
Research Article
Robust Fault Detection and Estimation in Nonlinear Systems
with Unknown Constant Time-Delays

Wenxu Yan,1 Dezhi Xu,1 and Qikun Shen2

1School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China
2College of Information Engineering, Yangzhou University, Yangzhou 225009, China

Correspondence should be addressed to Dezhi Xu; xudezhi@jiangnan.edu.cn

Received 23 March 2017; Accepted 29 May 2017; Published 7 August 2017

Academic Editor: Xinggang Yan

Copyright © 2017 Wenxu Yan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper studies the problem of fault detection and estimation in nonlinear time-delayed systems with unknown inputs, where
the time-delays are supposed to be constant but unknown. A new fault detection filter, which can estimate online the time-delays,
is first introduced. Then, a reference residual model is proposed to formulate the robust fault detection filter design problem as
an 𝐻∞ model-matching problem. Furthermore, by a novel robust adaptive fault estimation algorithm, the classical assumption
that the time derivative of the output error should be known is removed. In addition, applying a robust 𝐻∞ optimization control
technique, sufficient conditions for the existence of the fault detection filter (FDF) are derived in terms of linear matrix inequality
(LMI). Finally, simulation results are presented to illustrate the effectiveness of the proposed algorithm.

1. Introduction

Modern industrial control systems become more and more
complex, with an increasing number of interconnected
physical components, such as actuators and sensors [1]. In
the system life, faults inevitably occur in these elements,
which leads to the drop of systems performances, or even
worse to system damage, with dramatic consequences on
the environment. Consequently, in parallel with the develop-
ment of high-performance technological systems, industrials
express a growing demand for reliability, maintainability,
and survivability [2]. Fault Tolerant Control (FTC) is an
effective way of maintaining system performances under
faulty conditions. FTC can be achieved either by a passive
way or using an active method. Passive FTC uses feedback
control laws that are robust with respect to an a priori fixed
set of possible system faults [3, 4]. On the other hand, active
FTC uses a Fault Detection and Isolation (FDI) module that
provides online fault information. Active FTC may consist
of a fault accommodation scheme [5, 6], which is in fact an
adaptive control with respect to the fault information, or may
be a control system reconfiguration scheme, which consists
of a switching control with a supervision layer that selects the

most suitable control law for the identified faulty situation
[7–10]. One difficulty is that FDI module and active FTC
algorithm have to be designed jointly because of their mutual
interactions.

In distributed or large-scale processes, the dynamic con-
tains time-delays whichmay cause instability and degrade the
systemperformances [11].These time-delaysmay generally be
considered as constant ones for given operating conditions.
However these constant values are generally not known.
The existence of such time-delays renders the control design
problem much more difficult [12]. Increasing attention has
recently been devoted to stability control and fault diagnosis
of linear/nonlinear time-delayed systems, see, for example,
[4–6, 11–16]. In [14], an observer-based fuzzy control scheme
with adaptation to the time-delay was proposed. In [15],
fault detection and identification for uncertain linear time-
delay systems were investigated. In [16], by using 𝐻∞ con-
trol theory, a robust fault detection scheme was proposed
for a class of discrete time-delay systems with parameter
uncertainty. However, the sensitivity of the residual signals
to the faults was not studied. In [17], the fault detection filter
design problem for linear time-delay systems was studied
by introducing an idealized reference residual model. Based
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on [16, 17], the robust fault detection filter (RFDF) design
problem was studied in [18] for nonlinear time-delay systems
with unknown inputs. In [19],𝐻∞ fault detection filter design
for linear discrete time systems with multiple time-delays
was discussed. The fault detection filter design problem was
investigated in [20] for LTI (Linear Time-Invariant) system
with time-delays. In [21, 22], the fault estimation problem
for linear systems with state time-delays was studied, and
an adaptive fault detection observer was designed. Many
observers that are proposed in the literature, as in [16–23],
use explicitly the time-delay value that is supposed to be
accessible. However, in practical applications, this time-delay
is generally not available, which makes these techniques not
applicable. Another drawback of many diagnosis techniques
that are proposed in the literature is that they need the deriva-
tive of the output signal for the fault estimation algorithm.
These derivatives are generally not directly measured and are
difficult to compute in a noisy environment.

In this paper, we investigate the problem of fault detection
and estimation of nonlinear time-delayed systems. Five main
contributions are worth emphasis.

(1) Comparedwith some results (see [16–22], for instance),
by online estimating the real value of state time-delay,
the assumption that the time-delay must be a priori
known is removed.

(2) An adaptive fault estimation algorithm is proposed
where the classical assumption that the time deriva-
tive of the output errors has to be known (see [22],
for instance) and is removed. Moreover, our scheme
is robust to bounded disturbances.

(3) Differing from numerous FDI schemes in the litera-
ture, the bounds of the time derivatives of the faults
have not been known in our proposed adaptive fault
estimation algorithm.

(4) In this paper, in contrast with [18], not only the fault
detection filter design problem is discussed, but also
an adaptive fault estimation algorithm is proposed.

(5) Sufficient conditions for the existence of the adaptive
fault observer are expressed using the Lyapunov
stability theory.

The paper is organized as follows. The problem formulation
is presented in Section 2. In Section 3, the main technical
results of this paper are given, which include the choice of
the reference residual model, the design of a robust fault
detection observer/filter, and the fault estimation algorithm.
Simulations are presented in Section 4. Finally, Section 5
draws the conclusion.

2. Problem Formulation

Consider the following class of nonlinear time-delay systems
[18]:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐴𝑑𝑥 (𝑡 − ℎ) + 𝐵𝑢 (𝑡)
+ 𝐺𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − ℎ)) + 𝐵𝑓𝑓 (𝑡) + 𝐵𝑑𝑑 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷𝑢 (𝑡) + 𝐷𝑓𝑓 (𝑡) + 𝐷𝑑𝑑 (𝑡) ,
𝑥 (𝑡) = 0, 𝑡 ∈ [−ℎ, 0] ,

(1)

where 𝑥(𝑡) ∈ 𝑅𝑛 is the unknown state vector, 𝑢(𝑡) ∈ 𝑅𝑝 is the
control input vector, 𝑦(𝑡) ∈ 𝑅𝑞 is the measured output, 𝑑(𝑡) ∈𝑅𝑚 that belongs to 𝐿𝑚2 [0, +∞] is an exogenous disturbance
input vector that regroups all the model uncertainties, 𝑓(𝑡) ∈𝑅𝑙 is the fault vector to be detected, ℎ ≥ 0 is an unknown
but constant time-delay that satisfies ℎ ≤ ℎ, where ℎ is a
known constant, 𝑔(⋅, ⋅) : 𝑅𝑛 ×𝑅𝑛 → 𝑅𝑛𝑔 is a known nonlinear
function, and 𝐴,𝐴𝑑, 𝐵, 𝐵𝑓, 𝐵𝑑, 𝐶, 𝐷,𝐷𝑓, 𝐷𝑑, 𝐺 are all known
matrices with appropriate dimensions.

Throughout this paper, the following assumptions are
made.

Assumption 1. The pair (𝐶, 𝐴) is detectable.
Assumption 2 (Lipschitz condition). It is supposed that𝑔(0, 0) = 0 and ‖𝑔(𝑥1, 𝑥2) − 𝑔(𝑦1, 𝑦2)‖ ≤ ‖𝜌1(𝑥1 − 𝑦1)‖ +‖𝜌2(𝑥2 − 𝑦2)‖, ∀𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ 𝑅𝑛, where 𝜌1 > 0 ∈ 𝑅, 𝜌2 >0 ∈ 𝑅, are known constant.

