
Scientific Programming 13 (2005) 265–275 265
IOS Press

Virtual workspaces: Achieving quality of
service and quality of life in the Grid

K. Keaheya,b, I. Fostera,b, T. Freemanb and X. Zhangb

aMath & Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
bUniversity of Chicago, Chicago, IL 60637, USA

1. Introduction

By defining standardized protocols for discovering,
accessing, monitoring, and managing remote comput-
ers, storage systems, networks, and other resources,
Grid technologies make it possible – in principle – to al-
locate resources to applications dynamically, in an on-
demand fashion [19]. However, while Grids offer users
access to many diverse and powerful resources, they do
little to ensure that once a resource is accessed, it ful-
fills user expectations for quality of service (QoS). The
problem is that most Grid platforms today do not sup-
port performance isolation: activities associated with
one user or virtual organization (VO) [17] can influence
the performance seen by other processes executing on
the same platform in an uncontrolled way. This inabil-
ity to enforce QoS and provide execution guarantees
prevents Grids from being useful in a range of scenar-
ios. Since there is no way to enforce resource usage,
we cannot guarantee it and thus we cannot use Grids
for reliable future use or time-critical applications.

Another serious issue is that while Grids provide ac-
cess to many resources with diverse software configu-
rations, a user’s application will typically run only in a
specific, customized software environment. Variations
in operating systems, middleware versions, library en-
vironments, and filesystem layouts all pose barriers to
application portability. Applications that work on a
developer’s desktop may function “out of the box” on
only a small fraction of the total number of compute
resources potentially available to the scientist. Thus,
in practice, users are often unable to leverage the avail-
able resources without tedious debugging and porting

efforts that drain time and energy from their primary
objectives – thus compromising their “quality of life”
in interactions with Grid software.

The ability to provide a perfect execution environ-
ment for every set of requirements, with arbitrary en-
forcement and configuration properties, is an elusive
goal. Althoughachievable in some cases – for example,
by using technologies such as virtual machines [23] – it
is not universally available and typically involves trade-
offs in one form or another. However, an application
can abstract the properties of an environment it requires
for execution in terms of memory size, the number of
processors, or library requirements and environment
variable settings, and a resource can define its offered
capabilities in similar terms. Such environment ab-
stractions can be implemented by using a variety of
sandboxing technologies and can be mapped onto re-
sources, offering the required degree of isolation, fine-
grained enforcement, and configuration.

We have previously introduced [27] the virtual
workspace (VW) abstraction to describe such environ-
ments and showed how this abstraction can be imple-
mented by using virtual machines. Here, we provide a
more comprehensive description of virtual workspaces,
discuss the different ways in which they can be imple-
mented, and show how they can be used to build lay-
ered deployment environments in the Grid. We discuss
how a workspace deployed on a physical resource can
provide a deployment capability for setting up virtual
machines, and we describe how matchmaking, with ne-
gotiation and advance reservation protocols [3], can be
used to create complex workspaces.

ISSN 1058-9244/05/$17.00 © 2005 – IOS Press and the authors. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192416093?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

266 K. Keahey et al. / Virtual workspaces: Achieving quality of service and quality of life in the Grid

The paper is organized as follows. Section 2 gives
an overview of virtual workspaces. Section 3 describes
their implementation, Section 4 is devoted to services
we developed and adapted to support workspaces in
the Grid, and Section 5 describes the agreement-based
interactions that the notion of a workspace enables.
We discuss related work in Section 6 and conclude in
Section 7 with a brief look at future work.

2. Introducing virtual workspaces

A virtual workspace is an abstraction of an execution
environment that can be made dynamically available
to authorized clients by using well-defined protocols.
The abstraction captures the resource quota assigned to
the execution environment (e.g., CPU, memory share)
as well as its software configuration (e.g., operating
system installation, provided services). For example, a
physical machine configured as an ATLAS Grid 3 node
using the Pacman configuration software [43], a virtual
cluster created with a Cluster on Demand (COD) soft-
ware [9], a cluster of virtual machines configured with
the software configuration required by Open Science
Grid (OSG) [16], and a set of physical machines config-
ured with Xen hypervisor [7] all represent a workspace.

Different workspace implementations provide differ-
ent workspace management capabilities [29]. In this
section, we discuss various workspace implementation
approachs and the extent to which they can be made
available dynamically in terms of flexibility of their
configuration and efficiency of deployment.

2.1. Workspaces as site-provided installations

Nodes on site installations, often configured to
support the needs of specific communities such as
Open Science Grid [34] or TeraGrid [8], can pro-
vide workspaces to Grid clients. One way of provid-
ing workspaces relevant to a specific community is to
obtain a priori agreement on required configurations,
and then simply deploy those configurations, advertise
them, and provide access. This approach is often prac-
ticed today. A more flexible way is to allow for auto-
mated boot of physical nodes based on a configuration
description and boot images (as implemented for ex-
ample in bcfg [13]), thus allowing a site to manage its
nodes in a more flexible and controlled manner. The
Cluster on Demand (COD) [9] project pioneered the use
of such tools to provide external access to configured
physical nodes on-demand, using credential-based au-

thorization. Base configurations can be further refined
using configuration management software such as Pac-
man [43] to deploy pre-defined software configurations
automatically. Pacman is able to check the installation
against already available software to optimize the pro-
cess. Thus, one can imagine scheduling the deploy-
ment of a Pacman workspace based on the availability
of already installed software.

