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An algorithm for solving the steady-state Schrödinger equation for a complex piecewise-constant potential in the presence of the
𝐸-field is developed and implemented.The algorithm is based on the consecutive matching of solutions given by the Airy functions
at the band boundaries with the matrix rank increasing by no more than two orders, which enables the characteristic solution to
be obtained in the convenient form for search of the roots. The algorithm developed allows valid solutions to be obtained for the
electric field magnitudes larger than the ground-state energy level, that is, when the perturbation method is not suitable.

1. Introduction

The research aimed at developing high-performance com-
puting systems, communication, and information processing
means has led to the emergence of a new approach to design-
ing the electronics components [1–6]. Within such an
approach, the information is carried by the amplitude of the
electron wave function in a given region of the quantum sys-
tem. By applying an external 𝐸-field that introduces changes
in the energy spectrum one can induce a controlled redistri-
bution of the system electron density, which corresponds to
the data conversion by a predetermined law.

The devices for controlled electron density redistribution
can be physically implemented using structures composed of
an array of tunnel-coupled quantum wells.

In a multiwell quantum structure the wave function
amplitude distribution is actually determined by the inter-
ference of quantum states of different quantum wells [7].
Because of this, the electron density redistribution under the
action of the external 𝐸-field may appear as a complex, non-
monotonic process. Then, changes in the system’s physical
characteristics will also be nonmonotonic, thus opening wide
opportunities for designing novel quantum devices [8].

When designing an electronic device, one needs to learn
in which way the energy spectrum of the electric charge
can be varied in a desired manner by exposing it to various

external actions.Themost popular controlling technique is by
use of the electric field. In such a system, the energy spectrum
can be calculated using the steady-state Schrödinger equation
characterized by a designed potential structure and the
constant electric field applied.

For the potential described by a piecewise-constant func-
tion, the problem can be solved by representing the wave
functions as a superposition of theAiry functions.While sim-
ple heterostructures described by one or two potential energy
levels enable an analytical solution to be derived, for the
complex-shaped potentials the problem becomes very com-
putationally challenging [7]. As a rule, the problem is tackled
using the perturbation method [9, 10], which is only suited
when the 𝐸-field applied is low enough.

Thus, the problem of development and implementation
of a numerical method for calculating the energy spectrum
of a complex-shaped potential exposed to the electric field
remains relevant.

We describe an algorithm for solving the corresponding
steady-state Schrödinger equation.The algorithm is based on
consecutively matching the solutions at the zone boundaries
with the matrix rank increasing by no more than two orders,
thus allowing the procedure for seeking the characteristic
equation roots to be easily implemented.

The comparison of the algorithm with the perturbation
method is conducted.
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2. An Algorithm for Solving Schrödinger
Equation Using the Consecutive Joining

Let there be a 1D heterostructure composed of an array of
homogeneous semiconductor layers (the layer boundaries
being perpendicular to theOx-axis) exposed to the 𝐸-field. If
the 𝐸-field of strength 𝐹 is parallel to the x-axis, the potential
energy is given by

𝑈 (𝑥) = 𝑞𝐹𝑥 + 𝑈𝑝, (1)

where 𝑞 is the absolute magnitude of the electron charge, 𝑈𝑝
is the value of the piecewise-constant potential on the seg-
ment 𝑥 ∈ [𝑥𝑝−1, 𝑥𝑝], and 𝑥𝑝 are the layer boundary coordi-
nates.

Then, the Schrödinger equation takes the form

−
ℎ
2

2𝑚𝑝

d2𝜓 (𝑥)
d𝑥2

+ (𝑞𝐹𝑥 + 𝑈𝑝) 𝜓 (𝑥) = 𝐸𝜓 (𝑥) , (2)

where𝑚𝑝 is the effective mass and 𝜓(𝑥) is the particle’s wave
function.

Denote that

𝑢 = 𝑏𝑝
1/3

(𝑥 − 𝑐𝑝) , (3)

where 𝑐𝑝 = (𝐸 − 𝑈𝑝)/𝑞𝐹, 𝑏𝑝 = (2𝑚𝑝𝑞𝐹/ℎ
2
).

