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Abstract. We derive Lüscher phaseshift formulas for two-particle states in boxes elon-
gated in one of the dimensions. Such boxes offer a cost-effective way of varying the
relative momentum of the particles. Boosted states in the elongated direction, which al-
low wider access to energies, are also considered. The formulas for the various scenarios
(moving and zero-momentum states in cubic and elongated boxes) are compared and rela-
tions between them are clarified. The results are applicable to a wide set of meson-meson
and meson-baryon elastic scattering processes, with the two-particle system having equal
or unequal masses.

1 Introduction

Hadron-hadron scattering is an indispensable tool in understanding the nature of the strong nuclear
force, both experimentally and theoretically. The theoretical groundwork was laid out by Lüscher [1]
who showed how to relate elastic scattering phaseshifts with the energies of the two-body states in
a finite box. Various extensions to the method have since been made to enhance its applications,
including moving frames [2], moving frame involving unequal masses and baryons [3–5], asymmetric
boxes [6], and more recently inelastic scattering [7, 8]. The use of asymmetric boxes has proven to
be efficient in recent studies of the ρ meson resonance in ππ scattering [9, 10]. Instead of varying the
size of the entire box, only one side is elongated, requiring much less computing resources. Our main
goal in this work is to derive the phaseshift formulas needed to study meson-baryon elastic scattering
in elongated boxes, with an eye towards a lattice QCD simulation of the ∆ resonance in πN scattering.

2 Angular momentum resolution

We consider a box elongated in the z-direction as illustrated in Fig. 1. The infinite volume sym-
metry group for spatial rotations is S O(3) which has an infinite number of elements and irreducible
representations (irreps) labeled by angular momentum J. For spherically symmetric interactions the
eigenstates of the Hamiltonian in the infinite volume form multiplets that furnish bases for the irreps
of S U(2), the double cover of the rotations group. These multiplets are labeled by the angular mo-
mentum J = 0, 1

2 , 1,
3
2 , 2, . . .. For elongated boxes, these multiplets split into smaller sets that mix
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(a) The 8 symmetry operations that form the dihedral D4
group in the elongated box whose dimensions are L× L×ηL
where η is the elongation factor in the z-direction.

(b) The 24 symmetry operations in the cubic box that form
the octahedral group O.

Figure 1. Elongated vs. cubic proper group symmetries. The full symmetry must include space inversion
(parity), and their double-cover groups for half-integer angular momentum.

under the action of rotations that leave the box invariant, forming the bases for one of the 7 irreps of
the 2D4 group. Then the question is: for a given J, what irreps are coupled to it? To answer this we
have to decompose the irrep J of the full rotation group S U(2), into a direct sum of the irreps of the
2D4 group, J =

⊕
i n(Γi, J)Γi, where the coefficient is called the multiplicity, which tells how many

times irrep Γi appears in the given J. This can be calculated using

n(Γi, J) =
1
g

∑
k

nkχ(k, Γi) χ(ωk, J). (1)

The index k runs through all 7 classes of 2D4 and g = 16 is the total number of elements in the group.
nk is the number of elements in the k-th class, and χ(k, Γi) are the characters. The χ(ωk, J) stands for
the character of full rotation group for angular momentum J and rotation angle ωk in class k. This can
be computed as follows.Any rotation k is characterized by a rotation axis and the rotation angle ωk.
Since the character (trace) of the matrix is invariant under similarity transformations the result will be
equal to an equivalent rotation around the z-axis (the similarity matrix in this case is simply a rotation
that takes the rotation axis into the z-axis). The character is then the trace of this diagonal matrix

χ(ωk, J) =
J∑

m=−J

e−imωk =
sin[(J + 1/2)ωk]

sin(ωk/2)
. (2)

The results of the decomposition from applying Eq. 1 are given in Table 1. For comparison, Table 2
shows the angular momentum resolution in the cubic box.
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Table 1. Decomposition of angular momentum in the elongated box according to the irreps of the 2D4h group.
Both the original reduction (left) and its inverse (right) are shown. Parity is indicated by the plus (even) or

minus (odd) sign.