The final step in making a site-provided installa-
tion available as a workspace is providing access to
Grid clients. Such access is typically provided by the
use of dynamic accounts [24,26,30,33,40]: accounts
generated on the fly or assigned from a pre-generated
pool. The current workspace implementation leverag-
ing site configurations [5] uses this method based on
the LCMAPS adaptation [38] of account pool imple-
mentation [33]. In addition to workspace creation, this
implementation provides a flexible interface for access
management and policy inspection: the length of an ac-
count lease can be determined and renegotiated based
on need. On lease termination the account is cleaned to
extent determined by site account configuration poli-
cies. The account cleaning process is configurable by
the site administrator and, for additional security, in-
cludes an optional quarantine: accounts are not re-
turned to the pool until a specific event takes place, such
as the expiration of a certain time period or an action
by a system administrator.

While it is possible to exercise some control over
software configurations of workspaces, enforcing fine-
grain, reliable resource allocation and sharing remains
problematic. Typically resources are made available in
a relatively coarse-grained manner allocating the num-
ber of nodes or amount of available disk space but
not enforcing fine-grained quotas, such as percentage
of CPUs between users of a specific resource. Some
control can be provided at the Unix account level by
regulating the amount of resource assigned to individ-
ual accounts by using additional tools (e.g., “setrlimit,”
“quota,” “chroot”) or schedulers such as DSRT [18],
PBSPro [35], or Condor [22]. Since these tools are
not widely deployed the reliance on them can only be
best-effort and rarely provides the required degree of
enforcement.

In summary, while providing access to site-confi-
gured workspaces is a fast and widely accepted solution
it lacks flexibility in that it offers little choice in shaping
the workspace’s configuration or the resource alloca-
tion associated with it. (The physical machine essen-
tially becomes the resource enforcement unit.) Even
when allowing full [9] or partial [43] control over the

K. Keahey et al. / Virtual workspaces: Achieving quality of service and quality of life in the Grid 267

configuration on a physical resource, the choice is lim-
ited to a library of site-configured images. The greater
the amount of configurationdone at workspace creation
time, the greater the flexibility of the solution, but also
the greater the time required for workspace deploy-
ment. Base image deployment typically takes many
minutes; the time then required to deploy and con-
figure application-specific software can be substantial
(for example, the time required to install the software
used by the Atlas project [6] can take a few hours [44])
Given these considerations, deploying workspaces on
physical nodes is cost-effective primarily for widely-
applicable and long-lived workspaces that do not re-
quire fine-grained enforcement.

2.2. Workspaces as virtual machines

A virtual machine (VM) [23] provides a virtualiza-
tion of a physical host machine. Software running
on the host, typically called a virtual machine moni-
tor (VMM) or hypervisor, is responsible for supporting
this abstraction by intercepting and emulating instruc-
tions issued by the guest machines. A hypervisor also
provides an interface allowing a client to start, pause,
serialize, and shut down multiple guests. A VM repre-
sentation (VM image) is composed of a full image of
a VM RAM, disks (or partition) images, and config-
uration files. Recent exploration of paravirtualization
techniques [7] has led to substantial performance im-
provements in virtualization technologies, making vir-
tual machines an attractive option for high-performance
applications.

Virtual machines allow a client to create a custom
execution environment configured with a required op-
erating system, software stack and access policies and
then deploy it on any resource running a hypervisor.
Further, VM state may be serialized into a VM image,
allowing the client to pause or shut down VM oper-
ation, and resume it at a different time and in a dif-
ferent location, decoupling image preparation from its
deployment and enabling migration. In addition, vir-
tual machines offer excellent enforcement of resource
usage: typically, a virtual machine is configured with
a specific memory and disk size and some, such as [7],
allow those qualities to be managed during deployment.
Using schedulers, such as [42], a client can assign a per-
centage of CPU to a given virtual machine effectively
regulating the CPU usage of the group of processes
encapsulated in it. For these reasons, VMs provide an
excellent implementation option for workspaces: the
configuration of a VM image can reflect a workspace’s

software requirements while the hypervisor can ensure
the enforcement of hardware properties.

The virtual workspace implementation based on vir-
tual machines uses VM images configured at the time
of workspace creation to represent an execution envi-
ronment. Where VM disk is represented as a set of
partition images (as in Xen [7]) a configuration can
be assembled by simply putting suitably configured
partitions together (while carefully respecting software
dependencies). Depending on the installed software,
virtual machine images can be large. Thus, assem-
bling an image by partitions is also useful at the time
of workspace deployment – partitions containing soft-
ware installations frequently used at a given site can be
stored locally instead of transferred at workspace de-
ployment time. In the future, we plan to explore using
the Replica Location Service (RLS) [10] to keep track
of and manage copies of VM images associated with
specific workspaces.

