velocity, acceleration,
and jerk can be obtained as follows:

𝜃̇𝑚𝑖 (𝑡) = 𝑝󸀠 (𝑢) = 𝑖∑
𝑗=𝑖−𝑘+1

𝑑1𝑗𝑁𝑗,𝑘−1 (𝑢) ,

𝜃̈𝑚𝑖 (𝑡) = 𝑝󸀠󸀠 (𝑢) = 𝑖∑
𝑗=𝑖−𝑘+2

𝑑2𝑗𝑁𝑗,𝑘−2 (𝑢) ,
...𝜃𝑚𝑖 (𝑡) = 𝑝󸀠󸀠󸀠 (𝑢) = 𝑖∑

𝑗=𝑖−𝑘+3
𝑑3𝑗𝑁𝑗,𝑘−3 (𝑢) .

(8)

3.2. OptimizationModel. During the robot recycling process,
the trajectories of each joint are designed as segment B-spline
curves. By using the same time interval parameter hi to couple
the joint tracks to each other, where 𝜃mi(t) represents the ith
trajectory of joint m, 𝜃𝑚𝑖, 𝜃̇𝑚𝑖, and 𝜃̈𝑚𝑖 are, respectively, the
angle, angle velocity, and acceleration at the i via point of joint
m.Themain constraints of the optimization process are set as
follows.

(1) Position Constraint. According to the recycling character-
istics, the rubber unstacking robot usually adopts the “door-
shaped” trajectory to operate as shown in Figure 4. In order
to avoid interference, the AB, CE, and GE segments are set
as linear trajectories. In some former researches [1–7], the
trajectory is usually optimized according to a number of fixed
teaching points and the way of inserting fixed via points.
The optimization method overreliance on the selection of
the initial trajectory is mainly to optimize the segmentation

trajectory between the fixed via points. However, since all the
via points have been set in advance, the optimization range
of the Cartesian space trajectory is limited and it is difficult
to obtain the optimal trajectory.

The trajectory optimization method proposed in this
paper contains two movement forms: linear trajectories
AB and GH which are limited by obstacle avoidance and
recycling form; the free trajectory passes through the barrier
point B, the highest point D, and the insertion point G
which are optimized by the rectangular space composed of
B, D, and G points; meanwhile, to avoid interference, it is
necessary to ensure that the robot end effector is always
moving in the space. The positional coordinates of the end
effector in the Cartesian space along the 𝑦- and 𝑧-axes can be
solved by positive kinematics. It is only necessary to verify
whether the limit position of each trajectory satisfies the
constraint condition as compared with the coordinate value
of the whole motion time period. When the velocity of the
rubber unstacking robot along 𝑦- and 𝑧-axes is zero, the
corresponding position is the limit position of the B-spline
segment, which can be calculated as follows:

𝑦̇𝑖 (𝑡)
= cos 𝜃1𝑖 (𝑡) (𝑙1 cos 𝜃2𝑖 (𝑡) − 𝑙3 cos 𝜃3𝑖 (𝑡) + 𝑆1) 𝜃̇1𝑖 (𝑡)
− 𝑙1 sin 𝜃1𝑖 (𝑡) sin 𝜃2𝑖 (𝑡) 𝜃̇2𝑖 (𝑡)
+ 𝑙3 sin 𝜃1𝑖 (𝑡) sin 𝜃3𝑖 (𝑡) 𝜃̇3𝑖 (𝑡) ,

𝑧̇𝑖 (𝑡) = 𝑙1 cos 𝜃2𝑖 (𝑡) 𝜃̇2𝑖 (𝑡) − 𝑙3 cos 𝜃3𝑖 (𝑡) 𝜃̇3𝑖 (𝑡) .

(9)

The limit position of 𝑦𝑖∗ and 𝑧𝑖∗ of the spline trajectory of
the ith segment is obtained by the above equations, and the
spatial position constraints are as follows:

𝑦MIN ≤ 𝑦𝑖∗ ≤ 𝑦MAX, 𝑖 = 𝑏, . . . , 𝑔,
𝑧MIN ≤ 𝑧𝑖∗ ≤ 𝑧MAX, 𝑖 = 𝑏, . . . , 𝑔, (10)

where b and 𝑔 are the spline segments of the transition point
B andG, respectively. Since the linear trajectory segments AB
and GE are in the 𝑧-axis direction, the position constraint is
as follows:

󵄨󵄨󵄨󵄨󵄨𝑦𝑖∗ − 𝑦STRAIGHT󵄨󵄨󵄨󵄨󵄨 ≤ 𝛿MAX, 𝑖 = 1, . . . , 𝑏 & 𝑔, . . . , 𝑛. (11)

(2) Velocity, Acceleration, and Jerk Constraints. Under the
condition of the drive system which has been set, the joint
velocity and acceleration of the rubber unstacking robot are
constrained to a certain extreme range and, at the same time,
due to excessive acceleration, can cause the robot mechanical
system resonance and increase the wear of the mechanical
system, so the jerk is also used as one of the constraints. Any
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section trajectory of any joint should satisfy the constraint
conditions as follows:

𝜃̇𝑚LB ≤ 𝜃̇𝑚𝑖 (𝑡) ≤ 𝜃̇𝑚UB,
𝜃̈𝑚LB ≤ 𝜃̈𝑚𝑖 (𝑡) ≤ 𝜃̈𝑚UB,

󵄨󵄨󵄨󵄨󵄨...𝜃𝑚𝑖 (𝑡)󵄨󵄨󵄨󵄨󵄨 ≤ 𝐽MAX,
𝑖 = 0, . . . , 𝑛, 𝑗 = 1, . . . , 𝑚,

(12)

where 𝜃̇𝑚LB, 𝜃̇𝑚UB, 𝜃̈𝑚LB, and 𝜃̈𝑚UB are, respectively, the
velocity and acceleration limit value of joint m and 𝐽MAX

is the maximum jerk. In the process of optimization, the
constraint will be transformed into a constraint on the first
three derivatives of the B-spline control vertex d𝑚 as shown
in (7).

