
Research Article
Finite-Time Tracking Control for a Class of MIMO Nonlinear
Systems with Unknown Asymmetric Saturations

FuMingyu and Xu Yujie

College of Automation, Harbin Engineering University, Harbin 150001, China

Correspondence should be addressed to Xu Yujie; xuyujie@hrbeu.edu.cn

Received 27 May 2017; Revised 18 July 2017; Accepted 31 July 2017; Published 29 August 2017

Academic Editor: Quang Phuc Ha

Copyright © 2017 Fu Mingyu and Xu Yujie. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper addresses the problem of finite-time tracking control formultiple-input andmultiple-output (MIMO) nonlinear systems
with asymmetric saturations. A systematic approach is proposed to eliminate the effects of unmeasured external disturbances and
unknown asymmetric saturations. In the proposed control strategy, a terminal sliding mode disturbance observer is provided to
estimate the augmented disturbance (which contains the unknown asymmetric input saturation and external disturbance). The
approximation error of the augmented disturbance can converge to zero in a fixed finite-time interval. Furthermore, a novel finite-
time tracking control algorithm is developed to guarantee fast convergence of the tracking error. Compared with the existing results
on finite-time tracking control, the chattering problem and the input saturation problem can be solved in a unified framework.
Several simulations are given to demonstrate the effectiveness of the proposed approach.

1. Introduction

The convergence rate is an important issue for dynamical
control systems in practice. To improve the control perfor-
mance, the concept of finite-time stability has been proposed
and investigated in several literatures [1–3]. Compared with
the conventional Lyapunov asymptotical stability, the finite-
time stability admits that the state of systems does not
exceed a certain bound during a fixed finite-time interval
[4]. Besides, robustness performances of the system can
also be improved [5]. During the past decades, several
finite-time control schemes have been proposed with the
development of geometric homogeneity theory and finite-
time Lyapunov stability theory [6–11]. In particular, terminal
sliding mode control (TSMC) has been widely used in many
practical control systems due to the robust enhanced abili-
ty.

As an effective finite-time control technique, TSMC has
merits of handling control systems with large uncertainties,
nonlinearities, and bounded external disturbances. In [12],
a robust TSMC strategy was developed for rigid robotic
manipulators in which an MIMO terminal switching plane
variable vector was first defined and the relationship between

the terminal switching plane variable vector and system error
dynamics was established. In [13], a fast terminal dynamics
was proposed in the design of the sliding mode control
for single-input single-output nonlinear dynamical systems
to improve the convergence rate during reaching and slid-
ing phase. In [14, 15], nonsingular problem in TSMC was
addressed. In [16], a fast nonsingular terminal sliding mode
(FNTSM) was developed for piezoelectric actuators, which
can avoid chatter problems. In [17], a terminal attractor with
nonnegative exponential coefficient was introduced to gen-
erate a continuous FNTSM algorithm. In [18, 19], double
exponential reaching law with variable coefficient was com-
bined with FNTSM manifold to improve the convergence
rate during reaching and sliding phase. More improved
TSMC algorithms and their applications can be found in the
literature [20–24]. All the aforementioned works have two
drawbacks. (i) The upper boundary of external disturbances
are assumed to be available. In order to guarantee the con-
vergence of the system, large gain is chosen in front of the
symbolic function, which may cause terrible twitter. (ii) The
input saturation is not considered.

In order to eliminate chattering caused by the large gain,
different methods have been developed. Some researchers
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proposed the high order sliding mode control [25, 26],
while others introduced the disturbance observers into the
control system [27–34]. In [25], the high order sliding mode
controller was designed using integral sliding mode concept
to achieve bounded uncertainties rejection. Based on previ-
ous work, a new higher order sliding mode controller with
optimal reaching was designed in [26], which proves useful
for the tuning of HOSM controller parameters. In [30–32],
extended state observer was developed and has been widely
used for its ease of implementation. In [32], a high-speed
sliding mode observer (SMO) was proposed to estimate the
rotor position and the angular velocity of the permanent-
magnet synchronous motor (PMSM). In [35], a terminal
sliding mode disturbance observer for SISO system has been
studied to guarantee that the approximation error of distur-
bance observer converges to zero in finite time. And based
on the geometric homogeneity, a novel distributed finite-
time observer was presented for the followers to estimate the
leader’s velocity in [36]. Replacing the large gain with output
of the disturbance observer will greatly mitigate the twitter,
but the convergence of the closed-loop system needs further
discussion.