To detect the fault, the following so-called fault detection
filter (FDF) is proposed:

̇̂𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐴𝑑𝑥 (𝑡 − ℎ̂) + 𝐵𝑢 (𝑡)
+ 𝐺𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − ℎ̂)) + 𝐻 [𝑦 (𝑡) − 𝑦 (𝑡)] ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷𝑢 (𝑡) ,
𝑟 (𝑡) = 𝑉 [𝑦 (𝑡) − 𝑦 (𝑡)] ,

(2)

where 𝑥(𝑡) ∈ 𝑅𝑛 and𝑦(𝑡) ∈ 𝑅𝑞 denote the state and the output
of the filter, respectively; ℎ̂ is the estimation of the unknown
constant time-delay ℎ; 𝑟(𝑡) is the so-called residual signal.The
observer gain matrix 𝐻 and the residual weighting matrix 𝑉
will be defined later.

For the above observer design, the following assumption
is made.

Assumption 3. There exists a known constant 𝑀 > 0 ∈ 𝑅
such that ‖𝑥(𝑡) − 𝑥(𝑡)‖ ≤ 𝑀.

Remark 4. Assumption 3 is not restrictive. In fact, this
is a common assumption in the literature concerning fil-
ter/observer design. In practical application, it may be diffi-
cult to knowaccurately the upper boundof the observer error.
Therefore, 𝑀 can be chosen large in practical applications.
It must be pointed out that 𝑀 is only needed for stability
analysis of the closed-loop system. Choosing a large 𝑀 does
not degrade the performance of the closed-loop system.

Define

𝑒 = 𝑥 (𝑡) − 𝑥 (𝑡) . (3)



Mathematical Problems in Engineering 3

The error dynamics can be computed as

̇𝑒 (𝑡) = (𝐴 − 𝐻𝐶) 𝑒 (𝑡) + 𝐴𝑑𝑥 (𝑡 − ℎ̂) − 𝐴𝑑𝑥 (𝑡 − ℎ)
+ (𝐵𝑓 − 𝐻𝐷𝑓) 𝑓 (𝑡) + (𝐵𝑑 − 𝐻𝐷𝑑) 𝑑 (𝑡) + 𝐺Ψ

= (𝐴 − 𝐻𝐶) 𝑒 (𝑡) + 𝐴𝑑𝑥 (𝑡 − ℎ̂) − 𝐴𝑑𝑥 (𝑡 − ℎ)
+ 𝐴𝑑𝑥 (𝑡 − ℎ) − 𝐴𝑑𝑥 (𝑡 − ℎ)
+ (𝐵𝑓 − 𝐻𝐷𝑓) 𝑓 (𝑡) + (𝐵𝑑 − 𝐻𝐷𝑑) 𝑑 (𝑡) + 𝐺Ψ

= (𝐴 − 𝐻𝐶) 𝑒 (𝑡) + 𝐴𝑑𝑒 (𝑡 − ℎ) + 𝐴𝑑𝑥 (𝑡 − ℎ̂)
− 𝐴𝑑𝑥 (𝑡 − ℎ) + (𝐵𝑓 − 𝐻𝐷𝑓) 𝑓 (𝑡)
+ (𝐵𝑑 − 𝐻𝐷𝑑) 𝑑 (𝑡) + 𝐺Ψ,

(4)

where Ψ = 𝑔(𝑥(𝑡), 𝑥(𝑡 − ℎ)) − 𝑔(𝑥(𝑡), 𝑥(𝑡 − ℎ̂)).
From Newton-Leibniz formula, we have

𝑥 (𝑡 − ℎ̂) − 𝑥 (𝑡 − ℎ) = ∫−ℎ̂

−ℎ

̇̂𝑥 (𝑡 + 𝑠) 𝑑𝑠. (5)

Thus, error dynamics (4) can further be described as

̇𝑒 (𝑡) = (𝐴 − 𝐻𝐶) 𝑒 (𝑡) + 𝐴𝑑𝑒 (𝑡 − ℎ)
+ 𝐴𝑑 ∫−ℎ̂

−ℎ

̇̂𝑥 (𝑡 + 𝑠) 𝑑𝑠 + (𝐵𝑓 − 𝐻𝐷𝑓) 𝑓 (𝑡)
+ (𝐵𝑑 − 𝐻𝐷𝑑) 𝑑 (𝑡) + 𝐺Ψ,

𝑟 (𝑡) = 𝑉𝐶𝑒 (𝑡) + 𝑉𝐷𝑓𝑓 (𝑡) + 𝑉𝐷𝑑𝑑 (𝑡) .

(6)

From (6), it is seen that the dynamics of the residual signal
depends not only on fault 𝑓(𝑡) and uncertainty 𝑑(𝑡), but also
on the nonlinear part Ψ. Motivated by the method presented
in [18], we propose using a reference residual model that
describes the desired behavior of the residual vector 𝑟(𝑡),
to formulate the RFDF design problem as an 𝐻∞ model-
matching problem. In other words, the objectives are finding
an idealized reference residual and minimizing the distance
between the generated residual and the idealized reference
residual. In the idealized case, the observed state 𝑥(𝑡) and
the time-delayed state 𝑥(𝑡 − ℎ̂) should be equal, respectively,
to 𝑥(𝑡) and 𝑥(𝑡 − ℎ); thus we have 𝑥(𝑡) − 𝑥(𝑡) = 0 and𝑥(𝑡 − ℎ) − 𝑥(𝑡 − ℎ̂) = 0. Consequently, Ψ = 𝑔(𝑥(𝑡), 𝑥(𝑡 −ℎ)) − 𝑔(𝑥(𝑡), 𝑥(𝑡 − ℎ̂)) = 0. Therefore, according to (6), and
assuming Ψ = 0, the corresponding reference residual error
model is given by

̇𝑒𝑓 (𝑡) = (𝐴 − 𝐻𝐶) 𝑒𝑓 (𝑡) + 𝐴𝑑𝑒𝑓 (𝑡 − ℎ)
+ (𝐵𝑓 − 𝐻𝐷𝑓) 𝑓 (𝑡) + (𝐵𝑑 − 𝐻𝐷𝑑) 𝑑 (𝑡) ,

𝑟𝑓 (𝑡) = 𝑉𝐶𝑒𝑓 (𝑡) + 𝑉𝐷𝑓𝑓 (𝑡) + 𝑉𝐷𝑑𝑑 (𝑡) ,
𝑒𝑓 (𝑡) = 0 (𝑡 ≤ 0) ,

(7)

where 𝑒𝑓(𝑡) ∈ 𝑅𝑛 is the reference model error state vector,𝑟𝑓(𝑡) is the reference model residual signal, and𝐻 and 𝑉 are
the parameters of the reference residualmodel to be designed.

Thus the overall system can be described by

̇𝜂 (𝑡) = 𝐴𝜂 (𝑡) + 𝐴𝑑𝜂 (𝑡 − ℎ) + 𝐴𝑑 ∫−ℎ̂

−ℎ

̇̂𝑥 (𝑡 + 𝑠) 𝑑𝑠
+ 𝐵𝑤 (𝑡) + 𝐺Ψ,

𝑟𝑒 (𝑡) = 𝑟 (𝑡) − 𝑟𝑓 (𝑡) = 𝐶𝜂 (𝑡) + 𝐷𝑤 (𝑡) ,
(8)

where

𝜂 (𝑡) = [ 𝑒 (𝑡)
𝑒𝑓 (𝑡)] ,

𝑤 (𝑡) = [𝑓𝑑] ,

𝐴 = [𝐴 − 𝐻𝐶 0
0 𝐴 − 𝐻𝐶] ,

𝐴𝑑 = [𝐴𝑑 0
0 𝐴𝑑

] ,

𝐴𝑑 = [𝐴𝑑0 ] ,

𝐺 = [𝐺0] ,

𝐵 = [𝐵𝑓 − 𝐻𝐷𝑓 𝐵𝑑 − 𝐻𝐷𝑑

𝐵𝑓 − 𝐻𝐷𝑓 𝐵𝑑 − 𝐻𝐷𝑑

] ,
𝐶 = [𝑉𝐶 −𝑉𝐶] ,
𝐷 = [𝑉𝐷𝑓 − 𝑉𝐷𝑓 𝑉𝐷𝑑 − 𝑉𝐷𝑑] .