(3) Torque Constraints. The joint output torque is limited by
the robot drive system and needs to meet the corresponding
constraints. According to (1) one can get

|𝜏| = 󵄨󵄨󵄨󵄨󵄨𝑀 (𝜃) 𝜃̈ + 𝐶 (𝜃, 𝜃̇) 𝜃̇ + 𝐺 (𝜃) + 𝐽𝑇 (𝜃) 𝐹𝑠󵄨󵄨󵄨󵄨󵄨 ≤ 𝜏UB, (13)

where 𝜏UB is the output torque limit, which is defined as the
80% of the maximum torque of the joint motor.

(4) Normalized Torque Constraints. In order to ensure the
smoothness of the robot motion, the normalized torque is
taken as the constraint condition as follows:

𝑀∑
𝑚=1

√(1/𝐻) ∫𝐻0 (𝜏𝑚𝑖 (𝑡))2 𝑑𝑡
√(1/𝑁)∑𝑁

𝑘=1 (𝜏𝑚𝑖 (𝑘Δ𝑇) − 𝜏𝑚𝑖 ((𝑘 − 1) Δ𝑇))2
≤ 𝑀UP,

(14)

whereN is the number of servo control cycles,ΔT is the robot
servo cycles, and𝑀UP is the maximum value.

In order to improve the working efficiency, take the
work time of the rubber unstacking robot during recycling
process as the optimization goal. At the same time, taking
into account the trajectory smoothness and energy con-
sumption, the motion planning problem is transformed into
multiobjective optimization problem. Select the running time
(hi) between the via points and the joint angle 𝜃𝑚𝑖 at the
floating via points is used as an optimization variable. The
optimization model is established as shown in (15), where X
is the optimized variables, SJ is the joint average acceleration
which is used tomeasure the smoothness of the robotmotion
trajectory, and Sq is the joint total energy consumption. The
relevant parameters of the optimization model are set as
follows: 𝑦MIN = −1m, 𝑦MAX = 1m, 𝑧MIN = 0.6 m, 𝑧MAX = 1m,
𝛿MAX = 1 mm, 𝜃̇𝑚LB= −30∘/s, 𝜃̇𝑚UB = 30∘/s, 𝜃̈𝑚LB= −150∘/s2,

𝜃̈𝑚UB = 150∘/s2, 𝐽MAX = 500∘/s3, 𝜏UB = 8000Nm, and𝑀UP =
100.

min
𝑋

𝐻 = 𝑛∑
𝑖=1
ℎ𝑖

𝑆𝐽 = 𝑀∑
𝑚=1
√ 1𝐻 ∫

𝐻

0
(...𝜃𝑚𝑖 (𝑡))2 𝑑𝑡

𝑆𝑞 = 𝑛∑
𝑖=0

𝑀∑
𝑚=1
(∫ℎ𝑖+1

ℎ𝑖
𝜏𝑚𝑖 (𝑡) 𝑑𝜃𝑚𝑖)

s.t. 𝑦MIN ≤ 𝑦𝑖∗ ≤ 𝑦MAX;
𝑧MIN ≤ 𝑧𝑖∗ ≤ 𝑧MAX;
󵄨󵄨󵄨󵄨󵄨𝑦𝑖∗ − 𝑦STRAIGHT󵄨󵄨󵄨󵄨󵄨 ≤ 𝛿MAX;
𝜃̇𝑚LB ≤ 𝜃̇𝑚𝑖 (𝑡) ≤ 𝜃̇𝑚UB;
𝜃̈𝑚LB ≤ 𝜃̈𝑚𝑖 (𝑡) ≤ 𝜃̈𝑚UB;
󵄨󵄨󵄨󵄨󵄨...𝜃𝑚𝑖 (𝑡)󵄨󵄨󵄨󵄨󵄨 ≤ 𝐽MAX;
|𝜏| ≤ 𝜏UB;
𝑀∑
𝑚=1

√(1/𝐻) ∫𝐻0 (𝜏𝑚𝑖 (𝑡))2 𝑑𝑡
√(1/𝑁)∑𝑁

𝑘=1 (𝜏𝑚𝑖 (𝑘Δ𝑇) − 𝜏𝑚𝑖 ((𝑘 − 1) Δ𝑇))2
≤ 𝑀UP.

(15)

3.3. Analysis of Optimization Results. The unstacking robot
is recycled in accordance with the standard trajectory before
the optimization, the total time-consuming is 3.5 seconds,
the robot joint trajectory is constructed with 7 order B-
spline curve, and the velocity, acceleration, and jerk are
set to zero at the start and stop times. For multiobjective
optimization problem, genetic algorithm is one of the most
mature methods, and this paper chose NSGA II multiob-
jective evolutionary algorithm [19]. According to the actual
experience, the number of population is 200, the number of
iterations is 1000, the probability of parent crossing is 0.5,
and the probability of individual population variation is 0.01.
The Pareto frontier of the optimization model is shown in
Figure 5.

It can be seen in Figure 5 that robot efficiency index
and track smoothness indicators and energy consumption
indicators conflict with each other; the higher the efficiency,
the greater the energy consumption and the less smooth
the trajectory. In order to shorten the no-load running time
of the robot during recycling process, take the efficiency as
the main objective and energy consumption and smoothness
as reference index. To get the best results from the Pareto
frontier surface of the optimization model, add constraints
to the reference index as 𝑆𝐽 ≤ 800∘/s2 and 𝑆𝑞 ≤ 3000 J. So the
optimal results can be obtained as shown in Table 2.

According to the optimization results, the Cartesian
spatial trajectory comparison and the corresponding optimal
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Figure 6: Cartesian spatial trajectory comparison and the corresponding optimal trajectory in joint space.

trajectory in joint space are obtained in Figure 6.The velocity,
acceleration, and output torque of each joint are shown in
Figure 7.

It can be seen in Figure 6 that time required for the
robot recycling process is reduced from 3.5 s to 2.479 s, and
the production efficiency is improved by 29.17%. The total
energy consumption is reduced from 3186.15 J to 2785.64 J,
and the joint average acceleration is reduced from 943.71∘/s2
to 794.14∘/s2; that is, the robot energy consumption and track
smoothness were reduced by 12.57% and 15.85%. It can be
seen from Figures 7(a)–7(d) that although the time required
for the recycling process is greatly shortened by optimization,
the angular velocity and acceleration of each joint are not
significantly increased, and the acceleration of the starting
point and the ending point are zero, so as to avoid causing
infinite jerk and the impact on the system. It can be seen in

Figures 7(e)–7(f) that the joint torque values are within the
allowable range after optimization, especially when the robot
end effector is inserted into the rubber. Joints 2 and 3 are
subjected to significantly impact torque and the resistance
is large in the process before optimization. Through the
optimization of the floating via points, the time of end effector
inserted into the rubber process is shortened, and at the same
time the impact force and resistance during the insertion
process are significantly reduced.