Overall, VMs have the advantage of both flexibility
and speed of deployment. The flexibility stems from
the VM concept, which provides an abstract represen-
tation of state that can be deployed anywhere a hyper-
visor is present. In modern hypervisors such deploy-
ment is quick: we show that deploying a VM can take
less than a second [27], which is comparable to the
overhead induced by the Grid tools. In addition to this,
hypervisor’s ability to provide fine-grain enforcement
makes virtual machines an ideal solution for short-term
deployment of uniquely configured workspaces requir-
ing controlled resource usage. We note however that
VM deployment relies strongly on the availability of a
hypervisor of a compatible type; in effect on an under-
lying deployment of another workspace.

2.3. Virtual cluster workspaces

Workspaces implemented via any of the methods just
described can be grouped to create virtual clusters of
various topologies. A virtual cluster workspace can be
constructed via, for example, the Cluster-on-Demand
(COD) infrastructure [9], an existing cluster with tools
for dynamically enabling access, or a cluster of virtual
machines.

When using a virtual machine implementation, a vir-
tual cluster workspace is implemented in terms of mul-
tiple VM images that may represent specialized nodes
such as worker or head nodes. In representing clusters,
we can leverage the fact that some groups of nodes (for
example, worker nodes) have the same or similar con-
figuration and leverage this fact to optimize their repre-
sentation and deployment time. We provide a detailed
discussion of these topics elsewhere [45].

268 K. Keahey et al. / Virtual workspaces: Achieving quality of service and quality of life in the Grid

3. Describing virtual workspaces

A workspace description should contain sufficient
information for a deployment service to create the en-
vironment represented by this workspace. This infor-
mation is of two kinds:

(1) description of packages or other data that need
to be obtained from potentially external sources
and put together (such as a software installation
package or a VM image), and

(2) deployment logistics information, which needs
to be interpreted and configured at deployment
time (such as network connection configuration
for a VM).

The quantity of information that must down-
loaded and the amount of deployment-time configu-
ration will depend on both workspace implementation
(installation-based deployment versus deploying a VM
image) and the deployment service implementation
(deploying a VM based on a pre-configured image [28]
or refining configuration at deployment time [31]).
Thus, a wide range of approaches to workspace descrip-
tion are possible, from the simple but inflexible (e.g., a
pointer to a VM image and a default deployment con-
figuration) to the complex but powerful (e.g., arbitrary
on-the-fly configuration of an image). In this section,
we describe the configuration aspects of a workspace
definition – workspace meta-data – in the context of the
schema we developed for virtual machine representa-
tion of workspaces.

We adopt an approach that strikes a balance be-
tween definition flexibility and deployment-time con-
figurability and speed. We describe a workspace us-
ing the XML schema depicted in block form in Fig. 1.
The description associates a workspace name with its
definition and deployment logistics information. The
workspace name is a uniform resource identifier (URI)
that can be resolved to obtain more information about
the workspace, such as its provenance, creation and
modification times, or detailed software catalog. While
irrelevant to deployment, this information is valuable
to a workspace client and can be made available by ser-
vices such as the Handle System [11] that additionally
allow for policy-controlled release of this information.

We represent a workspace as a collection of modules
that can be combined to define the workspace’s con-
tent. These modules may include a variety of compo-
nents such as a system module, a community-specific
configuration layer, or an application module. These
different components can be obtained at different times

and from different sources, thus optimizing VM im-
age transfer. Further, such modules can be attested by
different parties depending on their provenance, anno-
tated with versioning information, and associated with
different operational modes (such as read-only). Thus,
the definition section of the workspace description con-
tains a definition of workspace modules together with
information describing how they should be obtained
and put together, as well as deployment information
describing how the workspace should be configured on
deployment. In order to enable verification prior to de-
ployment, the definition section additionally specifies
prerequisites for workspace deployment, such as CPU
architecture, hypervisor, kernel images and versions,
and kernel parameters.

With VMs, workspace modules can be implemented
by VM partitions or disks that make up a VM image
(see Section 2.2). The deployment service must be
able to resolve how to acquire these partitions, verify
their integrity, and instantiate the VM such that the
proper image is loaded by the VM at the expected de-
vice. Thus, for each individual module we specify a
module name, the location at which the module can
be obtained, the device binding to which it should be
bound, and modes of operation (permissions). Like the
workspace metadata, a partition name is a URI that can
be used in conjunction with other services to obtain
more information about a specific partition including
dependencies on other partitions. A partition location
can be resolved to locate and transfer an actual image
partition. We are currently creating an additional at-
testation element to describe who developed a partition
and attested to its content.