J 2D4h
2D4h J

0 A+1 A+1 0, 2, 4(2), · · ·
1 A−2 ⊕ E− A−1 5, 7, 9(2), · · ·
2 A+1 ⊕ B+1 ⊕ B+2 ⊕ E+ A−2 1, 3, 5(2), · · ·
3 A−2 ⊕ B−1 ⊕ B−2 ⊕ 2E− A+2 4, 6, 8(2), · · ·
4 2A+1 ⊕ A+2 ⊕ B+1 ⊕ B+2 ⊕ 2E+ B+1 2, 4, 6(2), · · ·
5 A−1 ⊕ 2A−2 ⊕ B−1 ⊕ B−2 ⊕ 3E− B−1 3, 5, 7(2), · · ·
6 2A+1 ⊕ A+2 ⊕ 2B+1 ⊕ 2B+2 ⊕ 3E+ B+2 2, 4, 6(2), · · ·

B−2 3, 5, 7(2), · · ·
· · · · · · E− 1, 3(2), 5(3), · · ·

E+ 2, 4(2), 6(3), · · ·

1/2 G±1 G±1 1/2, 3/2, 5/2, · · ·
3/2 G±1 ⊕G±2 G±2 3/2, 5/2(2), 7/2(2), · · ·
5/2 G±1 ⊕ 2G±2
7/2 2G±1 ⊕ 2G±2
· · · · · ·

Table 2. Decomposition of angular momentum in the cubic box according to the irreps of the 2Oh group. Both
the original decomposition (left) and its inverse (right) are shown. The number in parentheses indicates the

multiplicity of that J in that irrep.

J 2Oh
2Oh J

0 A+1 A+1 0, 4, 6, · · ·
1 T−1 A−1 9, 13, 15, · · ·
2 T+2 ⊕ E+ T−1 1, 3, 5(2), · · ·
3 A−2 ⊕ T−1 ⊕ T−2 T+1 4, 6, 8(2), · · ·
4 A+1 ⊕ E+ ⊕ T+1 ⊕ T+2 T+2 2, 4, 6(2), · · ·
5 E− ⊕ 2T−1 ⊕ T−2 T−2 3, 5, 7(2), · · ·
6 A+1 ⊕ A+2 ⊕ E+ ⊕ T+1 ⊕ 2T+2 E+ 2, 4, 6, · · ·

E− 5, 7, 9, · · ·
· · · · · · A−2 3, 7, 9, · · ·

A+2 6, 10, 12, · · ·

1/2 G±1 G±1 1/2, 7/2, 9/2, · · ·
3/2 H± H± 3/2, 5/2, 7/2, · · ·
5/2 G±2 ⊕ H± G±2 5/2, 7/2, 11/2, · · ·
7/2 G±1 ⊕G±2 ⊕ H±

· · · · · ·

3

EPJ Web of Conferences 175, 05032 (2018)	 https://doi.org/10.1051/epjconf/201817505032
Lattice 2017



2.1 Phaseshift formulas in the elongated box

Our starting point is
det[MJlM,J′l′M′ − δJJ′δll′δMM′ cot δJl] = 0 , (3)

expressed for a given total angular momentum J and partial-wave l. The matrixM is adapted from the
original one by Lüscher for integer angular momentum, cubic boxes, and equal masses to the current
case of half-integer angular momentum, elongated boxes (limited to z-direction), and unequal masses.
The projection to half-integer angular momentum is achieved by a straightforward change of basis by
coupling to spin-1/2,

MJlM,J′l′M′ =
∑

mm′msm′s

〈
lm,

1
2

ms|JM
〉〈

l′m′,
1
2

m′s|J′M′
〉Mlm,l′m′ , (4)

using Clebsch-Gordan coefficients. The modified matrix for z-elongated box (of elongation η) is

Mlm,l′m′ (q, η) =
l+l′∑

j=[l−l′ |

j∑
s=− j

(−1)lil+l′

π3/2ηq j+1 Zjs(1, q2, η) × 〈l0 j0|l′0〉〈lm js|l′m′〉

√
(2l + 1)(2 j + 1)

(2l′ + 1)
. (5)

It is customary to introduce the short-hand function for the zeta function,

Wlm(1, q2; η) =
Zlm(1, q2; η)
π3/2ηql+1 , where Zlm(s, q2; η) =

∑
n∈Z3

Ylm(ñ)
(ñ2 − q2)s , (6)

so the simplest phaseshift formula reads cot δ =W00. TheM matrix is a linear combination ofW
functions with purely numerical coefficients. The dimensionless momentum q is defined in terms
of the minimal momentum in a periodic box of size L, k = (2π/L)q. The Ylm(r) ≡ rlYlm(θ, φ)
are homogenous harmonic polynomials and the modified index ñ is related to the cubic index n =
(nx, ny, nz) by ñ = (nx, ny, nz/η). Details on how to numerically evaluate the function with elongation
can be found in Refs. [6, 9].