(9)

From (8), the design of the robust fault detection filter, which
is the main objective of this work, may be formulated as
an 𝐻∞ model-matching design problem. Applying a robust𝐻∞ optimization control technique, for all exogenous distur-
bance inputs and nonlinear parts, the generated residual 𝑟(𝑡)
will be designed as closely as possible to the reference model
residual 𝑟𝑓(𝑡), independently of the unknown time-delay ℎ.
Thus, the problem of designing an observer-based RFDF can
be described as designing the observer gainmatrix𝐻 and the
residual weighting matrix 𝑉 such that

(i) systems (8) are robustly asymptotically stable;
(ii) under zero initial condition, for given constant 𝛾 > 0

and any nonzero 𝑤(𝑡) ∈ 𝐿2[0,∞), systems (8) satisfy
the following inequality:󵄩󵄩󵄩󵄩𝑟𝑒 (𝑡)󵄩󵄩󵄩󵄩2 < 𝛾 ‖𝑤 (𝑡)‖2 . (10)

After designing the RFDF, the remaining important task is
to decide, from the generated residual, if an alarm has to be
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generated. One of the widely adopted approaches is to choose
a so-called threshold 𝐽th > 0 and, based on this, use the
following logical relationship for fault detection:

‖𝑟 (𝑡)‖2,𝜏 > 𝐽th 󳨐⇒ a fault has occured 󳨐⇒ alarm

‖𝑟 (𝑡)‖2,𝜏 < 𝐽th 󳨐⇒ no fault has occured, (11)

where ‖𝑟(𝑡)‖2,𝜏 = [∫𝑡2
𝑡1

𝑟(𝑡)𝑇𝑟(𝑡)𝑑𝑡]1/2, 𝜏 = 𝑡1 − 𝑡2, 𝑡 ∈ [𝑡1, 𝑡2].
The threshold 𝐽th > 0 can be chosen as 𝐽th = 𝑓+ 𝑑, where𝑓 > 0 ∈ 𝑅 and 𝑑 > 0 ∈ 𝑅 denote, respectively, the upper

bound of the norm of fault 𝑓 and exogenous disturbance 𝑑,
that is, ‖𝑓‖2 ≤ 𝑓, ‖𝑑‖2 ≤ 𝑑.
Remark 5. There are many results on fault detection
observer/filter design for time-delayed systems in the litera-
ture. In general, the observer, as the one in [16, 18], is designed
in the following form:

̇̂𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐴𝑑𝑥 (𝑡 − ℎ) + 𝐵𝑢 (𝑡)
+ 𝐺𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − ℎ))
+ 𝐺𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − ℎ)) + 𝐻 [𝑦 (𝑡) − 𝑦 (𝑡)] ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷𝑢 (𝑡) ,
𝑟 (𝑡) = 𝑉 [𝑦 (𝑡) − 𝑦 (𝑡)] .

(12)

However, just as said in [14], the shortcoming of the above-
mentioned observer is that the constant state time-delay ℎ
must be exactly known. If the time-delay ℎ is unknown, the
above observer will not work in practical applications.

3. Main Results and Proof

As mentioned in [24, 25], the design of a RFDF for the
nonlinear time-delay system (1) can be formulated as an𝐻∞

model-matching problem. In this section, we first design the
reference residual model and then express the RFDF design
problem under an LMI formulation.

3.1. Choice of the Reference Residual Model. As pointed out
in [18], the selection of a suitable reference residual model is
one of the key steps to design an RFDF for nonlinear time-
delay systems. If the reference residual model is not selected
suitably, miss alarms or false alarms may occur. In order to
select a suitable reference residual model, we consider the
following performance index 𝐽𝑓:

𝐽𝑓 = 󵄩󵄩󵄩󵄩󵄩󵄩𝑇𝑟𝑓𝑑 (𝑠)󵄩󵄩󵄩󵄩󵄩󵄩∞ − 󵄩󵄩󵄩󵄩󵄩󵄩𝑇𝑟𝑓𝑓 (𝑠)󵄩󵄩󵄩󵄩󵄩󵄩∞ , (13)

where 𝑇𝑟𝑓𝑑(𝑠) and 𝑇𝑟𝑓𝑓(𝑠) are the transfer functions from 𝑓
and 𝑑 to the reference model residual 𝑟𝑓.

Notice that if 𝐽𝑓 → min {𝐽𝑓}, then one has

󵄩󵄩󵄩󵄩󵄩󵄩𝑇𝑟𝑓𝑑 (𝑠)󵄩󵄩󵄩󵄩󵄩󵄩∞ 󳨀→ max {𝑇𝑟𝑓𝑑 (𝑠)} ,󵄩󵄩󵄩󵄩󵄩󵄩𝑇𝑟𝑓𝑓 (𝑠)󵄩󵄩󵄩󵄩󵄩󵄩∞ 󳨀→ min {𝑇𝑟𝑓𝑓 (𝑠)} . (14)

Therefore, according to the performance index 𝐽𝑓 (13), the
reference residual model can be designed, which takes into
account not only the robustness of the reference model
residual against disturbance but also the sensitivity to faults.

For the sake of simplicity, we assume that 𝑙 = 𝑚.
Consider the following transfer function:

𝑇 = 𝑀𝑇𝑟𝑓𝜗𝑁 = 𝑀[𝑇𝑟𝑓𝑓𝑇𝑟𝑓𝑑]𝑁, (15)

where the matrices 𝑀 ∈ 𝑅𝑞×𝑞, 𝑁 ∈ 𝑅2𝑙×𝑙 select the appro-
priate input/output channels or channels combinations and𝑇 satisfies the following equalities:

𝑇{ ̇𝑒𝑓 (𝑡) = (𝐴 − 𝐻𝐶) 𝑒𝑓 (𝑡) + 𝐴𝑑𝑒𝑓 (𝑡 − ℎ) + 𝐵1𝜗 (𝑡) ,
𝑟𝑓 (𝑡) = 𝑀𝑉𝐶𝑒𝑓 (𝑡) + 𝑀𝐷1𝑁𝜗 (𝑡) , (16)

where 𝐵1 = [𝐵𝑓 − 𝐻𝐷𝑓 𝐵𝑑 − 𝐻𝐷𝑑], 𝐷1 = [𝐷𝑓 𝐷𝑑], and𝜗(𝑡) = [𝑑 − 𝑓].
Choosing 𝑀 = 𝐼𝑞×𝑞, 𝑁 = [−𝐼𝑙×𝑙 𝐼𝑙×𝑙]𝑇, and giving 𝛼 > 0,

it follows that

‖𝑇‖∞ = 󵄩󵄩󵄩󵄩󵄩󵄩𝑇𝑟𝑓𝑑 − 𝑇𝑟𝑓𝑓󵄩󵄩󵄩󵄩󵄩󵄩∞ > 󵄩󵄩󵄩󵄩󵄩󵄩𝑇𝑟𝑓𝑑󵄩󵄩󵄩󵄩󵄩󵄩∞ − 󵄩󵄩󵄩󵄩󵄩󵄩𝑇𝑟𝑓𝑓󵄩󵄩󵄩󵄩󵄩󵄩∞ ,
‖𝑇‖∞ < 𝛼 󳨐⇒ 󵄩󵄩󵄩󵄩󵄩󵄩𝑇𝑟𝑓𝑑󵄩󵄩󵄩󵄩󵄩󵄩∞ − 󵄩󵄩󵄩󵄩󵄩󵄩𝑇𝑟𝑓𝑓󵄩󵄩󵄩󵄩󵄩󵄩∞ < 𝛼. (17)

Then the reference residual model can be designed by solving
the following optimization problem:

min 𝛼
s.t. (13) , (17) hold. (18)

The following theorem provides a sufficient condition to
ensure that, for a given 𝛼 > 0, the reference RFDF satisfies
(16).