To complete VM instantiation, we also need to de-
scribe deployment information on how to provide net-
working and (potentially) additional storage. This
content is contained in the deployment section of the
workspace. To reflect that fact that a VM can have an
arbitrary number of network interfaces (NICs) that are
mapped to physical hardware in different ways, net-
working is described as a collection of NIC elements.
For each NIC, we describe naming (the method used to
obtain an IP address), network binding describing how
VM’s network interfaces are bridged and managed out-
side the VM, and the IP address. The network binding
can be bridged directly to a physical NIC, bridged to a
VPN, configured behind a NAT of one of the host ma-
chine’s IP addresses, or configured to use an isolated
LAN.

Atomic workspaces, describing one execution en-
vironment, can be combined to form aggregate

K. Keahey et al. / Virtual workspaces: Achieving quality of service and quality of life in the Grid 269

Fig. 1. Graphical representation of the workspace schema. Plus signs denote “one or more elements”.

workspaces such as virtual clusters. An aggregate
workspace is defined to contain sets of homogeneous
atomic workspaces. This approach allows us to define
heterogeneous clusters composed for example from a
head node and worker nodes (one atomic workspace
and a set of homogeneous atomic workspaces). To
represent more complex, hierarchical structures the ag-
gregate workspace can easily be made more recursive
in future workspace implementations. All information
about a cluster workspace is derived from the metadata
of the atomic workspaces describing those nodes.

While workspace metadata describes where VM im-
age parts can be obtained, it does not include them.
Images as well as workspace descriptions can be put
together by VO deployment teams supporting specific
groups of applications. Such workspaces can then
be shared, copied, and incrementally refined, allowing
users to further customize VWs to suit a particular set
of needs. A community may provide a configuration
service supporting those operations and allowing for
more or less workspace customization. VMPlant [31]
implements such a service, which however combines
the process of VM configuration with its deployment.
In our architecture those roles are split: once put to-
gether, a workspace description may be deployed many
times, each time potentially with a different resource
allocation.

4. Creating, deploying, and managing virtual
workspaces

The workspace description introduced in the previ-
ous section describes a workspace’s environment. A

workspace defined in this way may be deployed in the
context of many different resource allocations. Fur-
thermore, these allocations can be renegotiated during
a specific deployment. We use the term Workspace
Service to denote the entity responsible for deploying
a workspace and associating it with a specific resource
allocation. We describe this service here, as well as the
context in which a Workspace Service operates and the
means by which it interacts with different Grid services
to accomplish its goals.

Figure 2 illustrates these services and their func-
tion. To obtain a workspace description, a client first
works with either workspace configuration services
(Section 3) to create a new workspace, or selects from
existing workspaces using an information service that
associates workspace images with information about
those images and the deployment capability (services)
they provide.

Workspace deployment comprises two phases: ob-
taining the workspace data required for deployment
and using that data to deploy the workspace onto a
requested set of resources. Implementing the first
phase (workspace staging) may require orchestrating
workspace data transfer from remote sources to the
site where the workspace will be deployed. Efficiently
scheduling such transfers can require global knowledge
and coordination. In the second phase, the workspace
data is available at the selected site and the workspace
can now be deployed using this site’s workspace ser-
vice. In order to do this, the workspace service must
be able to interpret the workspace description and be in
control of resources that provide the deployment capa-
bility for this kind of workspace (e.g., a hypervisor for
virtual machines).

270 K. Keahey et al. / Virtual workspaces: Achieving quality of service and quality of life in the Grid

Fig. 2. Creating and deploying workspaces.

At deployment, a workspace is associated with a re-
source allocation requested by the client. This resource
allocation, as well as other deployment-specific prop-
erties of the workspace, can be managed (i.e., moni-
tored and/or modified) throughout its deployment. All
workspace service operations are subject to authoriza-
tion; authorization policy may be expressed in terms
of both the requesting client and the workspace itself.
Once the workspace is deployed, an authorized client
can interact with services within the workspace. Note
that at this point, the client is authorized by services
executing within the workspace. By the act of deploy-
ing the workspace and associating it with a resource
allocation, the workspace service effectively delegates
to the workspace the use of this allocation.

Work on other services is pursued elsewhere; here we
focus on the Workspace Service. We define Workspace
Service protocols based on the Web Services Resource
Framework (WSRF) [21], which provides standard
methods for the creation and management of man-
ageable state descriptors called “WS resources.” A
Workspace Factory Service uses a “create” operation to
create a WS resource representing the new workspace.
Associated with each WS Resource are a limited life-
time and other resource properties that can be inspected,
queried, and managed in standard ways, and that can be
used in conjunction with WS-Notifications [21] to pro-
vide updates on change. A resource can be destroyed
either explicitly or by allowing its lifetime to expire.
Figure 3 shows the resource properties we defined for
a workspace resource, as well as the operations and
arguments that we define for a workspace service in
addition to resource management as described above.