The spin-projected matrixMJlM,J′l′M′ is still expressed in terms of angular momentum labels JlM.
Our goal is to reduce the matrix to the irreps of the 2D4h group in elongated boxes. Operationally, it
is equivalent to the reduction of the matrix into its block diagonal form with each block having the
dimension of an irrep. This is achieved by another change of basis, using the basis vectors adapted to
the symmetry groups. In the new basis,M is block-diagonalized by irreps

〈ΓαJln|M|Γ′α′J′l′n′〉 =
∑
MM′

(
CΓαn

JlM

)∗
CΓ

′α′n′
J′l′M′MJlM,J′l′M′ = δΓΓ′δαα′MΓJln,J′l′n′ , (7)

where Schur’s lemma in linear algebra was used in the second step. For multi-dimensional irreps, the
matrix is diagonal in α and the quantization condition does not depend on it. The final form for the
phaseshift reduction is ∏

Γ

det
[
MΓJln,J′l′n′ − δJJ′δll′δnn′ cot δJl

]
= 0. (8)

If there is no multiplicity, the labels n and n′ can be dropped. For half-integral angular momentum up
to J = 7/2 our results for the two irreps G1 and G2 are new and are given in Table 3. There is two-fold
multiplicity for J = 7/2 so the n and n′ labels are kept explicit.

The final step is to determine the phaseshift using the matrix elements. We will not show results for
all the irreps, but only illustrate the treatment in a few examples. For half-integral angular momentum,
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Table 3. Non-zero reduced matrix elements in the elongated box (2D4h symmetry group) for half-integral
angular momentum up to J = 7/2. The even/odd parity sectors are indicated by the upper/lower signs. The

matrix is symmetric in Jn and J′n′ in each irrep-parity sector.

Γ J n J′ n′ MΓJln,J′l′n′

G±1
1
2 1 1

2 1 W00

1
2 1 3

2 1 ±
√

2
5W20

1
2 1 5

2 1 −
√

3
5W20

1
2 1 7

2 1 − 2
3W40

1
2 1 7

2 2 ∓ 2
3

√
2W44

3
2 1 3

2 1 W00 +
1√
5
W20

3
2 1 5

2 1 ∓ 1
7

√
6
5W20 ∓ 2

√
6

7 W40

3
2 1 7

2 1 − 9
7

√
2
5W20 − 5

√
2

21 W40
3
2 1 7

2 2 2
3W44

5
2 1 5

2 1 W00 +
8

7
√

5
W20 +

2
7W40

5
2 1 7

2 1 ± 2
7
√

15
W20 ± 10

√
3

77 W40 ± 50
11
√

39
W60

5
2 1 7

2 2 ∓ 2
√

6
11 W44 ± 10

11

√
10
39W64

7
2 1 7

2 1 W00 +
5
21

√
5W20 +

27
77W40 +

25W60

33
√

13
7
2 1 7

2 2 3
√

2
11 W44 − 5

11

√
10
13W64

7
2 2 7

2 2 W00 −
√

5
3 W20 +

3
11W40 − 5

33
√

13
W60

G±2
3
2 1 3

2 1 W00 − 1√
5
W20

3
2 1 5

2 1 ± 6
7
√

5
W20 ∓ 2

7W40

3
2 1 5

2 2 ∓2
√

2
7W44

3
2 1 7

2 1 − 3
√

2
7 W20 +

√
10
7 W40

3
2 1 7

2 2 2√
21
W44

5
2 1 5

2 1 W00 +
2

7
√

5
W20 − 3

7W40

5
2 1 5

2 2
√

2
7W44

5
2 2 5

2 2 W00 − 2
√

5
7 W20 +

1
7W40

5
2 1 7

2 1 ±
√

2
7 W20 ± 8

√
10

77 W40 ∓ 5
11

√
10
13W60

5
2 1 7

2 2 ∓ 8
11

√
3
7W44 ∓ 10

11

√
35
39W64

5
2 2 7

2 1 ± 4
11

√
5
7W44 ∓ 10

11

√
7

13W64

5
2 2 7

2 2 ∓ 1
7

√
10
3 W20 ± 10

77

√
6W40 ∓ 5

11

√
2
39W60

7
2 1 7

2 1 W00 +
√

5
7 W20 − 9

77W40 − 15
11
√

13
W60

7
2 1 7

2 2 3
11

√
30
7 W44 +

5
11

√
14
39W64

7
2 2 7

2 2 W00 −
√

5
21W20 − 39

77W40 +
25

33
√

13
W60
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the G±1 sector gives the only access to spin-1/2 phaseshifts δ 1
2 0 (for S 11) and δ 1