Another problem in finite-time control is the input
saturation, which may bring in chattering and degrade the
control performance. In [37–39], the analysis and design of
control systems with input saturation constraints have been
studied. In [40], stability of the modified control system with
saturation was further discussed. In [41], an auxiliary system
was designed with the same order as that of the studied
MIMO attitude system to handle the input saturation. Some
adaptive type-1 or type-2 fuzzy/neural schemes have also
been proposed to control the nonlinear systems with actu-
ator saturation in [42–44]. In [35], the input saturation
was regarded as external disturbances, and a disturbance-
observer-based terminal sliding mode control was developed
for SISO (single-input single-output) system. Most of the
mentioned researches are based on the assumption that the
input saturation is known. However, the actuator perfor-
mance may be unknown in practice.

Inspired by the work of [35, 45], a disturbance-observer-
based finite-time tracking control strategy is designed in
this paper. But the difference is that our control plant is
MIMO nonlinear system and input saturations are asym-
metric. The effects of unknown asymmetric input saturation
are combined with the external disturbance to form an
augmented disturbance, which is estimated by a proposed
terminal sliding mode disturbance observer. And the devel-
oped disturbance observer can guarantee that the augmented
disturbance approximation error converges to zero in finite
time. Then, a novel finite-time tracking control algorithm
is developed for uncertain MIMO nonlinear systems. Com-
pared with most existing research, our work has two main
contributions: (1) the chattering problem and saturation
problem are solved in a unified framework; (2) the finite-time
convergence of all closed-loop state is guaranteed regardless
of external disturbance and unknown asymmetric saturation.
Thus, the proposed finite-time tracking controller actually
can be applied to a large class of uncertain MIMO nonlinear
systems.

The paper is organized as follows. The problem is formu-
lated in Section 2, and some preliminary results of finite-time
stability are also introduced. The detailed finite-time control
scheme is presented in Section 3. Simulation examples are
provided in Section 4. Finally, conclusions are drawn in
Section 5.

2. Problem Formulation

2.1. Nonlinear System with Input Saturation. Consider the
following uncertain nonlinear MIMO system:

ẋ1 = x2,
ẋ2 = f (x) + g (x) u + d,
y = x1,

(1)

where x1 and x2 are the state of the system, u is the control
input, y is the control output, d is the external disturbance,
and f(x) and g(x) are continuously nonlinear functions. Here,
x = [x1 x2]𝑇 x1, x2, y ∈ R𝑛×1, d ∈ R𝑛×1, u ∈ R𝑚×1 f(x) ∈
R𝑛×1, and g(x) ∈ R𝑚×𝑛.

Due to the unknown asymmetric saturation constraints,
the control input is given by the following form:

u = {{{{{{{{{
umax ^ > umax

^ −umin ≤ ^ ≤ umax−umin ^ < −umin,
(2)

where ^ is the designed control input command and umax
and umin are the unknown parameters of the control input
saturation. Here, umax ̸= umin denotes the asymmetric
saturation.

In practice, the performance of the actuators may change
with different operating environment. For a marine vessel,
the propulsive force of propeller is related to wind, current,
and waves, which cannot be measured precisely. Thus, the
input saturation is unknown to the controller designer. This
situation may also occur for other plants.

2.2. Control Objective. In this paper, the control objective is to
design a finite-time tracking controller for MIMO nonlinear
system with disturbances and unknown asymmetric satura-
tions. For the desired trajectory, the proposed terminal slid-
ing mode control should guarantee finite-time convergence
of the entire closed-loop signal. Then the control objective
can be presented in the following mathematical form:

lim
𝑡→𝑇

󵄩󵄩󵄩󵄩y − y𝑑
󵄩󵄩󵄩󵄩 = 0, for − umin ≤ u ≤ umax. (3)

And the desired trajectory y𝑑 is assumed to be smooth,
which means there exists a positive number Δ 𝑖 > 0, such that󵄩󵄩󵄩󵄩󵄩y(𝑖)𝑑 󵄩󵄩󵄩󵄩󵄩 ≤ Δ 𝑖, 𝑖 = 1, 2, . . . , 𝑝. (4)

2.3. Finite-Time Lyapunov Stability. Before presenting the
main results, an extended Lyapunov description of finite-time
stability can be given by the following lemma.
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Figure 1: Framework of the control scheme.