The Workspace Factory “create” operation takes as
input a workspace description (as described in Sec-
tion 3) and a description of a resource allocation to be
applied to the workspace on startup. The resource allo-
cation request contains a request for association with a
resource allocation for a specified length of time. The
resource allocation is specified as constrained values
that are bound to specific values when the request is
accepted. Deploying an aggregate workspace requires
describing an aggregate resource allocation reflecting
the topology of the specified workspace: the aggregate
resource type is specified based on an atomic resource
type defined analogously to aggregate workspaces. In
addition, the resource allocation request allows a client
to specify a state that the workspace deployment should
reach on creation of the resource. This element indi-
cates whether the workspace should be started immedi-
ately or whether it should be only prepared for startup
(for example, images associated with a workspace
should be propagated to the actual resource on which
they will be deployed). The last option was introduced
based on the observation that preparing a workspace to
start may take a relatively long time [45].

In addition to the operations used to manage the WS
resource, we define operations that allow a client to
start a workspace and to shut down a started workspace.
Workspace shutdown takes an argument that allows the
client to express properties of the shutdown, such as
pause, pause and serialize, hard-reboot, and trash (shut
down and destroy images). A workspace may be started
and shut down many times throughout the lifetime of
the WS resource associated with it.

The properties of workspace deployment can be in-
spected and managed through the WS resource proper-

K. Keahey et al. / Virtual workspaces: Achieving quality of service and quality of life in the Grid 271

Types:

AtomicResourceAllocation_Type:

CPUType
CPUPercentage
PhysicalMemory
NIC []
DiskSpace

NIC_Type:
 IncomingBandwidth
 OutgoingBandwidth

WorkspaceDeployment_Type:

DeploymentTime
ResourceAllocation

 WorkspaceState

Workspace Service Factory

Resource Properties:

 1. Workspace pre-requisites

Operations:

Create(AggregateVirtualWorkspace, AggregateResourceAllocation_Type)

Workspace Service

Resource Properties:
 1. AggregateWorkspaceDeployment_Type
 2. Workspace deployment information

 3. Workspace state

Operations:

 Start (no inputs)
 Shutdown (shutdown inputs)

Fig. 3. Workspace service interfaces.

ties. The resource properties of a workspace resource
describe the resource allocation that the workspace is
currently bound to, the state of the workspace (propa-
gated/unpropagated – referring to the readiness for ex-
ecution, running, paused, trashed). A client may use
the resource properties to adjust the resource alloca-
tion given to a workspace using the WSRF SetResour-
ceProperties operation. Although in the future nego-
tiation could be used for this operation, we currently
accept or reject the request based on feasibility.

Our implementation of the protocols described above
is based on the Globus Toolkit 4 (GT4) implementation
of WSRF [20]. This use of GT4 allows us to lever-
age many tools available in the Globus Toolkit such
as authentication/authorization mechanisms and persis-
tence. The workspace service implements a gateway
to a set of resources administered by it: the workspace
may be deployed on a different host from the one on
which it is installed.

The protocol outlined above fulfills many of our
basic design requirements: it provides the control
necessary to deploy and shutdown workspaces, re-
quest and manage the resource allocation assigned to
them, and support desirable behaviors, such as mi-
gration (which can be accomplished by pausing and
serializing a workspace and restarting it in a differ-
ent location). However, we expect these interfaces to
evolve significantly in the future to support negotia-
tion, more sophisticated agreement structures (such as
WS-Agreement [3]), and more refined resource allo-
cation strategies and definitions (potentially based on
JSDL [4]). As these definitions evolve, so will the as-
sociated resource properties and operation definitions.
Another driving force in their evolution will be gener-
alizing these services to support other workspace im-
plementations, which is desirable from the perspec-
tive of providing uniform ways of interacting with the
same concept, no matter how that concept is imple-
mented. We currently define for example what kinds

272 K. Keahey et al. / Virtual workspaces: Achieving quality of service and quality of life in the Grid

Fig. 4. Environment layers: A and C are hypervisor workspaces, each supporting the deployment of different types of virtual machines, which
in turn provide job execution capabilities. Workspace B provides job execution capability.

of workspaces can be deployed by a specific service:
more such definitions may be necessary to make the
interfaces truly generic.

5. Putting it all together: Workspaces,
agreements, and brokers

We have described the different implementations of
workspaces and, based on the example of virtual ma-
chines, shown how they can be described and deployed.
Our motivation in defining a workspace was to provide
a required execution environment for an application.
However, we note that a workspace itself may consti-
tute an application with well-defined requirements (see
workspace pre-requisites as in Section 3). While virtual
machines provide a compelling solution for environ-
ment deployment, their own deployment, as well as its
scope, relies on the presence of compatible hypervisors
on a resource. In this section, we discuss how differ-
ent implementations of workspaces can be put together
to implement the full stack of interactions required for
workspace deployment.

A workspace is associated with a deployment ca-
pability. As the figure below illustrates such capa-
bilities can support the deployment of jobs or other
workspaces. The Workspace Service, implementing
workspace deployment, can operate at each layer; how-
ever, at each layer, workspace deployment is associated
with different implementations and ownership.