4. Adaptive Backstepping Control Strategy
Based on RFWNN Method

The adaptive backstepping control is a systematic and
recursive design methodology for the feedback control of
nonlinear systems with parametric uncertainties. Unlike the
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Figure 7: Comparison of each joint before and after optimization.
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feedback linearization method with the problems such as
the precise model requirement and the cancellation of useful
nonlinear terms, the backstepping approach offers a choice
of design tools for accommodation of uncertainties and
nonlinearities and can avoid wasteful cancellations.

4.1. Backstepping Control System Planning. The key idea of
the backstepping design is to select recursively some appro-
priate state variables as virtual inputs for lower dimension
subsystems of the overall system and the Lyapunov functions
are designed for each stable virtual controller. Therefore, the
finally designed actual control law can guarantee the stability
of total control system. Combined with (1), the dynamic
model of the rubber unstacking robot during recycling
process which considered the robot joint friction and the
system unknown disturbance is shown as follows:

𝑀(𝜃) 𝜃̈ + 𝐶 (𝜃, 𝜃̇) 𝜃̇ + 𝐺 (𝜃) + 𝑓 (𝜃̇) + 𝐽𝑇 (𝜃) 𝐹𝑠 + 𝜏𝑑
= 𝜏, (16)

where 𝑓(𝜃̇) ∈ 𝑅𝑀×1 is the joint friction term and 𝜏𝑑 ∈ 𝑅𝑀×1

is the system unknown disturbance term.𝜃𝑑(𝑡), 𝜃̇𝑑(𝑡), and 𝜃̈𝑑(𝑡) are the optimal trajectory param-
eters calculated in Section 3. Define 𝑀(𝜃), 𝐶(𝜃, 𝜃̇), 𝐺(𝜃),
and 𝑓(𝜃̇) as the actual values with uncertainties in the
nominal values 𝑀(𝜃), 𝐶(𝜃, 𝜃̇), 𝐺(𝜃), and 𝑓(𝜃̇), respectively.
According to the above definition, the robot dynamics model
is reconstructed as follows:

𝑀(𝜃) 𝜃̈ + 𝑦 (𝜃, 𝜃̇) + 𝐽𝑇 (𝜃) 𝐹𝑠 + 𝜏𝑑 = 𝜏, (17)

where 𝑦(𝜃, 𝜃̇) is the uncertainty term of the robot dynamics
system which can be expressed as follows:

𝑦 (𝜃, 𝜃̇)
= 𝑀 (𝜃)𝑀−1 (𝜃) [𝐶 (𝜃, 𝜃̇) 𝜃̇ + 𝐺 (𝜃) + 𝑓 (𝜃̇)] . (18)

Define state variables 𝑋1 = 𝜃 and 𝑋2 = 𝜃̇; dynamics
model (17) is reconstructed as follows:

𝑋̇1 = 𝑋2,
𝑋̇2 = 𝑀−1 (𝑋1) [𝜏 − 𝐽𝑇 (𝜃) 𝐹𝑠 − 𝑦 (𝜃, 𝜃̇) − 𝜏𝑑] . (19)

According to (19), the goal of the control system is to
design an adaptive control law so that the state vector X1 can
precisely track the desired trajectory 𝜃𝑑. Define tracking error𝐸1(𝑡) as

𝐸1 (𝑡) = 𝑋1 (𝑡) − 𝜃𝑑 (𝑡) (20)

and its derivative is

𝐸̇1 (𝑡) = 𝑋̇1 (𝑡) − 𝜃̇𝑑 (𝑡) = V (𝑡) − 𝜃̇𝑑 (𝑡) , (21)

where V(𝑡) = 𝑋̇1(𝑡) is called the virtual control function and
the stabilizing function 𝑠(𝑡) is defined as

𝑠 (𝑡) = −𝜍1𝐸1 (𝑡) + 𝜃̇𝑑 (𝑡) , (22)

where 𝜍1 is a positive definite diagonal matrix. The first
Lyapunov function is chosen as

𝑉1 (𝑡) = 12𝐸𝑇1 (𝑡) 𝐸1 (𝑡) (23)

and its derivative is

𝑉̇1 (𝑡) = 𝐸𝑇1 (𝑡) 𝐸̇1 (𝑡) = 𝐸𝑇1 (𝑡) (𝑋̇1 (𝑡) − 𝜃̇𝑑 (𝑡))
= 𝐸𝑇1 (𝑡) (V (𝑡) − 𝑠 (𝑡) − 𝜍𝐸1 (𝑡)) .

(24)

According to the Lyapunov stability criterion, the position
tracking error 𝐸1(𝑡) converges asymptotically when the vir-
tual control function V(𝑡) is equal to the stability function s(t).
Define 𝐸2(𝑡) = V(𝑡) − 𝑠(𝑡) − 𝐸̇1(𝑡), and then the derivative of𝐸2(𝑡) is expressed as

𝐸̇2 (𝑡) = V̇ (𝑡) − ̇𝑠 (𝑡) = 𝑋̇2 (𝑡) + 𝜍1𝐸̇1 (𝑡) − 𝜃̈𝑑 (𝑡)
= 𝑀−1 (𝑋1) [𝜏 − 𝐽𝑇 (𝑋1) 𝐹𝑠 − 𝑦 (𝑋1, 𝑋2) − 𝜏𝑑]
+ 𝜍1𝐸̇1 (𝑡) − 𝜃̈ (𝑡) .

(25)

To design the backstepping control system, the Lyapunov
function is defined as

𝑉2 (𝑡) = 𝑉1 (𝑡) + 12𝐸𝑇2 (𝑡) 𝐸2 (𝑡) . (26)

And its derivative can be derived as follows:

𝑉̇2 (𝑡) = 𝑉̇1 (𝑡) + 𝐸𝑇2 (𝑡) 𝐸̇2 (𝑡) = 𝐸𝑇1 (𝑡) (𝐸2 (𝑡)
− 𝜍1𝐸1 (𝑡)) + 𝐸𝑇2 (𝑡)
× {𝑀−1 (𝑋1) [𝜏 − 𝐽𝑇 (𝑋1) 𝐹𝑠 − 𝑦 (𝑋1, 𝑋2) − 𝜏𝑑]
+ 𝜍1𝐸̇1 (𝑡) − 𝜃̈ (𝑡)} .