Lemma 1 (see [46]). Assume that there exists a continuous
positive definite function 𝑉(𝑡), which satisfies the following
inequality:

𝑉̇ (𝑡) + 𝛼𝑉 (𝑡) + 𝜆𝑉𝛾 (𝑡) ≤ 0, ∀𝑡 > 𝑡0. (5)

Then 𝑉(𝑡) converges to the equilibrium point in finite time𝑡𝑠:
𝑡𝑠 ≤ 𝑡0 + 1𝛼 (1 + 𝛾) ln 𝛼𝑉1−𝛾 (𝑡0) + 𝜆𝜆 , (6)

where 𝛼 > 0, 𝜆 > 0, and 0 < 𝛾 < 1.
3. Controller Design

In this section, a finite-time disturbance observer is proposed
to eliminate the chattering due to external disturbance and
input saturation through feedforward compensation. Based
on the output of the observer, the terminal sliding mode
control for MIMO nonlinear system is developed, which
can guarantee the finite-time convergence of the closed-loop
system.

The control scheme can be represented by the framework
in Figure 1. It should be noted that d is the external distur-
bance, while D̂ denotes the estimated value which contains
external disturbance and input saturation.

The control command is denoted by ^:

^ = G (x)−1 ^𝑟, (7)

where ^𝑟 is the reference control command that will be given
in the next section. And the control command error is defined
as Δu = u − ^.

Substituting the control command into (1), the MIMO
nonlinear system can be rewritten as

ẋ1 = x2,
ẋ2 = f (x) + k𝑟 +D, (8)

whereD = g(x)Δu + d.

Since the upper and lower limits of the input saturation
are unknown, the effect of g(x)Δu can be regarded as system
uncertainty. Hence, the effect of external disturbance and
asymmetric saturation can be rewritten into the form of
augmented disturbanceD.

3.1. Finite-Time Disturbance Observer. In this section, a fi-
nite-time disturbance observer is developed from the ter-
minal sliding mode observer to estimate the augmented
disturbanceD. Firstly, we introduce a variable z to denote the
estimation of x2. And the estimation error can be defined as
follows:

S = z − x2. (9)

If the update law of z is given in the form of terminal sliding
mode in (10), estimation error S can converge to zero in fixed
time interval, which will be proved later.

ż = −KS − 𝛽 sgn (S) − 𝜀S𝑝/𝑞 − F (x) sgn (S) + k𝑟. (10)

And the derivative of S can be calculated:

Ṡ = ż − ẋ2= −KS − 𝛽 sgn (S) − 𝜀S𝑝/𝑞 − F (x) sgn (S) − f (x)−D.
(11)

Then, the estimation of the augmented disturbance D̂ can be
given by

D̂ = −KS − 𝛽 sgn (S) − 𝜀S𝑝/𝑞 − F (x) sgn (S) − f (x) , (12)

where 0 < 𝑝 < 𝑞, K, 𝛽, and 𝜀 are positive definite diagonal
matrices, and the parameters are chosen in the following
form:

K = diag ([𝐾1 𝐾2 ⋅ ⋅ ⋅ 𝐾𝑛]) ,
𝛽 = diag ([𝛽1 𝛽2 ⋅ ⋅ ⋅ 𝛽𝑛]) ,
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𝜀 = diag ([𝜀1 𝜀2 ⋅ ⋅ ⋅ 𝜀𝑛]) ,
F (x) = diag ([󵄩󵄩󵄩󵄩𝑓 (x)1󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑓 (x)2󵄩󵄩󵄩󵄩 ⋅ ⋅ ⋅ 󵄩󵄩󵄩󵄩𝑓 (x)𝑛󵄩󵄩󵄩󵄩]) ,
f (x) = [𝑓 (x)1 𝑓 (x)2 ⋅ ⋅ ⋅ 𝑓 (x)𝑛]𝑇 ,
D = [𝐷1 𝐷2 ⋅ ⋅ ⋅ 𝐷𝑛]𝑇 ,
S = [𝑆1 𝑆2 ⋅ ⋅ ⋅ 𝑆𝑛]𝑇 ,

S𝑝/𝑞 = [𝑆𝑝/𝑞1 𝑆𝑝/𝑞2 ⋅ ⋅ ⋅ 𝑆𝑝/𝑞𝑛 ]𝑇 .
(13)

It is important to note that 𝛽𝑖 is the upper bound of 𝐷𝑖; that
is, 𝛽𝑖 > |𝐷𝑖|, 𝑖 = 1, 2, . . . , 𝑛.