In this case, the wave function of the argument u satisfies
the Airy equation:

{
d2

d𝑢2
− 𝑢}𝜓 (𝑢) = 0. (4)

On each interval, the solution of (4) takes the form [11, 12]

𝜓𝑝 (𝑢𝑝 (𝑥)) = 𝐴𝑝𝐴𝑖 (𝑢𝑝 (𝑥)) + 𝐵𝑝𝐵𝑖 (𝑢𝑝 (𝑥)) , (5)

where 𝑢𝑝(𝑥) = 𝑏𝑝
1/3
(𝑥 − 𝑐𝑝), 𝑥 ∈ [𝑥𝑝−1, 𝑥𝑝]; 𝐴𝑖(𝑥), 𝐵𝑖(𝑥) are

the Airy functions of the first and second kind, respectively.
By imposing the matching conditions of the wave func-

tions and derivatives thereof divided by the mass on the
interval (layer) boundaries, the coefficients of the solution in
(5) can be represented as

𝐴𝑝𝐴𝑖 (𝑢𝑝,𝑝) + 𝐵𝑝𝐵𝑖 (𝑢𝑝,𝑝)

= 𝐴𝑝+1𝐴𝑖 (𝑢𝑝+1,𝑝) + 𝐵𝑝+1𝐵𝑖 (𝑢𝑝+1,𝑝) ,

1

𝑚𝑝

[𝐴𝑝𝐴𝑖

(𝑢𝑝,𝑝) + 𝐵𝑝𝐵𝑖


(𝑢𝑝,𝑝)]

=
1

𝑚𝑝+1

[𝐴𝑝+1𝐴𝑖

(𝑢𝑝+1,𝑝) + 𝐵𝑝+1𝐵𝑖


(𝑢𝑝+1,𝑝)] ,

(6)

where 𝑢𝑝,𝑙 = 𝑏𝑝
1/3
(𝑥𝑙 − 𝑐𝑝).

Note that the allowed values of energy 𝐸 implicitly enter
in (6) in the formof theAiry function arguments in (5). In the
following, we consider obtaining the characteristic equation
(for 𝐸) by a simple example of an infinite quantum well and a
general-form quantum well potential.
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Figure 1: The energy spectrum of an infinite triangular potential
well.

3. Infinite Triangular Potential Well

Byway of illustration, themodel of a triangular infinite poten-
tial well is utilized when describing the surface quantization.
The potential of the infinite triangular well is described by the
relation (Figure 1)

𝑈 (𝑥) = {
∞, 𝑥 ∈ [−∞, 𝑥0] ,

𝑈0 + 𝑞𝐹𝑥, 𝑥 ∈ [𝑥0,∞] .
(7)

The boundary conditions define that the wave function in
(5) has the zero value at the left boundary of the well (when
𝑥 = 𝑥0 and 𝑥 → ∞). Whence it follows that 𝐵0 = 0, and
thus,

𝜓0 (𝑢 (𝑥0)) = 𝐴0𝐴𝑖 (𝑢 (𝑥0)) = 0, (8)

where 𝑢(𝑥0) = (𝑥0 − (𝐸 − 𝑈0)/𝑞𝐹)(2𝑚0𝑞𝐹/ℎ
2
)
1/3.

The constant 𝐴0 in (8) is normalized on the assumption
that the integral of the wave function’s squared modulus is
equal to unity.

The condition in (8) holds when 𝑢(𝑥0) = 𝑎𝑛, where 𝑎𝑛 are
the Airy function roots. Thus, the allowed energy values are

𝐸𝑛 = [𝑥0 − 𝑎𝑛 ⋅ (
2𝑚0𝑞𝐹

ℎ2
)

−1/3

] 𝑞𝐹 + 𝑈0. (9)

Putting 𝑥0 = 0 and using the approximate values of the
Airy function roots [11, 12]

𝑎𝑛 ≈ −[(
3𝜋

8
) (4𝑛 − 1)]

2/3

, (10)

we obtain an approximate estimate of the energy spectrum of
the infinite triangular well in the explicit form (with regard to
the electron charge)

𝐸𝑛 ≈ (
ℎ
2

2𝑚0

)

1/3

[
3

2
𝑞𝐹𝜋 (𝑛 − 0, 25)]

2/3

+ 𝑈0.
(11)

In the following, we conduct the comparison of the
energy spectra of a finite-width square well with and without
the 𝐸-field applied.
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Figure 2: The infinite square potential well (a) with and (b) without the 𝐸-field applied.

4. Infinite Square Potential Well

For a quantum well of width 2𝐿, the potential is (Figure 2)

𝑈 (𝑥) =

{{

{{

{

∞, 𝑥 ∈ [−∞, −𝐿] ,

𝑈0 + 𝑞𝐹𝑥, 𝑥 ∈ [−𝐿, 𝐿] ,

∞, 𝑥 ∈ [𝐿,∞] .