Theorem 6. Given 𝛼 > 0 and the reference residual model (7),
if there exist symmetric matrices 𝑃 = 𝑃𝑇 > 0, 𝑄 = 𝑄𝑇 > 0,𝑍 > 0, and 𝑌 such that

Ξ = [[[
[

𝐴𝑇𝑃 + 𝑃𝐴 − 𝐶𝑇𝑌𝑇 − 𝑌𝐶 + 𝐶𝑇𝑍𝐶 + 𝑄 𝑃 (𝐵𝑑 − 𝐵𝑓) + 𝑌 (𝐵𝑓 − 𝐵𝑑) + 𝐶𝑇𝑍(𝐷𝑑 − 𝐷𝑓) 𝑃𝐴𝑑

∗ (𝐷𝑑 − 𝐷𝑓)𝑇𝑍(𝐷𝑑 − 𝐷𝑓) − 𝛼2𝐼 0
∗ ∗ −𝑄

]]]
]

< 0 (19)

holds and applying the time-delay adaptive law

̇̂ℎ = −1𝜂𝑀(󵄩󵄩󵄩󵄩𝑃𝐴𝑑
󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝑃𝐺𝜌2󵄩󵄩󵄩󵄩󵄩) 𝛼 (𝑡) , ℎ̂ (0) > ℎ (20)

then system (7), subject to Assumptions 1–3, is stable and
satisfies ‖𝑇𝑟𝑓𝑑‖∞ − ‖𝑇𝑟𝑓𝑓‖∞ < 𝛼, where 𝛼(𝑡) = ‖ ̇̂𝑥(𝑡)‖, 𝜂 > 0,
ℎ̂(𝑡) ≥ ℎ,𝐻 = 𝑃−1𝑌, and 𝑉 = 𝑍1/2.
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Proof. Consider the following Lyapunov-Krasovskii func-
tion:

𝑉1 (𝑡) = 𝑒𝑇𝑓 (𝑡) 𝑃𝑒𝑓 (𝑡) + ∫𝑡

𝑡−ℎ
𝑒𝑇𝑓 (𝜏) 𝑄𝑒𝑓 (𝜏) 𝑑𝜏

+ 2𝑀󵄩󵄩󵄩󵄩𝑃𝐴𝑑
󵄩󵄩󵄩󵄩 ∫−ℎ

−ℎ̂
𝑑𝜃∫0

𝜃
𝛼 (𝑡 + 𝑠) 𝑑𝑠

+ 𝜂2 (ℎ̂ − ℎ)2 .
(21)

Differentiating 𝑉1 with respect to time 𝑡, one has
𝑉̇1 ≤ 𝑒𝑇𝑓 (𝑡) (𝑃 (𝐴 − 𝐻𝐶) + (𝐴 − 𝐻𝐶)𝑇 𝑃) 𝑒𝑓 (𝑡)

+ 𝑒𝑇𝑓 (𝑡) 𝑃𝐴𝑑𝐴𝑇
𝑑𝑃𝑒𝑓 (𝑡) + 𝑒𝑇𝑓 (𝑡 − ℎ)𝑄𝑒𝑓 (𝑡 − ℎ)

+ 2𝑒𝑇𝑓 (𝑡) 𝑃𝐴𝑑 ∫−ℎ̂

−ℎ

̇̂𝑥 (𝑡 + 𝑠) 𝑑𝑠 + 𝑒𝑇𝑓 (𝑡) 𝑄𝑒𝑓 (𝑡)
− 𝑒𝑇𝑓 (𝑡 − ℎ)𝑄𝑒𝑓 (𝑡 − ℎ) + 𝜂 (ℎ̂ − ℎ) ̇̂ℎ
− 2𝑀(󵄩󵄩󵄩󵄩𝑃𝐴𝑑

󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝑃𝐺𝜌2󵄩󵄩󵄩󵄩󵄩) [(ℎ̂ − ℎ) 𝛼 (𝑡)
− ∫−ℎ

−ℎ̂
𝛼 (𝑡 + 𝜃) 𝑑𝜃 + ̇̂ℎ ∫0

−ℎ̂
𝛼 (𝑡 + 𝑠) 𝑑𝑠] .

(22)

Since ̇̂ℎ = −(1/𝜂)𝑀‖𝑃𝐴𝑑‖𝛼(𝑡) ≤ 0, one has ̇̂ℎ ∫0
−ℎ̂

𝛼(𝑡 +𝑠)𝑑𝑠 ≤ 0. Under idealized condition, using the FDF (2), the
observer error is asymptotically converging to zero; that is,𝑥(𝑡) − 𝑥(𝑡) → 0, 𝑥(𝑡 − ℎ) − 𝑥(𝑡 − ℎ̂) → 0.

Then, one has

𝑉̇1 ≤ 𝑒𝑇𝑓 (𝑡)
⋅ (𝑃 (𝐴 − 𝐻𝐶) + (𝐴 − 𝐻𝐶)𝑇 𝑃 + 𝑃𝐴𝑑𝐴𝑇

𝑑𝑃 + 𝑄)
⋅ 𝑒𝑓 (𝑡) .

(23)

Define the following performance index 𝐽1:
𝐽1 = ∫∞

0
𝑟𝑇𝑓 (𝑡) 𝑟𝑓 (𝑡) 𝑑𝑡 − 𝛼2 ∫∞

0
𝜗𝑇 (𝑡) 𝜗 (𝑡) 𝑑𝑡

= ∫∞

0
[𝑟𝑇𝑓 (𝑡) 𝑟𝑓 (𝑡) − 𝛼2𝜗𝑇 (𝑡) 𝜗 (𝑡) + 𝑉̇1 (𝑡)] 𝑑𝑡

− 𝑉1 (𝑡)󵄨󵄨󵄨󵄨𝑡 + 𝑉1 (𝑡)󵄨󵄨󵄨󵄨𝑡=0 .
(24)

Then, we have

𝐽1 < ∫∞

0
[𝑟𝑇𝑓 (𝑡) 𝑟𝑓 (𝑡) − 𝛼2𝜗𝑇 (𝑡) 𝜗 (𝑡) + 𝑉̇1 (𝑡)] 𝑑𝑡. (25)

Let 𝑌 = 𝑃𝐻, 𝑍 = 𝑉𝑇𝑉, 𝑀 = 𝐼𝑞×𝑞, and 𝑁 = [−𝐼𝑙×𝑙 𝐼𝑙×𝑙]𝑇;
then

𝑟𝑇𝑓𝑟𝑓 = (𝑀𝑉𝐶𝑒𝑓 + 𝑀𝐷1𝑁𝜗)𝑇 (𝑀𝑉𝐶𝑒𝑓 + 𝑀𝐷1𝑁𝜗)
= (𝑉𝐶𝑒𝑓 + 𝐷1 [−𝜗 𝜗]𝑇)𝑇 (𝑉𝐶𝑒𝑓 + 𝐷1 [−𝜗 𝜗]𝑇)
= (𝑒𝑇𝑓𝐶𝑇𝑉𝑇 + [−𝜗 𝜗]𝐷𝑇

1 ) (𝑉𝐶𝑒𝑓 + 𝐷1 [−𝜗 𝜗]𝑇)
= 𝑒𝑇𝑓𝐶𝑇𝑉𝑇𝑉𝐶𝑒𝑓 − 𝑒𝑇𝑓𝐶𝑇𝑉𝑇𝐷𝑓𝜗𝑇 + 𝑒𝑇𝑓𝐶𝑇𝑉𝑇𝐷𝑑𝜗𝑇

− 𝜗𝐷𝑇
𝑓𝑉𝐶𝑒𝑓 + 𝜗𝐷𝑇

𝑓𝐷𝑓𝜗𝑇 − 𝜗𝐷𝑇
𝑓𝐷𝑑𝜗𝑇

+ 𝜗𝐷𝑇
𝑑𝑉𝐶𝑒𝑓 − 𝜗𝐷𝑇

𝑑𝐷𝑓𝜗𝑇 + 𝜗𝐷𝑇
𝑑𝐷𝑑𝜗𝑇.