Base images, deployed on resources owned and
maintained by a site, are typically configured by a site
owner to reflect site policies. Virtual machines, on the
other hand, whose deployment and shutdown can easily
be controlled by a site without impairing the availabil-
ity of its resources, can be configured by communities
wishing to support specific applications. A site can still
impose restrictions on their configuration, for example
by deploying only images attested and versioned by
trusted sources, but it is no longer responsible for pro-

viding and maintaining complex community-specific
configurations. This strategy can make a significant
difference in the variety of environments that a site can
support: while it is difficult for a site to maintain a
community-specific workspace for every community
wishing to work with that site, it is much easier to main-
tain several generic hypervisor images. Thus, we ar-
gue that it is advantageous for sites to support deploy-
ment capability platforms for the deployment of VM
workspaces rather than end-user capabilities.

While today a site typically simply advertises the
supported deployment capability, such advertisements
are static and do not allow much flexibility in the sup-
port of deployment capabilities. If, in practice, one
dominant capability is required by the site users (such
as a specific Linux workspace or a popular hypervi-
sor) this model is sufficient. However, systems such
as COD [9] offer a more flexible model that (in ef-
fect) implements site-specific workspace services that
allow an authorized client to request the deployment of
a workspace from a limited set. Providing standard-
ized interfaces to such services would enable a client
to flexibly negotiate required workspaces at different
sites.

These interfaces are likely to be based on emerg-
ing standards such as WS-Agreement [3]. Figure 5
shows how the full workspace deployment could be
negotiated using WS-Agreement. A broker negotiates
an agreement with a site for the availability of a set
of resources and obtains a resource allocation agree-
ment. Workspace deployment requests, defining a de-
ployment capability (for example, a specific hypervisor
configuration) and a resource allocation request, can
now be made against that resource allocation agree-
ment. If the request is successful, a workspace de-
ployment is bound to the available resource allocation,
and the hypervisor configuration is deployed on the re-
quested resources. This agreement in turn can be used
as a base for subsequent deployment of virtual machine
workspaces. Throughout this interaction the site or

K. Keahey et al. / Virtual workspaces: Achieving quality of service and quality of life in the Grid 273

Fig. 5. Negotiating workspaces in the Grid.

community may advertise supported deployment capa-
bilities or even offer them as bids [14] through Grid
economic mechanisms.

It should be noted that it is the deployment capabil-
ity that is advertised by a site: in addition to making
resources available we also need to be able to configure
them with a software providing the required capabil-
ity. The power of using virtual machines relies on the
fact that while sites can, in principle, maintain config-
uration images required by many different communi-
ties, in practice only a few images can be maintained.
However, maintaining a few generic hypervisor images
gives the sites a platform that can be used to deploy a
large variety of environments.

6. Related work

Because of their superior isolation properties, fine-
grained resource management, and ability to instan-
tiate independently configured guest environments on
a host resource, virtual machines are attracting in-
creased attention in distributed computing [15,29]. The
Xenoserver project [37] is building a distributed infras-
tructure based on the popular and efficient Xen vir-
tual machine [7]. The In-Vigo project [1,31] proposed
a distributed Grid infrastructure based on the use of
virtual machines as resources, while the Virtuoso [39]
and Violin [25] projects explore networking issues re-
lated to using virtual machines in a Grid environment.
Likewise, much research has been invested in tools for
resource configuration [2,13,14,32] and allocation as

well as dynamically providing access for Grid clients
to existing workspaces [24,26,30,33,40]. COD [9] en-
ables dynamic workspace deployment for authorized
remote clients.

Our contribution differs from these efforts in two
ways. First, unlike Krsul et al. [31], we seek to sepa-
rate deployment-independent workspace configuration
services on the one hand, and a workspace deployment
service that binds a workspace to a specific resource
allocation on the other. Second, we believe that the
workspace abstraction is not limited to a single vir-
tual machine implementation or site-specific installa-
tion mechanisms but can be generalized to encompass
a range of approaches. Driven by the requirements of
diverse Grid communities working with the Globus Al-
liance [41], we also seek to define methods for repre-
senting clusters of workspaces that form a primary Grid
platform. Based on the generalized idea of workspace,
we are defining common methods for secure workspace
deployment and management that allow us to build
nested workspaces flexibly, as described in Section 5.
In this sense our work is closest to COD [9], but wider
in scope.

As we have shown in Section 5, concepts developed
as part of the matchmaker architecture [36],SNAP [12],
and WS-Agreement [3] can be applied to workspace
management. However, their varied deployment times,
varying enforcement capability, and heterogeneous and
potentially layered nature raise as many interesting
problems in resource brokering and scheduling as they
solve in the enforcement and environment definition.

274 K. Keahey et al. / Virtual workspaces: Achieving quality of service and quality of life in the Grid

7. Summary and future work

The virtual workspace concept and new implementa-
tion approaches, such as virtual machines, enable many
scenarios that are hard to achieve with current tools.
Among others, we expect that providing reliable qual-
ity of service enforcementwill lead to more widespread
use of agreement-based protocols and commercial in-
teractions in resource use and contributions. In addi-
tion, the ability to deploy remote workspaces reliably
will provide much needed “quality of life” for Grid
users, who will be able to use more resources with
greater confidence.