(27)

From (27), the backstepping control law that satisfies the
Lyapunov stability condition is designed as follows:

𝜏 = 𝑀(𝑋1) (𝜃̈ (𝑡) − Λ (𝑡)) + 𝐽𝑇 (𝑋1) 𝐹𝑠 + 𝑦 (𝑋1, 𝑋2)
+ 𝜏𝑑, (28)

whereΛ(𝑡) = [𝜍1𝐸̇1(𝑡) + 𝜍2𝐸2(𝑡) +𝐸1(𝑡)] is the defined system
synthesis error and 𝜍2 is a positive definite diagonal matrix.
The backstepping control law shown in (28) is difficult to
achieve due to the effect of the uncertainty term of the robot
dynamic model 𝑦(𝑋1, 𝑋2) and the time-varying disturbance𝜏𝑑. Therefore, adaptive robust control technology is needed,
which can not only identify the uncertain dynamic of the
robot but also compensate for the external time-varying
disturbance to ensure the tracking accuracy of the robot
trajectory.An adaptive robust online learning control strategy
based on recursive fuzzy wavelet neural network (RFWNN)
is proposed. RFWNN is used to estimate the uncertainty
term of the robot dynamics system. The robust compensator
compensates for the external disturbance and the estimation
error of the former.
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Figure 8: RFWNN structure.

4.2. RFWNN Structure. The RFWNN structure consists of a
recursive structure and an FWNN structure as shown in Fig-
ure 8, FWNN structure also includes TSK fuzzy system based
on fuzzy rules and wavelet neural network (WNN) structure.
Each fuzzy rule is considered as a sub-WNN space, and each
sub-WNN contains a wavelet with a specified dilation value
(resolution). Therefore, sub-WNNs of different resolution
levels can capture different behaviors of the approximate
functions, and the role of fuzzy sets is to determine the
contribution of the sub-FWNN space to input/output of the
FWNNs. Therefore, with the main feature stated above, the
RFWNN can achieve the same approximation accuracy with
a smaller size in comparisonwith the FNNs/NNs. In addition,
feedback loop with the time delay at the FWNN fuzzy layer
will make the system become a dynamic structure that have
sufficient capability to handle the high dynamics of the robot
control system.

The RFWNN structure consists of four layers, the first
layer is the input layer, input signals 𝑥1, 𝑥2, . . . , 𝑥𝑛 are trans-
ported to the fuzzy layer by neurons, each of which is
represented by its corresponding fuzzy membership function𝜇𝐴𝑗
𝑖

(𝑥𝑖), and the equation is as follows:

𝜇𝐴𝑗
𝑖

(𝑥𝑖) = 𝑒−𝑑2𝑗𝑖(𝑥𝑖−𝑐𝑗𝑖)2 , (29)

where 𝑑𝑗𝑖 is scale parameters, 𝑐𝑗𝑖 is translation parameter, p is
rule number, and 𝑗 = 1, . . . , 𝑝, 𝑖 = 1, . . . , 𝑛, (𝑝, 𝑛) ∈ 𝑁. A
local feedback unit with a real-time delay section is added to
the layer, so the recursive input of the layer is represented as
follows:

𝑥𝑟𝑖 (𝑡) = 𝑥𝑖 (𝑡) + 𝜋𝑟𝑖𝜇𝐴𝑗
𝑖

(𝑥𝑖 (𝑡 − 𝑇)) , (30)

where the membership function 𝜇𝐴𝑗
𝑖

(𝑥𝑖(𝑡 −𝑇)) represents the
delay value of 𝜇𝐴𝑗

𝑖

(𝑥𝑖)within the time interval T and 𝜋𝑟𝑖 is the
recursive weight vector of the feedback unit.

The third layer is a fuzzy rule layer, each neuron in the
layer is represented as a rule, the prerequisite for the execution
of the neuron is matched with the relevant rule, and the
output of the layer is multiplied by

𝜔𝑗 = ∏
𝑖
𝑤𝐴𝑗
𝑖

𝜇𝐴𝑗
𝑖

(𝑥𝑟𝑖) , (31)

where 𝑤𝐴𝑗𝑖 is the weight between the fuzzy layer and the
rule layer and the multiplication operator ∏ is used to
determine the excitation intensity in the fuzzy reasoning
mechanism. The excitation intensity of rule j is simplified by
a combination of 𝜔𝑗 and ∏𝑖𝜁𝑗𝑖(𝑥𝑟𝑖). The fuzzy wavelet basis
function is as follows:

Φ𝑗 (𝑥𝑟) = 𝜔𝑗∏
𝑖
𝜁𝑗𝑖 (𝑥𝑟𝑖) , (32)

where 𝜁𝑗𝑖(𝑥𝑟𝑖) = 1 − 𝑑𝑗𝑖2(𝑥𝑟𝑖 − 𝑐𝑗𝑖)2, 𝑥𝑟𝑖 = [𝑥𝑟1, . . . , 𝑥𝑟𝑛]𝑇 ∈𝑅𝑝𝑛×1, and 𝑟 = 1, . . . , 𝑝. The wavelet basis function Φ𝑗(𝑥𝑟) is
expressed as a multidimensional wavelet function as follows:

Φ𝑗 (𝑥𝑟) = ∏
𝑖
𝜙𝑗 (𝑥𝑟𝑖) , (33)

where 𝜙𝑗(𝑥𝑟𝑖) = [1−𝑑𝑗𝑖2(𝑥𝑟𝑖−𝑐𝑗𝑖)2]𝑒−𝑑𝑗𝑖2(𝑥𝑟𝑖−𝑐𝑗𝑖)2 is theMexican
Cap Wavelet function.