(26)

Therefore,

𝐽1 < ∫∞

0
Δ𝑑𝑡, (27)

where

Δ = 𝑒𝑇𝑓𝐶𝑇𝑉𝑇𝑉𝐶𝑒𝑓 − 𝑒𝑇𝑓𝐶𝑇𝑉𝑇𝐷𝑓𝜗𝑇 + 𝑒𝑇𝑓𝐶𝑇𝑉𝑇𝐷𝑑𝜗𝑇
− 𝜗𝐷𝑇

𝑓𝑉𝐶𝑒𝑓 + 𝜗𝐷𝑇
𝑓𝐷𝑓𝜗𝑇 − 𝜗𝐷𝑇

𝑓𝐷𝑑𝜗𝑇
+ 𝜗𝐷𝑇

𝑑𝑉𝐶𝑒𝑓 − 𝜗𝐷𝑇
𝑑𝐷𝑓𝜗𝑇 + 𝜗𝐷𝑇

𝑑𝐷𝑑𝜗𝑇 + 𝑒𝑇𝑓 (𝑡)
⋅ (𝑃 (𝐴 − 𝐻𝐶) + (𝐴 − 𝐻𝐶)𝑇 𝑃 + 𝑃𝐴𝑑𝐴𝑇

𝑑𝑃 + 𝑄)
⋅ 𝑒𝑓 (𝑡) + −𝛼2𝜗𝑇 (𝑡) 𝜗 (𝑡)

(28)

which may be rewritten as

𝐽1 < ∫∞

0
[𝑟𝑓 (𝑡)
𝜗 (𝑡) ]

𝑇 Ξ[𝑟𝑓 (𝑡)
𝜗 (𝑡) ] 𝑑𝑡. (29)

SinceΞ < 0, we have 𝐽1 < 0 and ‖𝑇𝑟𝑓𝑑(𝑠)−𝑇𝑟𝑓𝑓(𝑠)‖∞ < 𝛼. And
since ‖𝑇𝑟𝑓𝑑‖∞ − ‖𝑇𝑟𝑓𝑓‖∞ ≤ ‖𝑇𝑟𝑓𝑑 − 𝑇𝑟𝑓𝑓‖∞, we get ‖𝑇𝑟𝑓𝑑‖∞ −‖𝑇𝑟𝑓𝑓‖∞ < 𝛼.

If 𝑃(𝐴 − 𝐻𝐶) + (𝐴 − 𝐻𝐶)𝑇𝑃 + 𝑃𝐴𝑑𝐴𝑇
𝑑𝑃 + 𝑄 < 0 holds,

that is,

[𝐴𝑇𝑃 + 𝑃𝐴 − 𝑌𝐶 − 𝐶𝑇𝑌𝑇 + 𝑄 𝑃𝐴𝑑

𝐴𝑇
𝑑𝑃 −𝑄 ] < 0 (30)

then, 𝑉̇1 < 0 under the condition 𝜗 = 0. If (19) holds, then
(30) holds. Thus, system (7) is asymptotically stable.

The proof is completed.

3.2. Design of Robust Fault Detection Filter. In this section,
we propose a theorem that gives a sufficient condition to
guarantee that the RFDF system is stable and has a pre-
scribed 𝐻∞ performance, independently of the time-delay.
Before presenting the theorem, the following lemmas are
introduced.

Lemma 7. Given constant matrices 𝜒1 = 𝜒𝑇1 , 𝜒2 = 𝜒𝑇2 > 0,
and 𝜒3, then 𝜒1 + 𝜒𝑇3 𝜒−12 𝜒3 < 0, if and only if
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[𝜒1 𝜒𝑇3𝜒3 −𝜒2] < 0
or equivalently [−𝜒2 𝜒3

𝜒𝑇3 −𝜒1] < 0.
(31)

Lemma 8. Let 𝐴 and 𝐵 be real matrices of appropriate
dimensions. For any scalar 𝜀 > 0 and vectors 𝑥, 𝑦 ∈ 𝑅𝑛, the
following inequality holds:

2𝑥𝑇𝐴𝐵𝑦 ≤ 𝜀−1𝑥𝑇𝐴𝐴𝑇𝑥 + 𝜀𝑦𝑇𝐵𝑇𝐵𝑦. (32)

Recall the nonlinear time-delay system (8).

Theorem 9. For a given positive constant 𝛾 > 0, if there exist
a scalar 𝜀 > 0 (2𝜀𝜌𝑇2 𝜌2 < 𝑄1) and matrices 𝑃1 = 𝑃𝑇1 > 0,𝑃2 = 𝑃𝑇2 > 0, 𝑄1 = 𝑄𝑇

1 > 0, 𝑄2 = 𝑄𝑇
2 > 0, 𝑌, and 𝑉 such that

the following LMI:

[[[[[[[[[[[[[[[[[[[
[

Ω1 0 𝑃1𝐴𝑑 0 𝑃1𝐵𝑓 − 𝑌𝐷𝑓 𝑃1𝐵𝑑 − 𝑌𝐷𝑑 𝐶𝑇𝑉𝑇 𝑃1𝐺
∗ Ω2 0 𝑃2𝐴𝑑 𝑃2 (𝐵𝑓 − 𝐻𝐷𝑓) 𝑃2 (𝐵𝑑 − 𝐻𝐷𝑑) −𝐶𝑇𝑉𝑇 0
∗ ∗ 2𝜀𝜌𝑇2 𝜌2 − 𝑄1 0 0 0 0 0
∗ ∗ ∗ 𝑄2 0 0 0 0
∗ ∗ ∗ ∗ −𝛾2𝐼 0 𝐷𝑇

𝑓 (𝑉𝑇 − 𝑉𝑇) 0
∗ ∗ ∗ ∗ ∗ −𝛾2𝐼 𝐷𝑇

𝑑 (𝑉𝑇 − 𝑉𝑇) 0
∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀𝐼

]]]]]]]]]]]]]]]]]]]
]

< 0 (33)

holds and applying the time-delay adaptive law

̇̂ℎ = −1𝜂𝑀(󵄩󵄩󵄩󵄩󵄩󵄩𝑃𝐴𝑑

󵄩󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝑃𝐺𝜌2󵄩󵄩󵄩󵄩󵄩) 𝛼 (𝑡) , ℎ̂ (0) > ℎ (34)

then system (8), subject to Assumptions 1–3, is stable and
satisfies ‖𝑧‖2 < 𝛾‖𝑤‖2, where ℎ̂(𝑡) ≥ ℎ, Ω1 = 𝑃1𝐴 + 𝐴𝑇𝑃1 −𝑌𝐶−𝐶𝑇𝑌𝑇+2𝜀𝜌𝑇1 𝜌1+𝑄1,Ω2 = 𝑃2𝐴+𝐴𝑇𝑃2−𝑃2𝐻𝐶−𝐶𝑇𝐻𝑇𝑃2+𝑄2, 𝜂 > 0,𝐻 = 𝑃−1𝑌, 𝛼(𝑡) = ‖ ̇̂𝑥(𝑡)‖, and 𝑄 − 𝐼 > 0; 𝐼 denotes
the identity matrix with appropriate dimensions.