(12)

For a classical infinite square quantum well of width 2𝐿,
the solution is known to take the form

𝜓𝑛 (𝑥) = sin (𝛼𝑛 (𝑥 + 𝐿)) , (13)

where

𝛼𝑛 =
√
2𝑚0

ℎ2
(𝐸𝑛 − 𝑈0), 𝐸𝑛 = (

𝜋𝑛

2𝐿
)

2
ℎ
2

2𝑚0

+ 𝑈0. (14)

When applying a low-value 𝐸-field, an approximate solu-
tion can be derived using the perturbation method [9, 10].

4.1. Solving the Schrödinger Equation by the Perturbation
Method. Let us consider the perturbation theory for a nonde-
generate state. The steady-state Schrödinger equation (2) can
be written as

𝐻[𝜑𝑛 (𝑥)] = 𝐸𝑛𝜑𝑛 (𝑥) , (15)

where the operator𝐻 takes the form

𝐻 = 𝐻0 +𝑊, (16)

𝑊 is the perturbation operator and 𝐻0 is the nonperturbed
operator whose eigenfunctions and eigenvalues are defined
by (13) and (14):

𝐻0 [𝜓𝑛 (𝑥)] = 𝐸
0

𝑛
𝜓𝑛 (𝑥) . (17)

The sought-for eigenfunction of the perturbed operator
can be decomposed in terms of the unperturbed operator as

𝜑𝑛 (𝑥) = ∑

𝑚

𝑐
𝑚

𝑛
𝜓𝑚 (𝑥) . (18)

Substituting (18) into (15) yields

∑

𝑚

𝑐
𝑚

𝑛
𝑊[𝜓𝑚 (𝑥)] = ∑

𝑚

𝑐
𝑚

𝑛
(𝐸𝑛 − 𝐸

0

𝑚
) 𝜓𝑚 (𝑥) . (19)

Taking the scalar product of (19) by 𝜓
∗

𝑙
(𝑥) and with

regard to the orthogonality, we obtain

∑

𝑚

𝑐
𝑚

𝑛
∫𝜓
∗

𝑙
(𝑥)𝑊 [𝜓𝑚 (𝑥)] d𝑥 = 𝑐

𝑙

𝑛
(𝐸𝑛 − 𝐸

0

𝑙
) ,

𝑙 = 1, 2, 3, . . . .

(20)

Assuming that the perturbation operator is infinitesimal,
we find the energy levels and wave functions of the perturbed
and unperturbed operators to be close to each other. The
sought-for solution will include the second-order correc-
tions:

𝐸𝑛 ≈ 𝐸
0

𝑛
+ 𝐸
1

𝑛
+ 𝐸
2

𝑛
,

𝜑𝑛 (𝑥) ≈ 𝜓𝑛 (𝑥) + ∑

𝑚 ̸= 𝑛

𝑐
𝑚,1

𝑛
𝜓𝑚 (𝑥) + ∑

𝑚 ̸= 𝑛

𝑐
𝑚,2

𝑛
𝜓𝑚 (𝑥) .

(21)

From (20) and (21), the corrections are described by the
following equations [9, 10]:

𝐸
1

𝑛
= ∫𝜓

∗

𝑛
(𝑥)𝑊 [𝜓𝑛 (𝑥)] d𝑥,

𝐸
2

𝑛
= ∑

𝑚 ̸= 𝑛

𝑐
𝑚,1

𝑛
∫𝜓
∗

𝑛
(𝑥)𝑊 [𝜓𝑚 (𝑥)] d𝑥,

𝑐
𝑚,1

𝑛
=

∫𝜓
∗

𝑚
(𝑥)𝑊 [𝜓𝑛 (𝑥)] d𝑥
(𝐸0
𝑛
− 𝐸0
𝑚
)

,

𝑐
𝑚,2

𝑛
= {∑

𝑙

𝑐
𝑙,1

𝑛
∫𝜓
∗

𝑙
(𝑥)𝑊 [𝜓𝑙 (𝑥)] d𝑥 − 𝑐

𝑚,1

𝑛
𝐸
1

𝑛
}

× (𝐸
0

𝑛
− 𝐸
0

𝑚
)
−1

.

(22)

4.2. PerturbationsMethod for an Infinite Square PotentialWell
in the Electric Field. In the case in question,

𝐻0 = −
ℎ
2

2𝑚0

d2

d𝑥2
+ 𝑈0,

𝑊 = 𝑞𝐹𝑥.