Workspaces also make it easier for resource own-
ers to contribute resources to the Grid and to manage
virtual organizations. As we point out in Section 5,
workspaces can be used for management at different
layers. Virtual organizations can manage workspaces
for their applications while still giving a site coarse-
grained control over workspace images via attestation.
Thus, a virtual organization can evolve workspaces
flexibly and independently, while sites manage generic
workspaces in site-specific ways, providing platforms
for the deployment of workspaces from different com-
munities. This strategy has the potential to lower sig-
nificantly the entry barrier into the Grid by reducing
the administrative cost of maintaining Grid resources.

Much research is still required to realize this vision.
In future work, we plan to further refine and experiment
with virtual workspaces and to work on ensuring their
security, developing networking infrastructure, and de-
vising methods that leverage the migration capability
and other aspects. In addition, we plan to explore the
notion of virtual playgrounds, or virtual Grids abstract-
ing a real physical Grid. A virtual playground is com-
posed of several workspaces, virtual networks, and vir-
tualized storage or data. As a workspace is designed to
support a group of jobs sharing similar requirements, a
playground supports the interaction of such jobs over a
Grid and may involve computations across many plat-
forms. Our research on workspaces paves the way for
this work.

References

[1] S. Adabala, V. Chadha, P. Chawla, R. Figueiredo, J. Fortes, I.
Krsul, A. Matsunaga, M. Tsugawa, J. Zhang, M. Zhao, L. Zhu
and X. Zhu, From Virtualized Resources to Virtual Computing
Grids: The In-VIGO System, Future Generation Computer
Systems, 2004.

[2] P. Anderson and A. Scobie, Large Scale Linux Configuration
with LCFG, in 4th Annual Linux Showcase and Conference,
2000.

[3] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig,
J. Pruyne, J. Rofrano, S. Tuecke and M. Xu, Web Services
Agreement Specification (WS-Agreement) Draft 20. 2004:
https://forge.gridforum.org/projects/graap-wg/.

[4] A. Andrieux, K. Czajkowski, J. Lam, C. Smith and M.
Xu, Standard Terms for Specifying Computational Jobs.
http: //www.epcc.ed.ac.uk/%7Eali/WORK/GGF/JSDL-WG/
DOCS/WS-Agreement job terms for JSDL print.pdf, 2003.

[5] R. Ashkenas, D. Ulrich, T. Jick and S. Kerr, The Boundaryless
Organization, San Francisco: Jossey-Bass, 1995.

[6] J. Baldeschwieler, R. Blumofe and E. Brewer, ATLAS: An
Infrastructure for Global Computing, in Proc. Seventh ACM
SIGOPS European Workshop on System Support for World-
wide Applications, 1996.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.
Ho, R. Neugebar, I. Pratt and A. Warfield, Xen and the Art
of Virtualization, in ACM Symposium on Operating Systems
Principles (SOSP).

[8] C. Catlett, The TeraGrid: A Primer, 2002.
[9] J. Chase, L. Grit, D. Irwin, J. Moore and S. Sprenkle, Dynamic

Virtual Clusters in a Grid Site Manager, accepted to the 12th
International Symposium on High Performance Distributed
Computing (HPDC-12), 2003.

[10] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek,
A. Iamnitchi, C. Kesselman, P. Kunst, M. Ripenu, B.
Schwartzkopf, H. Stockinger, K. Stockinger and B. Tierney,
Giggle: A Framework for Constructing Scalable Replica Lo-
cation Services, in SC’02: High Performance Networking and
Computing, 2002.

[11] CNRI, Handle System, 2005: www.handle.net.
[12] K. Czajkowski, I. Foster, V. Sander, C. Kesselman and S.

Tuecke, SNAP: A Protocol for Negotiating Service Level
Agreements and Coordinating Resource Management in Dis-
tributed Systems, in 8th Workshop on Job Scheduling Strate-
gies for Parallel Processing, 2002, Edinburgh, Scotland.

[13] N. Desai, A. Lusk, R. Bradshaw and R. Evrard, BCFG: A
Configuration Management Tool for Heterogeneous Environ-
ments, in IEEE International Conference on Cluster Comput-
ing (CLUSTER’03), 2003.

[14] M. Feldman, K. Lai and L. Zhang, A Price-Anticipating Re-
source Allocation mechanism for Distributed Shared Clusters,
ACM Conference on Electronic Commerce, 2005.

[15] R. Figueiredo, P. Dinda and J. Fortes, A Case for Grid Com-
puting on Virtual Machines, in 23rd International Conference
on Distributed Computing Systems, 2003.

[16] I. Foster and others, The Grid2003 Production Grid: Princi-
ples and Practice, in IEEE International Symposium on High
Performance Distributed Computing, 2004: IEEE Computer
Science Press.

[17] I. Foster, C. Kesselman and S. Tuecke, The Anatomy of the
Grid: Enabling Scalable Virtual Organizations, International
Journal of Supercomputer Applications 15(3) (2001), 200–
222.