The fourth layer is a fuzzy output layer, where each node
represents the output variable and is calculated by summing
all the input signals

𝑦𝑙 = ∑
𝑗
𝑤𝑙𝑗Φ𝑗 (𝑥𝑟) , (34)
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where 𝑤𝑙𝑗 is the weight between the rule layer and the output
layer, 𝑙 = 1, . . . , 𝑚, 𝑚 ∈ 𝑁, m is RFWNN number of output
variables, and the above equation is expressed as a vector form
as follows:

𝑦 (𝑥, 𝑑, 𝑐, 𝜋,𝑊) = 𝑊𝑇Φ(𝑥𝑟, 𝑑, 𝑐, 𝜋) ;
Φ (𝑥𝑟, 𝑑, 𝑐, 𝜋) = [Φ1 (𝑥𝑟) , Φ2 (𝑥𝑟) , . . . , Φ𝑝 (𝑥𝑟)]𝑇

∈ 𝑅𝑝×1;

𝑊𝑇 =
[[[[[[[
[

𝑤11 𝑤12 ⋅ ⋅ ⋅ 𝑤1𝑝𝑤21 𝑤22 ⋅ ⋅ ⋅ 𝑤2𝑝... ... d
...

𝑤𝑚1 𝑤𝑚2 ⋅ ⋅ ⋅ 𝑤𝑚𝑝

]]]]]]]
]
∈ 𝑅𝑚×𝑝,

(35)

where 𝑑 ∈ 𝑅𝑛𝑝×1, 𝑥 ∈ 𝑅𝑛×1, and 𝑦 ∈ 𝑅𝑚×1 are scaling
parameter vector, 𝑐 ∈ 𝑅𝑛𝑝×1 is translation parameter vector,
and 𝜋 ∈ 𝑅𝑛𝑝×1 is recursive weight parameter vector.

The RFWNN structure is mainly used to online estimate
the uncertain dynamics model of the robot. Based on the
approximate error analysis, there is an ideal RFWNN struc-
ture with the optimal parameters [20]

𝑦 (𝑥 (𝑡)) = 𝑊∗𝑇Φ∗ (𝑥𝑟 (𝑡) , 𝑑∗, 𝑐∗, 𝜋∗) + Δ (𝑥𝑟 (𝑡)) , (36)

where 𝑊∗, 𝑑∗, 𝑐∗, and 𝜋∗ are the optimal parameters
corresponding to𝑊,𝑑, 𝑐, and𝜋 andΔ(𝑥𝑟(𝑡)) is the estimation
error vector.

4.3. Adaptive Backstepping Controller Design. In (28), the 𝑦
part is approximated by the RFWNN network, the process
will inevitably produce approximate error, and the 𝜏𝑑 part
contains the unstructured uncertainties interference of the
mechanical model established by the robot insertion process.
Thus, this section estimates and compensates for the approx-
imate error and 𝜏𝑑 by adding robust terms to the controller.
System torque control law is

𝜏 = 𝑀(𝜃̈ − Λ) + 𝐽𝑇𝐹𝑠 + 𝑦̂ + 𝜏̂𝑑, (37)

where 𝜏̂𝑑 is a robust term used to compensate for uncertain-
ties, such as approximate error, unknown interference, and
unspecified parts of the robot control system, and 𝑦̂ is an
approximate term for the equation 𝑦, expressed as

𝑦̂ (𝑥 (𝑡)) = 𝑊̂𝑇Φ(𝑥𝑟 (𝑡) , 𝑑̂, 𝑐̂, 𝜋̂) , (38)

where 𝑥 = [𝜃𝑇, 𝜃̇𝑇, 𝜃𝑑𝑇, 𝜃̇𝑑𝑇, 𝜃̈𝑑𝑇]𝑇 and 𝑊̂, 𝑑̂, 𝑐̂, and 𝜋̂ are,
respectively, the approximate value of𝑊∗, 𝑑∗, 𝑐∗, and 𝜋∗.

The trajectory tracking control rate shown in (37) is
introduced into the robot dynamics equation shown in
(17) to obtain the closed-loop control system of the rubber
unstacking robot

−𝑀Λ = 𝜏𝑑 + 𝑦̃ − 𝜏̂𝑑, (39)

where 𝑦̃ is as follows:
𝑦̃ = 𝑊∗𝑇Φ̃ + 𝑊̃𝑇Φ̂ + Δ, (40)

where 𝑊̃ = 𝑊∗ − 𝑊̂, Φ̂ ≡ Φ(𝑥𝑟, 𝑑̂, 𝑐̂, 𝜋̂), Φ∗ ≡ Φ(𝑥𝑟, 𝑑∗,𝑐∗, 𝜋∗), and Φ̃ = Φ∗ − Φ.
In order to achieve good tracking performance of the

controller, the parameters such as weight, scaling, and trans-
lation in the RFWNN neural network need to be adjusted
online. The nonlinear output of the RFWNN is transformed
into a partial linear form by using the linearization technique,
which can be extended by applying the Lyapunov theorem.
Thus, Φ̃ is expanded in the Taylor series to get the following
form:

Φ̃ = 𝑃𝑇 (𝑑∗ − 𝑑̂) + 𝐾𝑇 (𝑐∗ − 𝑐̂) + 𝐻𝑇 (𝜋∗ − 𝜋̂)
+ Θ (𝑑∗ − 𝑑̂, 𝑐∗ − 𝑐̂, 𝜋∗ − 𝜋̂) , (41)

where vector Θ is the higher order term in the Taylor
series expansion, 𝑃 = [𝜕Φ1/𝜕𝑑, . . . , 𝜕Φ𝑝/𝜕𝑑]|𝑑=𝑑̂, 𝐾 =[𝜕Φ1/𝜕𝑐, . . . , 𝜕Φ𝑝/𝜕𝑐]|𝑐=𝑐̂, 𝐻 = [𝜕Φ1/𝜕𝜋, . . . , 𝜕Φ𝑝/𝜕𝜋]|𝜋=𝜋̂
are bounded normal vectors, and

[𝜕Φ𝑗𝜕𝑑 ] = [[
0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(𝑗−1)𝑛

, 𝜕Φ𝑗𝜕𝑑𝑗1 , . . . ,
𝜕Φ𝑗𝜕𝑑𝑗𝑛 , 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(𝑝−𝑗)𝑛
]
]
𝑇

,

[𝜕Φ𝑗𝜕𝑐 ] = [[
0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(𝑗−1)𝑛

, 𝜕Φ𝑗𝜕𝑐𝑗1 , . . . ,
𝜕Φ𝑗𝜕𝑐𝑗𝑛 , 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(𝑝−𝑗)𝑛
]
]
𝑇

,

[𝜕Φ𝑗𝜕𝜋 ] = [[
0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(𝑗−1)𝑛

, 𝜕Φ𝑗𝜕𝜋𝑗1 , . . . ,
𝜕Φ𝑗𝜕𝜋𝑗𝑛 , 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(𝑝−𝑗)𝑛
]
]
𝑇

.