(23)

The unperturbed solutions are considered to be given by
(13) and (14). In this case, the energy values for (2) are derived
from the relation:

𝐸𝑛 ≈ (
𝜋𝑛

2𝐿
)

2
ℎ
2

2𝑚0

+ 𝑈0 + 𝐸
1

𝑛
+ 𝐸
2

𝑛
, (24)
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where

𝐸
1

𝑛
= 𝑞𝐹∫

𝐿

−𝐿

sin2 (𝛼𝑛 (𝑥 + 𝐿)) 𝑥 d𝑥 = 𝑞𝐹𝐿,

𝐸
2

𝑛
= 𝑞𝐹∑

𝑚

𝑐
𝑚,1

𝑛
∫

𝐿

−𝐿

sin (𝛼𝑛 (𝑥 + 𝐿)) sin (𝛼𝑚 (𝑥 + 𝐿)) 𝑥 d𝑥

− 𝑐
𝑛,1

𝑛
𝐸
1

𝑛
.

(25)

Then, the wave functions are determined as follows:

𝜑𝑛 (𝑥) = sin[(𝑥 + 𝐿)√
2𝑚0

ℎ2
(𝐸𝑛 − 𝑈0)]

+ ∑

𝑚 ̸= 𝑛

𝑐
𝑚,1

𝑛
𝜓𝑚 (𝑥) + ∑

𝑚 ̸= 𝑛

𝑐
𝑚,2

𝑛
𝜓𝑚 (𝑥) ,

(26)

where

𝑐
𝑚,1

𝑛
=

𝑞𝐹∫
𝐿

−𝐿
sin (𝛼𝑚 (𝑥 + 𝐿)) sin (𝛼𝑛 (𝑥 + 𝐿)) 𝑥 d𝑥

(𝐸0
𝑛
− 𝐸0
𝑚
)

,

𝑐
𝑚,2

𝑛
= {𝑞𝐹∑

𝑙

𝑐
𝑙,1

𝑛
∫

𝐿

−𝐿

sin (𝛼𝑚 (𝑥 + 𝐿))

× sin (𝛼𝑙 (𝑥 + 𝐿)) 𝑥 d𝑥

− 𝑐
𝑚,1

𝑛
𝐸
1

𝑛
} × (𝐸

0

𝑛
− 𝐸
0

𝑚
)
−1

.

(27)

For the first-order approximation, all allowed energy
levels in the infinite well are shifted by the same value 𝑞𝐹𝐿,
whereas for the second-order approximation the gap between
the quantum well bottom and the ground state will decrease
as the square of the 𝐸-field strength.

The perturbation method remains suitable until the
maximal change of potential at the well boundary due to the
𝐸-field reaches the order of the ground state energy. If the 𝐸-
field applied becomes larger, the direct matching algorithm
described in Section 1 needs to be used.

4.3. The Matching Method for an Infinite Potential Well in
the 𝐸-Field. The boundary conditions are derived on the
assumption that the wave function of (5) has a zero value at
the well boundaries:

𝜓0 (𝑢−𝐿) = 𝐴0𝐴𝑖 (𝑢−𝐿) + 𝐵0𝐵𝑖 (𝑢−𝐿) = 0,

𝜓0 (𝑢𝐿) = 𝐴0𝐴𝑖 (𝑢𝐿) + 𝐵0𝐵𝑖 (𝑢𝐿) = 0,

(28)

where

𝑢−𝐿 = (−𝐿 −
𝐸 − 𝑈0

𝑞𝐹
)(

2𝑚0𝑞𝐹

ℎ2
)

1/3

,

𝑢𝐿 = (𝐿 −
𝐸 − 𝑈0

𝑞𝐹
)(

2𝑚0𝑞𝐹

ℎ2
)

1/3

.

(29)

Thus, we obtain a homogeneous equation

(
𝐴𝑖 (𝑢−𝐿) 𝐵𝑖 (𝑢−𝐿)

𝐴𝑖 (𝑢𝐿) 𝐵𝑖 (𝑢𝐿)
)(

𝐴0

𝐵0

) = 0, (30)

which has a nontrivial solution if the determinant is equal to
zero:

𝐴𝑖 (𝑢−𝐿) 𝐵𝑖 (𝑢𝐿) − 𝐴𝑖 (𝑢𝐿) 𝐵𝑖 (𝑢−𝐿) = 0. (31)

This equation determines the eigenvalues 𝐸𝑛.
The coefficient 𝐵0 can be expressed through𝐴0 using one

of the equations in (28):

𝐵0 = −𝐴0

𝐴𝑖 (𝑢−𝐿)

𝐵𝑖 (𝑢−𝐿)
= −𝐴0

𝐴𝑖 (𝑢𝐿)

𝐵𝑖 (𝑢𝐿)
, (32)

with the value of the coefficient 𝐴0 derived from the wave-
function normalization condition.