Proof. Define the following Lyapunov-Krasovskii function:

𝑉2 = 𝑉󸀠
1 + 𝑉󸀠

2 + 𝑉󸀠
3 + 𝑉󸀠

4 (35)

with

𝑉󸀠
1 = 𝜂𝑇 (𝑡) 𝑃𝜂 (𝑡) ,

𝑉󸀠
2 = ∫𝑡

𝑡−ℎ
𝜂𝑇 (𝑠) 𝑄𝜂 (𝑠) 𝑑𝑠,

𝑉󸀠
3 = 𝜎2 (ℎ̂ − ℎ)2 ,

𝑉󸀠
4 = 2𝑀(󵄩󵄩󵄩󵄩󵄩󵄩𝑃𝐴𝑑

󵄩󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝑃𝐺𝜌2󵄩󵄩󵄩󵄩󵄩)∫−ℎ

−ℎ̂
𝑑𝜃∫0

𝜃
𝛼 (𝑡 + 𝑠) 𝑑𝑠,

(36)

where 𝑃 = [ 𝑃1 0
0 𝑃2

], 𝑄 = [ 𝑄1 0
0 𝑄2

].

Differentiating 𝑉 with respect to time 𝑡, one has
𝑉̇󸀠
1 (𝑡) = 2𝜂𝑇 (𝑡) 𝑃 [𝐴𝜂 (𝑡) + 𝐴𝑑𝜂 (𝑡 − ℎ) + 𝐺Ψ + 𝐺Δ
+ 𝐵𝑤 (𝑡)] + 2𝜂𝑇 (𝑡) 𝑃𝐴𝑑 ∫−ℎ

−ℎ̂

̇̂𝑥 (𝑡 + 𝑠) 𝑑𝑠,
𝑉̇󸀠
2 (𝑡) = 𝜂𝑇 (𝑡) 𝑄𝜂 (𝑡) − 𝜂𝑇 (𝑡 − ℎ)𝑄𝜂 (𝑡 − ℎ) ,

𝑉̇󸀠
3 (𝑡) = 𝜎 (ℎ̂ − ℎ) ̇̂ℎ,

𝑉̇󸀠
4 (𝑡) = 2𝑀(󵄩󵄩󵄩󵄩󵄩󵄩𝑃𝐴𝑑

󵄩󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝑃𝐺𝜌2󵄩󵄩󵄩󵄩󵄩)
⋅ {∫−ℎ

−ℎ̂
[𝛼 (𝑡) − 𝛼 (𝑡 + 𝜃)] 𝑑𝜃 + ̇̂ℎ ∫0

−ℎ̂
𝛼 (𝑡 + 𝑠) 𝑑𝑠}

= 2𝑀(󵄩󵄩󵄩󵄩󵄩󵄩𝑃𝐴𝑑

󵄩󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝑃𝐺𝜌2󵄩󵄩󵄩󵄩󵄩) [∫−ℎ

−ℎ̂
𝛼 (𝑡) 𝑑𝜃

− ∫−ℎ̂

−ℎ
𝛼 (𝑡 + 𝜃) 𝑑𝜃 + ̇̂ℎ ∫0

−ℎ̂
𝛼 (𝑡 + 𝑠) 𝑑𝑠]

= −2𝑀(󵄩󵄩󵄩󵄩󵄩󵄩𝑃𝐴𝑑

󵄩󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝑃𝐺𝜌2󵄩󵄩󵄩󵄩󵄩)
⋅ [(ℎ̂ − ℎ) 𝛼 (𝑡) ∫−ℎ

−ℎ̂
𝛼 (𝑡 + 𝜃) 𝑑𝜃

+ ̇̂ℎ ∫0

−ℎ̂
𝛼 (𝑡 + 𝑠) 𝑑𝑠] .

(37)
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From Assumption 2, it yields

‖Ψ‖ ≤ 󵄩󵄩󵄩󵄩𝜌1 (𝑥 (𝑡) − 𝑥 (𝑡))󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩󵄩𝜌2 (𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ̂))󵄩󵄩󵄩󵄩󵄩

≤ 󵄩󵄩󵄩󵄩𝜌1𝑒 (𝑡)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝜌2 (𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ̂))󵄩󵄩󵄩󵄩󵄩
= 󵄩󵄩󵄩󵄩𝜌1𝑒 (𝑡)󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜌2 ∫
−ℎ

−ℎ̂

̇̂𝑥 (𝑡 + 𝑠) 𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 .

(38)

From Lemma 8, one has

2𝜂𝑇 (𝑡) 𝑃𝐺Ψ ≤ 2 󵄩󵄩󵄩󵄩󵄩𝜂𝑇 (𝑡)󵄩󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩󵄩𝑃𝐺󵄩󵄩󵄩󵄩󵄩 ⋅ ‖Ψ‖
≤ 2 󵄩󵄩󵄩󵄩𝜂 (𝑡)󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩󵄩𝑃𝐺󵄩󵄩󵄩󵄩󵄩

⋅ (󵄩󵄩󵄩󵄩𝜌1𝑒 (𝑡)󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜌2 ∫

−ℎ

−ℎ̂

̇̂𝑥 (𝑡 + 𝑠) 𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩)
≤ 2 󵄩󵄩󵄩󵄩𝜂 (𝑡)󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩󵄩𝑃𝐺󵄩󵄩󵄩󵄩󵄩

⋅ (󵄩󵄩󵄩󵄩𝜌1𝑒 (𝑡)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝜌2󵄩󵄩󵄩󵄩 ∫−ℎ

−ℎ̂

󵄩󵄩󵄩󵄩󵄩 ̇̂𝑥 (𝑡 + 𝑠)󵄩󵄩󵄩󵄩󵄩 𝑑𝑠)
≤ 2 󵄩󵄩󵄩󵄩𝜂 (𝑡)󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩󵄩𝑃𝐺󵄩󵄩󵄩󵄩󵄩

⋅ (󵄩󵄩󵄩󵄩𝜌1𝑒 (𝑡)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝜌2󵄩󵄩󵄩󵄩 ∫−ℎ

−ℎ̂
𝛼 (𝑡 + 𝑠) 𝑑𝑠)

≤ 𝜀−1𝜂𝑇 (𝑡) 𝑃𝐺𝐺𝑇𝑃𝜂 (𝑡) + 2𝜀𝑒𝑇 (𝑡) 𝜌𝑇1 𝜌1𝑒 (𝑡)
+ 2 󵄩󵄩󵄩󵄩𝜂 (𝑡)󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩󵄩𝑃𝐺𝜌2󵄩󵄩󵄩󵄩󵄩 ∫

−ℎ

−ℎ̂
𝛼 (𝑡 + 𝑠) 𝑑𝑠.