(42)

Define 𝑑̃ = 𝑑∗ − 𝑑̂, 𝑐̃ = 𝑐∗ − 𝑐̂, and 𝜋̃ = 𝜋∗ − 𝜋̂, and (41) is
as follows:

Φ̃ = 𝑃𝑇𝑑̃ + 𝐾𝑇𝑐̃ + 𝐻𝑇𝜋̃ + Θ (𝑑̃, 𝑐̃, 𝜋̃) . (43)

According to (40) and (43) one can obtain the following:

𝑦̃ + 𝜏𝑑 = 𝑊̃𝑇 (Φ̂ − 𝑃𝑇𝑑̂ − 𝐾𝑇𝑐̂ − 𝐻𝑇𝜋̂)
+ 𝑊̂𝑇 (𝑃𝑇𝑑̃ + 𝐾𝑇𝑐̃ + 𝐻𝑇𝜋̃) + Γ𝑢,

(44)

where Γ𝑢 = 𝑊∗𝑇(Φ̃+𝑃𝑇𝑑̂+𝐾𝑇𝑐̂+𝐻𝑇𝜋̂)−𝑊̂𝑇(𝑃𝑇𝑑∗+𝐾𝑇𝑐∗+𝐻𝑇𝜋∗) + Δ + 𝜏𝑑.
Substituting (44) into (39),

−𝑀Λ = 𝑊̃𝑇 (Φ̂ − 𝑃𝑇𝑑̂ − 𝐾𝑇𝑐̂ − 𝐻𝑇𝜋̂) − 𝜏̂𝑑 + Γ𝑢
+ 𝑊̂𝑇 (𝑃𝑇𝑑̃ + 𝐾𝑇𝑐̃ + 𝐻𝑇𝜋̃) . (45)

Set the positive real number𝑊𝐵, 𝑑𝐵, 𝑐𝐵, 𝜋𝐵, Δ𝐵, and 𝜏𝑑𝐵
to satisfy the condition ‖𝑊∗‖ ≤ 𝑊𝐵, ‖𝑑∗‖ ≤ 𝑑𝐵, ‖𝑐∗‖ ≤ 𝑐𝐵,
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‖𝜋∗‖ ≤ 𝜋𝐵, ‖Δ‖ ≤ Δ𝐵, and ‖𝜏𝑑‖ ≤ 𝜏𝑑𝐵, and it can be obtained
as follows:󵄩󵄩󵄩󵄩Γ𝑢󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩󵄩𝑊∗𝑇 (Φ̃ + 𝐼𝑇𝑑̂ + 𝐾𝑇𝑐̂ + 𝐻𝑇𝜋̂)

− 𝑊̂𝑇 (𝐼𝑇𝑑∗ + 𝐾𝑇𝑐∗ + 𝐻𝑇𝜋∗) + Δ + 𝜏𝑑󵄩󵄩󵄩󵄩󵄩󵄩
≤ 󵄩󵄩󵄩󵄩󵄩󵄩𝑊∗𝑇Φ̃ + Δ + 𝜏𝑑󵄩󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩󵄩𝑊∗𝑇𝐼𝑇󵄩󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩󵄩𝑑̂󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩󵄩𝑊∗𝑇𝐾𝑇󵄩󵄩󵄩󵄩󵄩󵄩
⋅ ‖𝑐̂‖ + 󵄩󵄩󵄩󵄩󵄩󵄩𝑊∗𝑇𝐻𝑇󵄩󵄩󵄩󵄩󵄩󵄩 ‖𝜋̂‖
+ 󵄩󵄩󵄩󵄩󵄩(𝐼𝑇𝑑∗ + 𝐾𝑇𝑐∗ + 𝐻𝑇𝜋∗)󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩󵄩𝑊̂󵄩󵄩󵄩󵄩󵄩 .

(46)

Add 𝛼(𝑊𝐵)2/4 + 𝛼(𝑑𝐵)2/4 + 𝛼(𝑐𝐵)2/4 + 𝛼(𝜋𝐵)2/4 to both
ends of inequality (46),

󵄩󵄩󵄩󵄩Γ𝑢󵄩󵄩󵄩󵄩 + 𝛼 (𝑊
𝐵)2
4 + 𝛼 (𝑑𝐵)

2

4 + 𝛼 (𝑐𝐵)
2

4 + 𝛼 (𝜋𝐵)
2

4
≤ 𝛽∗𝑇𝜐,

(47)

where 𝜐𝑇 = [1, ‖𝑑̂‖, ‖𝑐̂‖, ‖𝜋̂‖, ‖𝑊̂‖], 𝛼 is positive constant,𝛽∗𝑇 = [𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5], 𝛽1, 𝛽2, 𝛽3, 𝛽4, and 𝛽5 are
positive constant and the uncertainty of the following term:‖𝑊∗𝑇Φ̃ + Δ + 𝜏𝑑‖ + 𝛼(𝑊𝐵)2/4 + 𝛼(𝑑𝐵)2/4 + 𝛼(𝑐𝐵)2/4 +𝛼(𝜋𝐵)2/4, ‖𝑊∗𝑇𝑃𝑇‖, ‖𝑊∗𝑇𝐾𝑇‖, ‖𝑊∗𝑇𝐻𝑇‖, and ‖(𝑃𝑇𝑑∗ +𝐾𝑇𝑐∗ + 𝐻𝑇𝜋∗)‖.