Here, we define the estimation error of the augmented
disturbance D̃ = D̂ −D. Invoking (11)-(12), we can get

D̃ = −KS − 𝛽 sgn (S) − 𝜀S𝑝/𝑞 − F (x) sgn (S) − f (x)
−D = ż − ẋ2 = Ṡ. (14)

From the above formula, we can know that D̃ is related to the
derivative of S. If S converges to a fixed value, the estimation
error of the augmented disturbance will converge to zero.
Through derivation, S is finite-time stable and main results
on the disturbance observer are presented in the following
theorem.

Theorem 2. Consider the uncertain MIMO nonlinear system
(8), if the finite-time disturbance observer is designed as
(9)–(12), the augmented disturbance approximation error of
the proposed terminal sliding mode disturbance observer will
converge to zero in finite time.

Proof. Consider the Lyapunov function candidate:

𝑉1 = 12S𝑇S. (15)

Calculating the derivative of 𝑉1, we obtain
𝑉̇1 = S𝑇Ṡ = S𝑇 (−KS − 𝛽 sgn (S) − 𝜀S𝑝/𝑞

− F (x) sgn (S) − f (x) −D) = − 𝑛∑
𝑖=1

𝐾𝑖𝑆2𝑖
− 𝑛∑
𝑖=1

𝜀𝑖𝑆(𝑝+𝑞)/𝑞𝑖 − 𝑛∑
𝑖=1

(𝛽𝑖 󵄨󵄨󵄨󵄨𝑆𝑖󵄨󵄨󵄨󵄨 + 𝐷𝑖𝑆𝑖)
− 𝑛∑
𝑖=1

(󵄨󵄨󵄨󵄨𝑓𝑖󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑆𝑖󵄨󵄨󵄨󵄨 + 𝑓𝑖𝑆𝑖) ≤ − 𝑛∑
𝑖=1

𝐾𝑖𝑆2𝑖 − 𝑛∑
𝑖=1

𝜀𝑖𝑆(𝑝+𝑞)/𝑞𝑖

≤ −𝜆min (K) 𝑛∑
𝑖=1

𝑆2𝑖 − 𝜆min (𝜀) 𝑛∑
𝑖=1

𝑆(𝑝+𝑞)/𝑞𝑖

= −2𝜆min (K) 𝑉1 − 2(𝑝+𝑞)/𝑞𝜆min (𝜀) 𝑉(𝑝+𝑞)/2𝑞1 ,

(16)

where 𝜆min(K) is the least eigenvalue of matrix K.

From (16) and Lemma 1, we can conclude that the variable
S will converge to zero in finite time. Assume that the initial
moment is zero; then the convergence time of S can be
calculated as follows:

𝑡1 = 12𝜆min (K) (1 + (𝑝 + 𝑞) /2𝑞)
⋅ ln 2𝜆min (K) 𝑉(𝑞−𝑝)/2𝑞1 (0) + 2(𝑝+𝑞)/𝑞𝜆min (𝜀)2(𝑝+𝑞)/𝑞𝜆min (𝜀) . (17)

Due to the finite-time convergence of the variable S, the
estimation error of the augmented disturbance D̃ will also be
convergent in finite time. This completes the proof.

Remark 3. In the design process of the disturbance observer,
the upper boundary of the augmented disturbance should be
known. In general, the design parameter should be chosen as
a large positive constant to guarantee the design requirement
of the proposed sliding mode disturbance observer.

3.2. Terminal Sliding Mode Control for MIMO Nonlinear Sys-
tem. In this section, the finite-time tracking control scheme
for MIMO nonlinear system is proposed based on the ter-
minal sliding mode. Utilizing the output of the disturbance
observer as feedforward compensation, the designed termi-
nal sliding mode control can guarantee finite-time conver-
gence of the closed-loop signal in the system.