(39)

Then

𝑉̇2 ≤ 𝜀−1𝜂𝑇 (𝑡) 𝑃𝐺𝐺𝑇𝑃𝜂 (𝑡) + 2𝜀𝑒𝑇 (𝑡) 𝜌𝑇1 𝜌1𝑒 (𝑡)
+ 2 󵄩󵄩󵄩󵄩𝜂 (𝑡)󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩󵄩𝑃𝐺󵄩󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩𝜌2󵄩󵄩󵄩󵄩 ∫

−ℎ

−ℎ̂
𝛼 (𝑡 + 𝑠) 𝑑𝑠 + 𝜂𝑇 (𝑡)

⋅ 𝑄𝜂 (𝑡) − 𝜂𝑇 (𝑡 − ℎ)𝑄𝜂 (𝑡 − ℎ) + 𝜎 (ℎ̂ − ℎ) ̇̂ℎ
− 2𝑀󵄩󵄩󵄩󵄩󵄩󵄩𝑃𝐴𝑑

󵄩󵄩󵄩󵄩󵄩󵄩 [(ℎ̂ − ℎ) 𝛼 (𝑡) − ∫−ℎ

−ℎ̂
𝛼 (𝑡 + 𝜃) 𝑑𝜃

+ ̇̂ℎ ∫0

−ℎ̂
𝛼 (𝑡 + 𝑠) 𝑑𝑠] .

(40)

Since ̇̂ℎ = −(1/𝜂)𝑀(‖𝑃𝐴𝑑‖+‖𝑃𝐺𝜌2‖)𝛼(𝑡), we have ̇̂ℎ ∫0
−ℎ⃖

𝛼(𝑡+𝑠)𝑑𝑠 ≤ 0. Because ‖𝑥(𝑡) − 𝑥(𝑡)‖ = ‖𝑒(𝑡)‖ ≤ 𝑀, and the
above fault detection observer error is equal to zero under
ideal condition, it holds that ‖𝜂(𝑡)‖ ≤ 𝑀.

From Lemma 8, one has

𝑉̇2 ≤ 2𝜂𝑇 (𝑡) 𝑃 [𝐴𝜂 (𝑡) + 𝐴𝑑𝜂 (𝑡 − ℎ) + 𝐵𝑤 (𝑡)]
+ 𝜀−1𝜂𝑇 (𝑡) 𝑃𝐺𝐺𝑇𝑃𝜂 (𝑡) + 2𝜀𝑒𝑇 (𝑡) 𝜌𝑇1 𝜌1𝑒 (𝑡)
+ 𝜂𝑇 (𝑡) 𝑄𝜂 (𝑡) − 𝜂𝑇 (𝑡 − ℎ)𝑄𝜂 (𝑡 − ℎ) .

(41)

And 𝑒(𝑡) = [𝐼 0] [ 𝑒(𝑡)
𝑒𝑓(𝑡)

] = [𝐼 0] 𝜂(𝑡), 𝑒(𝑡 − ℎ) =
[𝐼 0] [ 𝑒(𝑡−ℎ)

𝑒𝑓(𝑡−ℎ)
] = [𝐼 0] 𝜂(𝑡 − ℎ). Thus, (41) can be rewritten

as

𝑉̇2 ≤ 2𝜂𝑇 (𝑡) 𝑃 [𝐴𝜂 (𝑡) + 𝐴𝑑𝜂 (𝑡 − ℎ) + 𝐵𝑤 (𝑡)]
+ 𝜀−1𝜂𝑇 (𝑡) 𝑃𝐺𝐺𝑇𝑃𝜂 (𝑡)
+ 2𝜀𝜂𝑇 (𝑡) [𝐼0] 𝜌𝑇1 𝜌1 [𝐼0]

𝑇

𝜂 (𝑡) + 𝜂𝑇 (𝑡) 𝑄𝜂 (𝑡)
− 𝜂𝑇 (𝑡 − ℎ)𝑄𝜂 (𝑡 − ℎ)

= 𝜂𝑇 (𝑡) 𝑃 [𝐴𝜂 (𝑡) + 𝐴𝑑𝜂 (𝑡 − ℎ) + 𝐵𝑤 (𝑡)]
+ [𝐴𝜂 (𝑡) + 𝐴𝑑𝜂 (𝑡 − ℎ) + 𝐵𝑤 (𝑡)]𝑇 𝑃𝜂 (𝑡)
+ 𝜀−1𝜂𝑇 (𝑡) 𝑃𝐺𝐺𝑇𝑃𝜂 (𝑡)
+ 2𝜀𝜂𝑇 (𝑡) [

[
𝜌𝑇1 𝜌1 0
0 0]]

𝜂 (𝑡) + 𝜂𝑇 (𝑡) 𝑄𝜂 (𝑡)

− 𝜂𝑇 (𝑡 − ℎ)𝑄𝜂 (𝑡 − ℎ) .

(42)

Consider the following performance index:

𝐽2 = ∫∞

0
𝑟𝑇𝑒 (𝑡) 𝑟𝑒 (𝑡) 𝑑𝑡 − 𝛾2 ∫∞

0
𝑤𝑇 (𝑡) 𝑤 (𝑡) 𝑑𝑡

= ∫∞

0
[𝑟𝑇𝑒 (𝑡) 𝑟𝑒 (𝑡) − 𝛾2𝑤𝑇 (𝑡) 𝑤 (𝑡) + 𝑉̇2 (𝑡)] 𝑑𝑡

− 𝑉2 (𝑡)󵄨󵄨󵄨󵄨𝑡 + 𝑉2 (𝑡)󵄨󵄨󵄨󵄨𝑡=0
≤ ∫∞

0
[𝑟𝑇𝑒 (𝑡) 𝑟𝑒 (𝑡) − 𝛾2𝑤𝑇 (𝑡) 𝑤 (𝑡) + 𝑉̇2 (𝑡)] 𝑑𝑡

≤ ∫∞

0

[[[
[

𝜂 (𝑡)
𝜂 (𝑡 − ℎ)
𝑤 (𝑡)

]]]
]

𝑇

Ω[[[
[

𝜂 (𝑡)
𝜂 (𝑡 − ℎ)
𝑤 (𝑡)

]]]
]
𝑑𝑡,

(43)
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where

Ω =

[[[[[[[[[[[[[
[

𝐴𝑇𝑃 + 𝑃𝐴 + [2𝜀𝜌𝑇1 𝜌1 0
0 0] + 𝑄 𝑃𝐴𝑑 𝑃𝐵 𝐶𝑇 𝑃𝐺

𝐴𝑇

𝑑𝑃 [2𝜀𝜌𝑇2 𝜌2 0
0 0] 0 0 0

𝐵𝑇𝑃 0 −𝛾2𝐼 𝐷𝑇 0
𝐶 0 𝐷 −𝐼 0

𝐺𝑇𝑃 0 0 0 −𝜀𝐼

]]]]]]]]]]]]]
]

. (44)

From (35), one has Ω < 0. Hence 𝐽2 < 0 and ‖𝑧‖2 < 𝛾‖𝑤‖2.
If 𝑤(𝑡) = 0, from the above analysis, one has

𝐽2 ≤ ∫∞

0

[[
[

𝜂 (𝑡)
𝜂 (𝑡 − ℎ)
𝑤 (𝑡)

]]
]

𝑇

Ω󸀠 [[
[

𝜂 (𝑡)
𝜂 (𝑡 − ℎ)
𝑤 (𝑡)

]]
]
𝑑𝑡, (45)

whereΩ󸀠 = [ 𝐴
𝑇
𝑃+𝑃𝐴+𝜀−1𝑃𝐺𝐺

𝑇
𝑃+2𝜀𝜌𝑇1 𝜌1+𝐶

𝑇
𝐶+𝑄 𝑃𝐴𝑑 0

𝐴
𝑇

𝑑𝑃 −𝑄 0

0 0 −𝛾2𝐼

].
Obviously, Ω < 0 ⇒ Ω󸀠 < 0. Furthermore, transferringΩ󸀠, one has

[[[[
[

𝐴𝑇𝑃 + 𝑃𝐴 + 2𝜀𝜌𝑇1 𝜌1 + 𝐶𝑇𝐶 + 𝑄 𝑃𝐴𝑑 𝑃𝐺
𝐴𝑇

𝑑𝑃 −𝑄 0
𝐺𝑇𝑃 0 −𝜀𝐼

]]]]
]

< 0 (46)

which implies that if𝑤(𝑡) = 0, then 𝑉̇2 < 0. If (35) holds, then
(46) holds. Hence, system (8) is stable.