2 1 (for P11), assuming a
spin-0 meson. However, they mix with J = 3/2, 5/2, 7/2 with two-fold multiplicity in J = 7/2. The
full mixing with cutoff at J = 7/2 entails a 5 × 5 matrix in MJn,J′n′ . The mixing of J = 1/2 with
J = 3/2 and J = 5/2 involvesM20; while J = 1/2 and J = 7/2 mixing involvesM40 andM44. If we
assume coupling to J = 7/2 and higher can be ignored, then δ 1

2
can be determined via the relation

∣∣∣∣∣∣∣∣∣

M 1
2

1
2
− cot δ 1

2
M 1

2
3
2

M 1
2

5
2

M 3
2

1
2

M 3
2

3
2
− cot δ 3

2
M 3

2
5
2

M 5
2

1
2

M 5
2

3
2

M 5
2

5
2
− cot δ 5

2

∣∣∣∣∣∣∣∣∣
= 0, (9)

where the multiplicity and parity labels are suppressed. The determinant in Eq. 9 involves only the
product of the three off-diagonal elements and their squares. Two of them (M 1

2
3
2

and M 3
2

5
2
) differ

by a sign for even/odd parity, and one the same sign (M 1
2

5
2
). This means that Eq. 9 is independent

of parity; or δ 1
2 0 and δ 1

2 1 obey the same phaseshift formula, so do δ 3
2 1 and δ 3

2 2, and δ 5
2 2 and δ 5

2 3. So
we can suppress the partial-wave l label in δJl. In fact, the same conclusion extends to the entire G±1
sector. If mixing with only J = 3/2 is considered, we have

G±1 sector : cot δ 1
2
=W00 +

2
5W2

20

cot δ 3
2
− (W00 +

1√
5
W20)

. (10)

The determination of spin-1/2 resonances requiresW00 andW20 and δ 3
2
. Only when coupling with

J = 3/2 can be ignored can one obtain the simplest formula for the Roper (P11) and S 11 phaseshifts
cot δ 1

2
= W00. On the other hand, if δ 1

2
has been independently determined, Eq.10 can be used to

access δ 3
2
.

In the G±2 sector, the leading contribution is J = 3/2, followed by J = 5/2 and J = 7/2 which
both have two-fold multiplicity. The full mixing up to J = 7/2 also entails a 5 × 5 matrix inMJn,J′n′ .
If we ignore mixing with J = 7/2, the phaseshift relation is given by the 3 × 3 matrix equation,

∣∣∣∣∣∣∣∣∣

M 3
2 1, 32 1 − cot δ 3

2
M 3

2 1, 52 1 M 3
2 1, 52 2

M 5
2 2, 32 1 M 5

2 1, 52 1 − cot δ 5
2

0
M 5

2 2, 32 1 0 M 5
2 2, 52 2 − cot δ 5

2

∣∣∣∣∣∣∣∣∣
= 0, (11)

which has no coupling between the two multiplicities of J = 5/2. The solution is

cot δ 3
2
=M 3

2 1, 32 1 +
M 3

2 1, 52 1M 3
2 1, 52 2

cot δ 5
2
−M 5

2 1, 52 1
+

M2
5
2 2, 52 2

cot δ 5
2
−M 5

2 2, 52 2
. (12)

If J = 5/2 can be ignored, one gets the simple phaseshift formula

G±2 sector : cot δ 3
2
=W00 −

1
√

5
W20. (13)

This gives the best access to the ∆ resonance in the elongated box. On the other hand, δ 5
2

can be
extracted in this sector if δ 3

2
has been independently determined.