To derive the TSM controller, we need to define the track-
ing error:

S1 = x1 − y𝑑. (18)

Time differentiation of S1 yields

Ṡ1 = ẋ1 − ẏ𝑑 = x2 − ẏ𝑑,
S̈1 = ẋ2 − ÿ𝑑 = f (x) + k𝑟 +D − ÿ𝑑. (19)

Next, the terminal sliding mode surface is chosen as

S2 = Ṡ1 + 𝛼S1 + 𝛽1S𝑝1/𝑞11 + S, (20)

where S is defined in the disturbance observer, 0 < 𝑝1 < 𝑞1,
𝛼1 and 𝛽1 are positive definite diagonal matrices, and the
other parameters are defined in the following form:

𝛼1 = diag ([𝛼1 𝛼2 ⋅ ⋅ ⋅ 𝛼𝑛]) ,
𝛽1 = diag ([𝛽11 𝛽12 ⋅ ⋅ ⋅ 𝛽1𝑛]) . (21)

Invoking (18) and (19), the time derivative of the terminal
sliding mode surface can be computed as

Ṡ2 = S̈1 + 𝛼1Ṡ1 + 𝛽1 𝑑S𝑝1/𝑞11𝑑𝑡 + Ṡ

= f (x) + k𝑟 +D − ÿ𝑑 + 𝛼1Ṡ1 + 𝛽1 𝑑S𝑝1/𝑞11𝑑𝑡 + D̃

= f (x) + k𝑟 − ÿ𝑑 + 𝛼1Ṡ1 + 𝛽1 𝑑S𝑝1/𝑞11𝑑𝑡 + D̂.
(22)
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Then, the terminal slidingmode control forMIMOnonlinear
system is designed as

k𝑟 = −f (x) + ÿ𝑑 − 𝛼1Ṡ1 − 𝛽1 𝑑S𝑝1/𝑞11𝑑𝑡 − D̂ − 𝛿S2
− 𝜇S𝑝2/𝑞22 , (23)

where 𝛿 and 𝜇 are positive definite diagonal matrices, 0 <𝑝2 < 𝑞2.
Substituting (22) into (2) and (7), we can get the actual

control command.

u = {{{{{{{{{
umax G (x)−1 ^𝑟 > umax

G (x)−1 ^𝑟 −umin ≤ G (x)−1 ^𝑟 ≤ umax−umin G (x)−1 ^𝑟 < −umin.
(24)

The above design procedure and analysis can be summarized
in the following theorem.

Theorem 4. Consider the uncertain MIMO nonlinear system
with external disturbance and asymmetric input saturation
in (1). Assume that the full state information is available. If
the finite-time disturbance observer is designed as in (9)–(12),
all the states of the closed-loop system will converge to the
equilibrium point under the proposed terminal sliding mode
control in finite-time.

Proof. Consider the Lyapunov function candidate:

𝑉2 = 12S𝑇2 S2. (25)

Substituting (23) into (22) results in

Ṡ2 = −𝛿S2 − 𝜇S𝑝2/𝑞22 . (26)

Hence, the derivative of 𝑉2 can be calculated as follows:

𝑉̇2 = S𝑇2 Ṡ2 = S𝑇2 (−𝛿S2 − 𝜇S𝑝2/𝑞22 )
= − 𝑛∑
𝑖=1

𝛿𝑖𝑆22𝑖 − 𝑛∑
𝑖=1

𝜇𝑖𝑆(𝑝2+𝑞2)/𝑞22𝑖

= −2𝜆min (𝛿) 𝑉2 − 2(𝑝2+𝑞2)/2𝑞2𝜆min (𝜇) 𝑉(𝑝2+𝑞2)/2𝑞22 .
(27)

According to (27) and Lemma 1, it can be concluded that
the terminal sliding mode surface S2 will converge to zero in
finite time. And the convergence time of S2 can be calculated
as follows:

𝑡2 = 12𝜆min (𝛿) (1 + (𝑝2 + 𝑞2) /2𝑞2)
⋅ ln 2𝜆min (𝛿) 𝑉(𝑞2−𝑝2)/2𝑞22 (0) + 2(𝑝2+𝑞2)/𝑞2𝜆min (𝜇)2(𝑝2+𝑞2)/𝑞2𝜆min (𝜇) . (28)

In fixed interval 𝑡 = max{𝑡1, 𝑡2}, both S2 and S are convergent
to zero. Moreover, the convergence of S1 can also be derived
from (20). Then, S, S1, and S2 are finite-time convergent.
That is, the estimated disturbance will converge to the actual
augmented disturbance and the trajectory of the system
will converge to the desired trajectory. Thus, all closed-loop
signals converge to the equilibrium point in the finite time.
This completes the proof.