In the following, we conduct the comparison of the solu-
tions derived by the two methods.

4.4. Comparison of the Results Derived by the Two Methods.
The parameters used in the calculations are as follows: 𝑚0 =
0, 1𝑚𝑒, 𝑚𝑒 = 9.10938188 × 10

−31 kg is the electron mass,
ℎ = 1.054571726(47) × 10

−34 J⋅s is the Planck constant, and
the potential 𝑈 and energy 𝐸 are in electron-volts (1 eV =

1.602176487(40) × 10
−19 J), with the 𝐸-field given in the

reduced values. In the case of interest, 𝑈0 = 0 and the well
width is 2𝐿 = 2 nm.

Table 1 gives the values of the first three allowed energy
states for an infinite square well in the absent 𝐸-field, in the
weak 𝐸-field and in the “strong” 𝐸-field (i.e., when the 𝐸-field
strength is higher than the ground state energy).

Table 1 suggests that when applied for a strong𝐸-field, the
perturbationsmethod produces invalid results.Thematching
method leads towidened band gaps between the energy states
as the 𝐸-field applied is increasing. Note that applying the
strong 𝐸-field results in the narrowed gap between the well
bottom and the ground state energy.

Figure 3 shows the first three wave functions in the
absence of the 𝐸-field, in the weak 𝐸-field and in the strong
𝐸-field derived using the matching method. According to
Figure 3, with increasing 𝐸-field, the probability of the elec-
tron to be found in the potential well ceases to be symmetric,
being shifted toward one of the well boundaries.

5. Infinite Square Well with a General-Form
Piecewise-Linear Potential

In the general case, the potential of an infinite well in the 𝐸-
field is described as

𝑈 (𝑥) =

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

∞, 𝑥 ∈ [−∞, −𝐿] ,

𝑈0 + 𝑞𝐹𝑥, 𝑥 ∈ [−𝐿, 𝑥0] ,

...
𝑈𝑝 + 𝑞𝐹𝑥, 𝑥 ∈ [𝑥𝑝−1, 𝑥𝑝] ,

...
𝑈𝑁 + 𝑞𝐹𝑥, 𝑥 ∈ [𝑥𝑁−1, 𝐿] ,

∞, 𝑥 ∈ [𝐿,∞] .

(33)
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Figure 3: Wave functions for the infinite well (zero field—dashed line, 𝑞𝐹 = 0.1—dotted line, and 𝑞𝐹 = 2—solid line) at 𝑛 = 1 (a), 𝑛 = 2 (b),
and 𝑛 = 3 (c).

Table 1: Energy spectrum (first three values) for a square well.

Zero E-field Field 𝑞𝐹 = 0.1 Field 𝑞𝐹 = 2

Perturbations method Matching method Perturbations method Matching method
𝐸1 0.938357 1.037995 0.937895 2.755581 0.761992
𝐸2 3.753428 3.853667 3.753566 5.810891 3.809982
𝐸3 8.445214 8.545637 8.445296 10.576528 8.494495

For the external bands, the conditions of the zero-value
wave function in (5) at the well boundaries need to be met:

𝐴0𝐴𝑖 (𝑢−𝐿) + 𝐵0𝐵𝑖 (𝑢−𝐿) = 0,

𝐴𝑁𝐴𝑖 (𝑢𝐿) + 𝐵𝑁𝐵𝑖 (𝑢𝐿) = 0,

(34)

whereas for the internal bands, the matching conditions of
(6) should be valid:

[
[
[
[

[

𝐴𝑖 (𝑢𝑝,𝑝) 𝐵𝑖 (𝑢𝑝,𝑝)

𝐴𝑖

(𝑢𝑝,𝑝)

𝑚𝑝

𝐵𝑖

(𝑢𝑝,𝑝)

𝑚𝑝

]
]
]
]

]

(
𝐴𝑝

𝐵𝑝
)

=

[
[
[
[

[

𝐴𝑖 (𝑢𝑝+1,𝑝) 𝐵𝑖 (𝑢𝑝+1,𝑝)

𝐴𝑖

(𝑢𝑝+1,𝑝)

𝑚𝑝+1

𝐵𝑖

(𝑢𝑝+1,𝑝)

𝑚𝑝+1

]
]
]
]

]

(
𝐴𝑝+1

𝐵𝑝+1
) ,

(35)

where the arguments 𝑢𝑝,𝑙, 𝑢−𝐿, 𝑢𝐿 are defined by (3).