3 Moving states in the elongated box

So far we have considered two-body states that are at rest; the two particles have back-to-back nonzero
momentum, but the total momentum P = 0 in the lab frame. Now we consider giving the system a

6
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. (10)

The determination of spin-1/2 resonances requiresW00 andW20 and δ 3
2
. Only when coupling with

J = 3/2 can be ignored can one obtain the simplest formula for the Roper (P11) and S 11 phaseshifts
cot δ 1

2
= W00. On the other hand, if δ 1

2
has been independently determined, Eq.10 can be used to

access δ 3
2
.

In the G±2 sector, the leading contribution is J = 3/2, followed by J = 5/2 and J = 7/2 which
both have two-fold multiplicity. The full mixing up to J = 7/2 also entails a 5 × 5 matrix inMJn,J′n′ .
If we ignore mixing with J = 7/2, the phaseshift relation is given by the 3 × 3 matrix equation,

∣∣∣∣∣∣∣∣∣

M 3
2 1, 32 1 − cot δ 3

2
M 3

2 1, 52 1 M 3
2 1, 52 2

M 5
2 2, 32 1 M 5

2 1, 52 1 − cot δ 5
2

0
M 5

2 2, 32 1 0 M 5
2 2, 52 2 − cot δ 5

2

∣∣∣∣∣∣∣∣∣
= 0, (11)

which has no coupling between the two multiplicities of J = 5/2. The solution is

cot δ 3
2
=M 3

2 1, 32 1 +
M 3

2 1, 52 1M 3
2 1, 52 2

cot δ 5
2
−M 5

2 1, 52 1
+

M2
5
2 2, 52 2

cot δ 5
2
−M 5

2 2, 52 2
. (12)

If J = 5/2 can be ignored, one gets the simple phaseshift formula

G±2 sector : cot δ 3
2
=W00 −

1
√

5
W20. (13)

This gives the best access to the ∆ resonance in the elongated box. On the other hand, δ 5
2

can be
extracted in this sector if δ 3

2
has been independently determined.

3 Moving states in the elongated box

So far we have considered two-body states that are at rest; the two particles have back-to-back nonzero
momentum, but the total momentum P = 0 in the lab frame. Now we consider giving the system a

boost. In the center-of-mass frame (CM) the cubic box becomes a parallelepiped, in which the side
parallel to the directions of the boost is contracted by the Lorentz boost factor γ, whereas the size in
the perpendicular direction is unchanged. The advantage of boosting is that it can lower the center-of-
mass energy, thus allowing wider access to the resonance region. Table. 4 gives the matrix elements
for half-integer J for boosting in the z-direction. The zeta functions now read

Wlm(1, q2, γ, η) =
Zd

lm(1, q2, γ, η)

π
3
2 ηγql+1

, Zd
lm(s, q2, γ, η) =

∑
ñ∈Pd(γ,η)

Ylm(ñ)
(ñ2 − q2)s , (14)

where the summation grid changes to

Pd(γ, η) =
{

ñ ∈ R3 | ñ = γ̂−1η̂−1(m+
1
2

A d),m ∈ Z3
}
, (15)

with the projector η̂−1 acting on a vector m to mean η̂−1m = (mx,my,mz/η). Since the boost and
elongation are in the same z-direction, the factors always appear as a product γη in the zeta function,
facilitating its evaluation.

Due to lack of parity in boosted states, there is mixing between odd and even J and the entire
sector for each irrep becomes coupled. This means that the phaseshift formulas are generally more
complicated for moving states than for the ones at rest. In the G2 sector, δ 3

2 1 and δ 3
2 2 become similarly

coupled, ∣∣∣∣∣∣∣∣
W00 − 1√

5
W20 − cot δ 3

2 1 −i
√

3
5 W10 + i 3

5
√

7
W30

i
√

3
5 W10 − i 3

5
√

7
W30 W00 − 1√

5
W20 − cot δ 3

2 2

∣∣∣∣∣∣∣∣
= 0, (16)

if we ignore mixing with higher J. So the determination of δ 3
2 1 (∆ or P33 resonance ) requires four

zeta functions (Wl0 with l = 0, 1, 2, 3) and the knowledge of δ 3
2 2 (D33 resonance). Only when the δ 3

2 2
contribution can be ignored do we get the simple formula

cot δ 3
2 1 =W00 −

1
√

5
W20. (17)

This work is supported in part by the U.S. Department of Energy grant DE-FG02-95ER40907 and
the National Science Foundation CAREER grant PHY-1151648. A.A. gratefully acknowledges the
hospitality of the Physics Departments at the Universities of Maryland and Kentucky, and the Albert
Einstein Center at the University of Bern where part of this work was carried out.