Remark 5. From (8), the effect of external disturbance and
asymmetric input saturation is treated as an augmented
disturbance, which is estimated by the finite-time disturbance
observer. Through feedforward compensation, the observer-
based terminal sliding mode controller can make the tra-
jectory of the closed-loop system converge to the desired
trajectory in finite time regardless of the unknown input
saturation and external disturbance.

4. Simulation Results

In this section, simulation results are given to validate the
effectiveness of the proposed finite time control scheme for
a surface vessel under two different situations: without input
saturation and with input saturation. In the first situation,
finite time convergence of the closed-loop signals is illus-
trated. In the second situation, chattering elimination and
better control performance of our scheme are demonstrated
through comparing with the existing finite-time control
method.

The classic 3-DOF mathematic vessel model is given by
the following equations [47]:

𝜂̇ = R (𝜓) k,
Mk̇ +D (k) k = 𝜏 + 𝜔. (29)

Here 𝜂 = [𝑛 𝑒 𝜓]𝑇 is the position and orientation of the
vessel with respect to an inertial reference coordinate system,
and k = [𝑢 V 𝑟]𝑇 is the vector of velocities given in the
body-fixed coordinate system. 𝜏 is the control input and 𝜔 is
the environmental disturbance. M and D(k) are the system
inertia matrix and damping matrix, respectively. R(𝜓) is a
transformation matrix between the inertial and body-fixed
coordinate frames, with

R (𝜓) = (cos𝜓 − sin𝜓 0
sin𝜓 cos𝜓 00 0 1) . (30)

The parameters of the vessel and the external environment
interference in this paper are shown in Table 1, where 𝑚, 𝐿,
and 𝐵 denote the mass, length, and breadth of the vessel,
respectively.𝑊 𝑠,𝑊 𝑎,𝐶 𝑠, and𝐶 𝑎 are the wind parameters
and current parameters respectively. In this simulation, just
the wind and current are considered, and their mathematical
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Table 1: Vessel and environmental parameters.

Parameter Value𝑚 6.3𝑒7 (kg)𝐿 185 (m)𝐵 39.2 (m)𝑊 𝑠 17.1 (m/s)𝑊 𝑎 𝜋/3 (rad)𝐶 𝑠 0.771 (m/s)𝐶 𝑎 𝜋/12 (rad)
models are referred to [43]. Furthermore, other parameters
of the vessel model are chosen as

M

= [[[[
6.6073 × 107 0 00 8.9985 × 107 −3.7964 × 1070 −3.7964 × 107 2.7050 × 1011

]]]]
,

D = [[[[
0 0 00 2.7468 × 105 −6.2368 × 1060 −6.2368 × 106 1.4528 × 109

]]]]
.

(31)

To facilitate the control design process, the vessel model is
rewritten in the following form:

ẋ1 = x2,
ẋ2 = f (x) + g (x) 𝜏 + d, (32)

where

x1 = 𝜂,
x2 = 𝜂̇,
d = (R−𝑇 (𝜓)MR−1 (𝜓))−1 R−𝑇 (𝜓)𝜔,
f (x)

= − (R−𝑇 (𝜓)MR−1 (𝜓))−1 (R−𝑇 (𝜓)DR−1 (𝜓)) 𝜂̇,
g (x) = (R−𝑇 (𝜓)MR−1 (𝜓))−1 R−𝑇 (𝜓) ,
d = g (x)𝜔.

(33)

In the following numerical simulation, we use the proposed
controller to track a circle:

y𝑑

= [150 × sin (0.0025 × 𝑡) 150 × cos (0.0025 × 𝑡) 0.5]𝑇 . (34)

The initial states of the system are set to be

x1 (0) = 𝜂 (0) = [−1 149 0.2]𝑇 ,
x2 (0) = z (0) = [0 0 0]𝑇 . (35)

4.1. Without Considering Input Saturation for Surface Vessel.
In this case, only the unmeasured external disturbances are
considered and the control input control input is assumed to
be unconstrained. According to the control design process,
the finite-time disturbance observer and the terminal sliding
mode controller are given by

S = z − x2,
ż = −KS − 𝛽 sgn (S) − 𝜀S𝑝/𝑞 − F (x) sgn (S) + k𝑟,
S1 = x1 − y𝑑,
S2 = Ṡ1 + 𝛼1S1 + 𝛽1S𝑝1/𝑞11 + S,
d̂ = −KS − 𝛽 sgn (S) − 𝜀S𝑝/𝑞 − F (x) sgn (S) − f (x) ,
𝜏 = g (x)−1 [−f (x) + ÿ𝑑 − 𝛼1Ṡ1 − 𝛽1 𝑑S𝑝1/𝑞11𝑑𝑡 − d̂