[18] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt and
A. Roy, A Distributed Resource Management Architecture that
Supports Advance Reservations and Co-Allocation, in Proc.
International Workshop on Quality of Service, 1999.

[19] I. Foster, C. Kesselman, J. Nick and S. Tuecke, The Physi-
ology of the Grid: An Open Grid Services Architecture for
Distributed Systems Integration, 2002: Open Grid Service
Infrastructure WG, Global Grid Forum.

K. Keahey et al. / Virtual workspaces: Achieving quality of service and quality of life in the Grid 275

[20] I. Foster, Globus Toolkit version 4: Software for Service-
Oriented Systems, IFIP International Conference on Network
and Parallel Computing, 2005.

[21] I. Foster, J. Frey, S. Graham, S. Tuecke, K. Czajkowski, D. Fer-
guson, F. Leymann, M. Nally, T. Storey and S. Weerawaranna,
Modeling Stateful Resources with Web Services, 2004, Globus
Alliance.

[22] J. Frey, T. Tannenbaum, I. Foster, M. Livny and S. Tuecke,
Condor-G: A Computation Management Agent for Multi-
Institutional Grids, Cluster Computing 5(3) (2002), 237–246.

[23] R. Goldberg, Survey of Virtual Machine Research, IEEE Com-
puter 7(6) (1974), 34–45.

[24] T. Hacker and B. Athey, A Methodology for Account Man-
agement in Grid Computing Environments, Proceedings of the
2nd International Workshop on Grid Computing, 2001.

[25] X. Jiang and D. Xu, VIOLIN: Virtual Internetworking on Over-
Lay INfrastructure, Department of Computer Sciences Tech-
nical Report CSD TR 03-027, Purdue University, 2003.

[26] N.H. Kapadia, R.J. Figueiredo and J. Fortes, Enhancing the
Scalability and Usability of Computational Grids via Logical
User Accounts and Virtual File Systems, in 10th Heteroge-
neous Computing Workshop, San Francisco, California, 2001.

[27] K. Keahey, I. Foster, T. Freeman, X. Zhang and D. Galron, Vir-
tual Workspaces in the Grid, ANL/MCS-P1231-0205, 2005.

[28] K. Keahey, I. Foster, T. Freeman, X. Zhang and D. Galron,
Virtual Workspaces in the Grid, in Europar, Lisbon, Portugal,
2005.

[29] K. Keahey, K. Doering and I. Foster, From Sandbox to Play-
ground: Dynamic Virtual Environments in the Grid, in 5th
International Workshop in Grid Computing, 2004.

[30] K. Keahey, M. Ripeanu and K. Doering, Dynamic Creation
and Management of Runtime Environments in the Grid, in
Workshop on Designing and Building Web Services (to ap-
pear), Chicago, IL, 2003.

[31] I. Krsul, A. Ganguly, J. Zhang, J. Fortes and R. Figueiredo,
VMPlants: Providing and Managing Virtual Machine Execu-
tion Environments for Grid Computing, in SC04, Pittsburgh,
PA, 2004.

[32] Log4j Logging Services, 2004.
[33] A. McNab, Grid-Based Access Control for Unix Environ-

ments, Filesystems and Web Sites, Proceeings of the CHEP
2003 conference, 2003.

[34] Open Science Grid (OSG), 2004.
[35] Portable Batch System.
[36] R. Raman, M. Livny and M. Solomon, Matchmaking: Dis-

tributed Resource Management for High Throughput Comput-
ing, in 7th IEEE International Symposium on High Perfor-
mance Distributed Computing, IEEE Computer Society Press,
1998.

[37] D. Reed, I. Pratt, P. Menage, S. Early and N. Stratford,
Xenoservers: Accountable Execution of Untrusted Programs,
in 7th Workshop on Hot Topics in Operating Systems, Rio
Rico, AZ: IEEE Computer Society Press, 1999.

[38] Steenbakkers, Guide to LCMAPS version 0.0.23. 2003:
http: //www.dutchgrid.nl/DataGrid/wp4/lcmaps/edg-lcmaps
gcc3 2 2-0.0.23/lcmaps.pdf.

[39] A. Sundararaj and P. Dinda, Towards Virtual Networks for
Virtual Machine Grid Computing, in 3rd USENIX Conference
on Virtual Machine Technology, 2004.

[40] V. Talwar, S. Basu and R. Kumar, An Environment for Enabling
Interactive Grids, in The Twelfth IEEE International Sympo-
sium on High Performance Distributed Computing (HPDC-
12), Seattle, Washington, 2003.

[41] The Globus Project Web Site.
[42] Xen Scheduler Howto. 2005: http: //xen.terrabox.com/index.

php/Sched-HOWTO.
[43] S. Youssef, Pacman: A Package Manager, 2004: http://

physics.bu.edu/˜youssef/pacman/.
[44] S. Youssef, Personal communication, 2004.
[45] X. Zhang, K. Keahey, I. Foster and T. Freeman, Virtual Cluster

Workspaces for Grid Applications, ANL/MCS-P1246-0405,
2005.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