References

[1] M. Lüscher, Nucl.Phys. B354, 531 (1991)
[2] K. Rummukainen, S.A. Gottlieb, Nucl. Phys. B450, 397 (1995), hep-lat/9503028
[3] Z. Fu, Phys. Rev. D85, 014506 (2012), 1110.0319
[4] L. Leskovec, S. Prelovsek, Phys. Rev. D85, 114507 (2012), 1202.2145
[5] M. Gockeler, R. Horsley, M. Lage, U.G. Meissner, P.E.L. Rakow, A. Rusetsky, G. Schierholz,

J.M. Zanotti, Phys. Rev. D86, 094513 (2012), 1206.4141
[6] X. Feng, X. Li, C. Liu, Phys.Rev. D70, 014505 (2004), hep-lat/0404001
[7] N. Li, C. Liu, Phys. Rev. D87, 014502 (2013), 1209.2201
[8] R.A. Briceno, Phys. Rev. D89, 074507 (2014), 1401.3312
[9] D. Guo, A. Alexandru, R. Molina, M. Döring, Phys. Rev. D94, 034501 (2016), 1605.03993

[10] C. Pelissier, A. Alexandru, Phys.Rev. D87, 014503 (2013), 1211.0092

7

EPJ Web of Conferences 175, 05032 (2018)	 https://doi.org/10.1051/epjconf/201817505032
Lattice 2017



Table 4. Non-zero reduced matrix elements for boosting in the cubic box (2C4v symmetry group) for
half-integral angular momentum up to J = 5/2. There is no multiplicity in the G1 sector, but two-fold
multiplicity in the G2 sector. The horizontal lines separate different combinations of JJ′. The matrix is

hermitian in Jln and J′l′n′ in each irrep sector.

Γ J l J′ l′ MΓJl,J′l′

G1
1
2 0 1

2 0 W00
1
2 0 1

2 1 − i√
3
W10

1
2 0 3

2 1 i
√

2
3W10

1
2 0 3

2 2
√

2
5W20

1
2 1 3

2 1 −
√

2
5W20

1
2 1 3

2 2 i
√

2
3W10

3
2 1 3

2 1 W00 +
1√
5
W20

3
2 1 3

2 2 −i 1
5
√

3
W10 − i 9

5
√

7
W30

1
2 0 5

2 2 −
√

3
5W20

1
2 0 5

2 3 i
√

3
7W30

1
2 1 5

2 3 −i
√

3
7W30

3
2 1 5

2 2 i 3
√

2
5 W10 +

2
5 i
√

6
7W30

3
2 1 5

2 3 1
7

√
6
5W20 +

2
√

6
7 W40

3
2 2 5

2 2 − 1
7

√
6
5W20 − 2

√
6

7 W40
5
2 2 5

2 2 W00 +
8

7
√

5
W20 +

2
7W40

5
2 2 5

2 3 −i
√

3
35W10 − i 8

15
√

7
W30 − i 50

21
√

11
W50

J l n J′ l′ n′ MΓJln,J′l′n′

G2
3
2 1 1 3

2 1 1 W00 − 1√
5
W20

3
2 1 1 3

2 2 1 −i
√

3
5 W10 + i 3

5
√

7
W30

3
2 1 1 5

2 2 1 i 2
√

3
5 W10 − i 6

5
√

7
W30

3
2 1 1 5

2 3 1 6
7
√

5
W20 − 2

7W40

3
2 1 1 5

2 3 2 −2
√

2
7W44

3
2 2 1 5

2 2 1 − 6
7
√

5
W20 +

2
7W40

3
2 2 1 5

2 2 2 2
√

2
7W44

5
2 2 1 5

2 2 1 W00 +
2

7
√

5
W20 − 3

7W40

5
2 2 1 5

2 2 2
√

2
7W44

5
2 2 2 5

2 2 2 W00 − 2
√

5
7 W20 +

1
7W40

5
2 2 1 5

2 3 1 −i 3
√

3
35 W10 − i 2

√
7

15 W30 + i 25
21
√

11
W50

5
2 2 1 5

2 3 2 5i
√

2
77W54

5
2 2 2 5

2 3 2 i
√

3
7 W10 − i 2

3
√

7
W30 + i 5

21
√

11
W50
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