− 𝛿S2 − 𝜇S𝑝2/𝑞22 ] ,

(36)

where d̂ is the estimation of d and control parameters are
chosen as

K = I3×3,
𝛽 = 0.02 × I3×3,
𝜀 = 0.25 × I3×3,
𝛼1 = 37 × I3×3,
𝛽1 = 0.5 × I3×3,
𝛿 = 60 × I3×3,
𝜇 = 0.8 × I3×3,𝑝 = 5,𝑞 = 9,𝑝1 = 𝑝2 = 5,𝑞1 = 𝑞2 = 7.

(37)

Under the proposed observer-based finite time control,
from Figures 2 and 3, we can observe that the disturbance
estimate error and tracking error quickly converge to zero
in a short finite time in the presence of the time-varying
external disturbance. The sliding mode and the control input
are shown in Figures 4 and 5. Furthermore, the convergence
time of the closed-loop system calculated from the theoretical
equations (17) and (28) is 𝑡 = 0.876 s. From Figures 2–4,
it is clear to conclude that all the signals of the closed-
loop system are convergent to zero within 0.876 s, which
validate the correctness of the control scheme. Figure 5 shows
that the control input is bounded and convergent. Based
on the simulation results, we can obtain that the finite-time
convergence performance of the method presented in this
paper is valid for the uncertain nonlinear system with the
time-varying external disturbance.
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Figure 5: Control input without input saturation.

4.2. Considering Asymmetric Input Saturation for Surface
Vessel. In this case, the input saturation is set to be

𝜏max = [4 × 107 4 × 107 2 × 1010]𝑇 ,
𝜏min = [−3 × 107 −2 × 107 −1.9 × 1010]𝑇 . (38)

The disturbance-observer-based finite-time controller is
designed as

S1 = x1 − y𝑑,
S2 = Ṡ1 + 𝛼1S1 + 𝛽1S𝑝1/𝑞11 + S,
D̂ = −KS − 𝛽 sgn (S) − 𝜀S𝑝/𝑞 − F (x) sgn (S) − f (x) ,
^ = g (x)−1 [−f (x) + ÿ𝑑 − 𝛼1Ṡ1 − 𝛽1 𝑑S𝑝1/𝑞11𝑑𝑡 − D̂

− 𝛿S2 − 𝜇S𝑝2/𝑞22 ] ,
𝜏 = {{{{{{{{{
𝜏max ^ > 𝜏max

^ 𝜏min ≤ ^ ≤ 𝜏max

𝜏min ^ < 𝜏min.

(39)

In this case, we select the same control parameters
as before. To show the better control performance of our
finite-time control scheme, we make comparison with the
disturbance-observer-based sliding mode control proposed
in [48]. From the tracking trajectories and tracking error
presented in Figures 6 and 7, it can be seen that our method
has better tracking performance. Figure 8 shows that sliding
mode jitter can be eliminated effectively by the proposed
scheme, which in turn illustrates the more smooth control
input shown in Figure 9. Despite the presence of asymmetric
input saturations and time-varying external disturbances, the
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tracking performance is still satisfactory and the tracking
error converges to zero.

Based on the above simulation, we can conclude that the
proposed observer-based finite-time controller can mitigate
the chattering phenomena due to the input saturation.

5. Conclusion

In this paper, the disturbance-observer-based finite-time
tracking control has been proposed for a class of MIMO
uncertain nonlinear systems. To improve the ability of the dis-
turbance attenuation and systemperformance robustness, the
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Figure 9: Control input with input saturation.

terminal sliding mode disturbance observer has been devel-
oped to approximate the system disturbance. Based on the
output of the disturbance observer, the disturbance-observer-
based finite-time tracking control has been presented for the
uncertain nonlinear system with the nonsymmetric input
saturation and the time-varying external disturbance. Then,
the chattering phenomena caused by the external and input
saturation can be eliminated. The stability of the closed-loop
system has been proved using rigorous Lyapunov analysis.
Finally, simulation results have been used to illustrate the
effectiveness of the proposed robust terminal sliding mode
tracking control scheme.
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