The last-band (-layer) coefficients can be expressed
through 𝐴0 and 𝐵0 as

(
𝐴𝑁

𝐵𝑁
) = Q𝑁−1Q𝑁−2 ⋅ . . . ⋅Q1 (

𝐴0

𝐵0
) , (36)

where

Q𝑝 =
[
[
[
[

[

𝐴𝑖 (𝑢𝑝+1,𝑝) 𝐵𝑖 (𝑢𝑝+1,𝑝)

𝐴𝑖

(𝑢𝑝+1,𝑝)

𝑚𝑝+1

𝐵𝑖

(𝑢𝑝+1,𝑝)

𝑚𝑝+1

]
]
]
]

]

−1

×

[
[
[
[

[

𝐴𝑖 (𝑢𝑝,𝑝) 𝐵𝑖 (𝑢𝑝,𝑝)

𝐴𝑖

(𝑢𝑝,𝑝)

𝑚𝑝

𝐵𝑖

(𝑢𝑝,𝑝)

𝑚𝑝

]
]
]
]

]

.

(37)

Thus, for the coefficients 𝐴0, 𝐵0, 𝐴𝑁, and 𝐵𝑁 we have
derived four equations in (34), (36), which form a homoge-
neous linear system. Putting the system’s determinant equal
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Figure 4: Complex-form potential without (a) and with the 𝐸-field applied: 𝑞𝐹 = 0.1 (b).
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Figure 5: Wave functions for a complex relief (zero 𝐸-field—dashed line, and 𝑞𝐹 = 0, 1—solid line, 𝑞𝐹 = 1—dotted line) for 𝑛 = 1 (a), 𝑛 = 2

(b), and 𝑛 = 4 (c).

to zero, we obtain a characteristic equation for deriving the
eigenvalues of 𝐸.

Applying the algorithm of (34)–(37) for the consecutive
matching of solutions at the band boundaries with use of the
second-rank matrix, the characteristic equation can be put in
a more convenient form.

The numerical implementation of the algorithm (34)–
(37) allows a simple solution of the steady-state Schrödinger
equation (2) with the complex potential of (33) to be derived.
However, this calls for the use of the “exponential arithmetic”
(arithmetic over numbers represented as 𝑎 exp(𝑏), where 𝑎
and 𝑏 are the number parameters). Otherwise, the software
implementation will be incorrect at small values of the 𝐸-
field: 𝑞𝐹 < 0.5.

Figure 4 depicts a complex-form potential with and
without the 𝐸-field applied. Table 2 gives the corresponding
values of the energy spectrum for the said potential.Thewave
functions distributions are shown in Figure 5.

The computation results suggest that by varying the
potential form and the external 𝐸-field both the energy
spectrumand the distribution of the probability of finding the
particle in a definite heterostructure region can be essentially
varied.

6. Conclusions

We have developed and implemented an algorithm for
solving the steady-state Schrödinger equation for a complex
piecewise-constant potential in the presence of the 𝐸-field.
The algorithm is based on the consecutive matching of
solutions given by the Airy functions at the band boundaries
with the matrix rank not exceeding two, thus allowing the
characteristic equation to be derived in the convenient form
for the search of the roots.

It has been numerically shown that the algorithm devel-
oped allows valid solutions to be derived when the value



The Scientific World Journal 7

Table 2: Energy spectrum (first 9 values) for a complex relief.

Zero E-field E-field
E-field 𝑞𝐹 = 0.1 𝑞𝐹 = 1

𝐸𝑛

−2.741001 −2.602847 −3.705108

−2.000144 −1.883931 −3.295242

−1.577124 −1.733931 −2.376165

−0.900418 −0.851777 −1.857336

−0.355715 −0.422565 −1.647189

0.305344 0.493440 −0.779213

0.660222 0.833417 −0.338370

1.210436 1.425745 0.357965
1.492179 1.979392 0.942955
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

of the 𝐸-field applied is larger than the ground-state energy
level, that is, under the conditions when the perturbation
method is inapplicable.

The computation results obtained for the complex poten-
tial distribution have shown that by varying the potential
profile and the value of the𝐸-field applied it becomes possible
to essentially vary the energy spectrum and the probability
of finding the particle in one or another region of the het-
erostructure.
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