In order to ensure that the dynamic closed-loop system
shown in (35) is stable, the robust term 𝜏̂𝑑 must cancel the
indeterminate term D𝑢. Therefore, using 𝜏̂𝑑 to estimate the
uncertainty limit 𝛽∗𝑇𝜐, the expression of the robust term 𝜏̂𝑑
is given as follows:

𝜏̂𝑑 = 𝐸1󵄩󵄩󵄩󵄩𝐸1󵄩󵄩󵄩󵄩 𝛽̂
𝑇𝜐 + 𝑏𝑠 𝐸1󵄩󵄩󵄩󵄩𝐸1󵄩󵄩󵄩󵄩2 + 𝛿 , (48)

where 𝑏𝑠 and 𝛿 are positive constants and 𝛽̂ is the online
estimate of 𝛽∗. According to the above analysis, an adaptive
online learning algorithm based on RFWNN control system
and a robust term expression are proposed as follows:

̇̂𝑊 = 𝐾𝑊 (Φ̂ − 𝑃𝑇𝑑̂ − 𝐾𝑇𝑐̂ − 𝐻𝑇𝜋̂) 𝐸1𝑇
− 𝛼𝐾𝑊 󵄩󵄩󵄩󵄩𝐸1󵄩󵄩󵄩󵄩 𝑊̂,

̇̂𝑑 = 𝐾𝑑𝑃𝑊̂𝐸1 − 𝛼𝐾𝑑 󵄩󵄩󵄩󵄩𝐸1󵄩󵄩󵄩󵄩 𝑑̂;
̇̂𝑐 = 𝐾𝑐𝐾𝑊̂𝐸1 − 𝛼𝐾𝑐 󵄩󵄩󵄩󵄩𝐸1󵄩󵄩󵄩󵄩 𝑐̂,
̇̂𝜋 = 𝐾𝜋𝐻𝑊̂𝐸1 − 𝛼𝐾𝜋 󵄩󵄩󵄩󵄩𝐸1󵄩󵄩󵄩󵄩 𝜋̂;
̇̂𝛽 = 󵄩󵄩󵄩󵄩𝐸1󵄩󵄩󵄩󵄩𝐾𝛽𝜐,

(49)

where 𝐾𝑊, 𝐾𝑑, 𝐾𝑐, 𝐾𝜋, and 𝐾𝛽 are diagonal normal matrix.
Based on the above analysis, the controller structure is shown
in Figure 9.

Combined with the control block diagram, the design
procedure of the proposed control system is detailed in the
following:

(1) Specify the structure of the RFWNN (𝑛, 𝑝,𝑚), and set
constant parameters (𝜍1, 𝜍2, 𝐾𝑊, 𝐾𝑑, 𝐾𝑐, 𝐾𝜋, 𝐾𝛽 and𝛼).

(2) Initial the parameters of the RFWNN (𝑊̂, 𝑐̂, 𝑑̂, 𝜋̂,𝜇𝐴𝑗
𝑖

(𝑥𝑖(0))).
(3) Update the RFWNN inputs (𝑥 = [𝜃𝑇, 𝜃̇𝑇, 𝜃𝑇𝑑 , 𝜃̇𝑇𝑑 , 𝜃̈𝑇𝑑 ]𝑇)

and memory data (𝑊̂, 𝑐̂, 𝑑̂, 𝜋̂, 𝜇𝐴𝑗
𝑖

(𝑥𝑖(𝑡 − 𝑇))).
(4) Compute tracking error E1(t) and system synthe-

sis error Λ(𝑡), compute the recurrent inputs 𝑥𝑟𝑖(𝑡)
via (30), and compute the membership functions𝜇𝐴𝑗
𝑖

(𝑥𝑟𝑖(𝑡)) via (29).
(5) Compute the outputs 𝜔𝑗 of the fuzzy rule layer via

(31), and then compute fuzzy wavelet basic functionsΦ𝑗(𝑥𝑟) via (32) and (33).

(6) Compute the outputs of the RFWNN 𝑦̂(𝑥(𝑡)) via
(34), compute the robust term 𝜏̂𝑑 via (48), and then
construct the control input 𝜏 via (37).

(7) Adjust the weights, dilations, and translations and the
recurrent values of the RFWNNs via (49).

(8) Save these data in the memory and return to step (3).

5. Experimental Verification

A servo control system based on EtherCAT bus and 4-DOF
unstacking robot body experimental platform were built in
this work. Beckhoff IPC was used as industrial computer
which included TwinCAT3 programming software. The RS2
series servo drives were applied in this work which supported
EtherCAT bus communications. The actual output torque
and actual position of the robot joints are fed back in real
time by the NCtoPLC function of TwinCAT3 software. So
real-time communication and robot control could be realized
via high-speed EtherCAT bus. Figure 10 shows the entire
experimental system.

The model of the unstacking robot is described by (16)
with its main dynamics given as

𝑀(𝜃) = [[
[
𝑚11 0 0
0 𝑚22 𝑚230 𝑚32 𝑚33

]]
]
,

𝐶 (𝜃, 𝜃̇) = [[[
[

0 𝐶12𝜃̇2 𝐶13𝜃̇3
𝐶21𝜃̇1 0 𝐶23𝜃̇3
𝐶31𝜃̇1 𝐶32𝜃̇2 0

]]]
]
,

𝑚11 = 4.4cos2 (𝜃3 + 0.26)
− 45.1 cos (𝜃3 + 0.26) cos 𝜃2
+ 234.4cos2𝜃3 + 345.9cos2𝜃2
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Figure 9: Control block diagram of the adaptive backstepping controller.

− 394.6 cos 𝜃2 cos 𝜃3 + 192.5 cos 𝜃2
− 94.6 cos 𝜃3 − 10.8 cos (𝜃3 + 0.26)
+ 52.6,

𝑚22 = 365.37,
𝑚33 = 242.26,
𝑚23 = 𝑚32

= 22.6 cos (𝜃2 − 𝜃3 − 0.26)
− 194.2 cos (𝜃2 − 𝜃3) ,

𝐶12 = −2𝐶21
= 45.1 sin 𝜃2 cos (𝜃3 + 0.26) − 345.9 sin 𝜃2
+ 394.6 sin 𝜃2 cos 𝜃3 − 192.5 sin 𝜃3,

𝐶13 = −2𝐶31
= 10.8 sin (𝜃3 + 0.26) − 4.4 sin (2𝜃3 + 0.53)
+ 394.6 cos 𝜃2 sin 𝜃3
+ 45.1 sin (𝜃3 + 0.26) cos 𝜃2 + 94.6 sin 𝜃3

− 235.4 sin 2𝜃3,
𝐶23 = −𝐶32

= 22.6 sin (𝜃2 − 𝜃3 − 0.26)
− 194.2 sin (𝜃2 − 𝜃3) .

(50)

The RFWNN structure can be characterized by 𝑛 = 15,𝑝 = 5, and 𝑚 = 3 nodes and the relevant parameters of the
designed controller are set as follows:

𝜎 = diag (120, 60, 25) ,
𝑏𝑠 = 0.01,
𝛿 = 0.001,
𝐾𝑐 = 𝐾𝑑 = 𝐾𝜋 = diag (35) ,
𝐾𝑊 = diag (60) ,
𝐾𝑠 = diag (180, 180, 180) ,
𝐾𝛽 = diag (0.002, 0.002, 0.002, 0.002, 0.002) .

(51)

The control strategy is compared with PID control and
PD synchronic control.The PID parameters are designed by a



Mathematical Problems in Engineering 15

Beckhoff IPC

EtherCAT
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Figure 10: Control system of unstacking robot.

Table 3: NMSE comparison of each joint in different control strategies.

NMSE (×10−3) Case 1 (rad) Case 2 (rad)
Joint 1 Joint 2 Joint 3 Joint 1 Joint 2 Joint 3

PID 0.842 4.387 5.224 2.517 7.848 6.042
PD synchronic 0.955 2.282 2.897 1.338 3.635 4.055
Adaptive backstepping 0.225 1.512 2.199 0.301 2.167 2.552
NMSE = √∑𝐾

𝑘=0(𝜃(𝑘+1) − 𝜃𝑑(𝑘+1))2/𝐾 and𝐾 is the total sampling instant.

compromise between the superiority of control performance
and the magnitude of control effort, and they are given
as 𝐾𝑝1 = diag(110, 70, 50), 𝐾𝑖1 = diag(0.6, 0.4, 0.5), and𝐾𝑑1 = diag(1200, 900, 600). And the parameters of the PD
synchronic controller are set as 𝐾𝑝2 = diag(120, 50, 80) and𝐾𝑑2 = diag(1500, 1200, 800).

In order to verify the effect of the viscoelastic contact
between the robot and the rubber on the control performance
of the system and the ability of the control strategy proposed
in this paper to effectively overcome this effect, the experi-
ment in this section is validated in two cases. In Case 1, the
unstacking robot tracks only the optimal trajectory without
physical contact with the rubber. In Case 2, the unstacking
robot inserts the rubberwith the optimal trajectory according
to the actual operation requirements.

In the first case, Figure 11 represents the joint torques
and tracking errors of the robot under PID control and
PD synchronic control and the proposed control strategy.
In the second case, the torque and tracking error of each
robot joint under different control strategies are shown in
Figure 12. Since the viscoelastic contact between the robot
and the rubber occurs within the time 1.982 s ≤ t ≤ 2.479 s,
the normalized mean square error (NMSE) of each joint
trajectory is compared with the above two experimental cases
during this time, as shown in Table 3.

It can be seen from Figure 11 that because the robot does
not directly contact with the rubber in Case 1, the robot runs
smoothly without large torque ripple and the tracking error is

within an acceptable range. Comparedwith PID control, both
PD synchronic control and the proposed control strategy
in this paper have better performance and can control the
trajectory tracking error to a smaller extent.

According to Figure 12 and Table 3, it can be seen that,
under the control of PID, the joint torque of the robot
fluctuates greatly, and the impact is more intense especially
during the robot contact with rubber in Case 2. In addition
the trajectory tracking error increases significantly, which
will seriously affect the normal operation of the robot.
Although the PD synchronization control can relatively
improve the tracking accuracy of the robot in Case 1, the
controller parameters cannot be adjusted online adaptively,
and the robustness to interference is not strong enough so
that it still cannot meet the system requirements in Case 2.
Compared with the above controllers, the RFWNN-based
adaptive backstepping controller proposed in this paper can
reduce the trajectory tracking error significantly when the
robot is inserted into the rubber. In addition the torque peak
and fluctuations of each joint are effectively suppressed, so the
robot can precisely and accurately perform the rubber recy-
cling process according to the optimal trajectory. According
to Table 3, it can be concluded that compared with Case 1 the
NMSE value increases significantly in Case 2. And compared
with the PID and PD synchronization control, the control
method proposed in this paper can decrease the NMSE value
of the robot joints bymore than 72% and 40%, respectively, in
the impact process. In Case 2, the robust term of the control
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Figure 11: Experimental results of different control strategies in Case 1.
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Figure 12: Experimental results of different control strategies in Case 2.
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Figure 13: Robust term and online estimated parameters.

strategy and the online update adjustment of the estimated
parameters are shown in Figure 13. It can be seen that the
robust term 𝜏̂𝑑 and the estimated parameters 𝑊̂, 𝑐̂, 𝜋̂, and 𝑑̂
can be adaptively adjusted online according to the modeling
error of the robot dynamics and the external disturbances to
significantly enhance the system robustness.

6. Conclusion

This work deals with multiobjective trajectory optimization
and adaptive backstepping control strategy of the rubber
unstacking robot during the recycling process; the main
contents of the research include the following aspects:

(1) Considering the mechanical analysis during the
inserting process, the Hunt-Crossley nonlinear model based
dynamic model of the rubber unstacking robot is deduced,
which can be used for trajectory planning and controller
design.

(2) Aiming at the performance indicators of operational
efficiency, trajectory smoothness, and energy consumption,
the motion planning problem is transformed into multiob-
jective optimization problem.The position of the floating via
points of the B-spline trajectory and the running time of
each point are optimized, and the NSGA genetic algorithm
is used to solve the problem. The optimization results show
that compared to the standard trajectory the above indicators
were raised by 29.17%, 15.85%, and 12.57%, respectively.

(3) The proposed adaptive backstepping control method
based on RFWNN is robust to external torque disturbances
and can overcome the effects of the unknown dynamic
parameters and approximation error.The backstepping strat-
egy is designed based on Lyapunov synthesis, which can

guarantee the stability of the control system. Through exper-
imental analysis, compared with other control methods, the
validity of the proposed control strategy is verified.

(4) As the rubber in the heat refining process, adhesion
phenomenon will be produced between the rubber blocks
due to local melting, which would result in rubbers difficult
to be separated. So the future work will be extended to deal
with the control problem of the unknown viscoelastic force
between rubber blocks during the rubber separation process.
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