The proof is completed.
The last step of fault detection is to evaluate the residual.

This is a decision making process that always comes down to
a threshold logic of a decision function. From Assumption 2
(𝑑 ∈ 𝐿2), we can further have ‖𝑑(𝑡)‖2 = 𝑆, where𝑆 > 0 is a constant. By using Theorem 9, we obtain𝛾𝑑 = sup𝑑∈𝐿2‖𝑟‖2/‖𝑑‖2. In the fault-free case, the generated
residual 𝑟(𝑡) is only affected by the disturbance input 𝑑(𝑡).
Therefore, the threshold 𝐽th can be determined by

𝐽th = 𝛾𝑑 ‖𝑑 (𝑡)‖2 = 𝛾𝑑𝑆. (47)

The fault detection decision logic can be designed as

‖𝑟 (𝑡)‖2,𝜏 > 𝐽th 󳨐⇒ a fault has occured 󳨐⇒ alarm

‖𝑟 (𝑡)‖2,𝜏 < 𝐽th 󳨐⇒ no fault has occured. (48)

Remark 10. In [18],Ψwas described asΨ = 𝑔(𝑥(𝑡), 𝑥(𝑡−ℎ))−𝑔(𝑥(𝑡), 𝑥(𝑡 − ℎ)). From Assumption 2 in [18], one has

‖Ψ‖ ≤ 󵄩󵄩󵄩󵄩𝜌1 (𝑥 (𝑡) − 𝑥 (𝑡))󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩𝜌2 (𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ))󵄩󵄩󵄩󵄩

≤ 󵄩󵄩󵄩󵄩𝜌1𝑒 (𝑡)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝜌2𝑒 (𝑡 − ℎ)󵄩󵄩󵄩󵄩 ,
‖Ψ‖2 ≤ 2 󵄩󵄩󵄩󵄩𝜌1𝑒 (𝑡)󵄩󵄩󵄩󵄩2 + 2 󵄩󵄩󵄩󵄩𝜌2𝑒 (𝑡 − ℎ)󵄩󵄩󵄩󵄩2 .

(49)

However, if time-delay ℎ is an unknown constant, ‖Ψ‖ and‖Ψ‖2 are not available and can not be used in the design
procedure. In this paper, an improved observer is proposed,
in which ℎ is replaced by the estimation value ℎ̂. Then, Ψ is
presented in the following form:

Ψ = 𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − ℎ)) − 𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − ℎ̂)) . (50)

Furthermore, by using Newton-Leibniz Formula, one has

‖Ψ‖ ≤ 󵄩󵄩󵄩󵄩𝜌1 (𝑥 (𝑡) − 𝑥 (𝑡))󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩󵄩𝜌2 (𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ̂))󵄩󵄩󵄩󵄩󵄩

≤ 󵄩󵄩󵄩󵄩𝜌1𝑒 (𝑡)󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜌2 ∫

−ℎ

−ℎ̂

̇̂𝑥 (𝑡 + 𝑠) 𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 .
(51)

3.3. Fault Estimation. After detecting the fault, fault isolation
and estimation are considered. Similar to [21], by a bank of
so-called fault isolation observers, fault pattern and location
can be obtained. In this paper, it is assumed that faults have
been isolated and fault isolation is not studied further. In the
following, we will investigate the fault estimation problem.

In order to estimate the fault, a following observer is
constructed:

̇̂𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐴𝑑𝑥 (𝑡 − ℎ̂) + 𝐵𝑢 (𝑡)
+ 𝐺𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − ℎ̂)) + 𝐵𝑓𝑓 (𝑡)
+ 𝐻 [𝑦 (𝑡) − 𝑦 (𝑡)] ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷𝑢 (𝑡) + 𝐷𝑓𝑓 (𝑡) ,
𝑟 (𝑡) = 𝑉 [𝑦 (𝑡) − 𝑦 (𝑡)] ,

(52)
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where 𝑥(𝑡) ∈ 𝑅𝑛 is the observer state vector, 𝑦(𝑡) ∈ 𝑅𝑞 is the
observer output vector, ℎ̂ and 𝑓 are the estimation values of ℎ
and𝑓, respectively, and 𝑟(𝑡) is the so-called generated residual
signal.The observer gainmatrix𝐻 and the residual weighting
matrix 𝑉 will be defined later.

Let

𝑒 = 𝑥 (𝑡) − 𝑥 (𝑡) ,
𝑓 = 𝑓 (𝑡) − 𝑓 (𝑡) . (53)

Then, the error dynamics can be described as

̇𝑒 (𝑡) = (𝐴 − 𝐻𝐶) 𝑒 (𝑡) + 𝐴𝑑𝑥 (𝑡 − ℎ̂) − 𝐴𝑑𝑥 (𝑡 − ℎ)
+ (𝐵𝑓 − 𝐻𝐷𝑓) 𝑓 (𝑡) + (𝐵𝑑 − 𝐻𝐷𝑑) 𝑑 (𝑡)
+ 𝐺Ψ

= (𝐴 − 𝐻𝐶) 𝑒 (𝑡) + 𝐴𝑑𝑥 (𝑡 − ℎ̂) − 𝐴𝑑𝑥 (𝑡 − ℎ)
+ 𝐴𝑑𝑥 (𝑡 − ℎ) − 𝐴𝑑𝑥 (𝑡 − ℎ)
+ (𝐵𝑓 − 𝐻𝐷𝑓) 𝑓 (𝑡) + (𝐵𝑑 − 𝐻𝐷𝑑) 𝑑 (𝑡)
+ 𝐺Ψ

= (𝐴 − 𝐻𝐶) 𝑒 (𝑡) + 𝐴𝑑𝑒 (𝑡 − ℎ) + 𝐴𝑑𝑥 (𝑡 − ℎ̂)

− 𝐴𝑑𝑥 (𝑡 − ℎ) + (𝐵𝑓 − 𝐻𝐷𝑓) 𝑓 (𝑡)
+ (𝐵𝑑 − 𝐻𝐷𝑑) 𝑑 (𝑡) + 𝐺Ψ,

(54)

where Ψ = 𝑔(𝑥(𝑡), 𝑥(𝑡 − ℎ)) − 𝑔(𝑥(𝑡), 𝑥(𝑡 − ℎ̂)).
By using Newton-Leibniz Formula, one has

𝑥 (𝑡 − ℎ̂) − 𝑥 (𝑡 − ℎ) = ∫−ℎ̂

−ℎ

̇̂𝑥 (𝑡 + 𝑠) 𝑑𝑠. (55)

Equation (54) can be rewritten as

̇𝑒 (𝑡) = (𝐴 − 𝐻𝐶) 𝑒 (𝑡) + 𝐴𝑑𝑒 (𝑡 − ℎ)
+ 𝐴𝑑 ∫−ℎ̂

−ℎ

̇̂𝑥 (𝑡 + 𝑠) 𝑑𝑠 + (𝐵𝑓 − 𝐻𝐷𝑓) 𝑓 (𝑡)
+ (𝐵𝑑 − 𝐻𝐷𝑑) 𝑑 (𝑡) + 𝐺Ψ,

𝑟 (𝑡) = 𝑉𝐶𝑒 (𝑡) + 𝑉𝐷𝑓𝑓 (𝑡) + 𝑉𝐷𝑑𝑑 (𝑡) .

(56)

To realize the above-mentioned fault diagnosis objective, the
followingTheorem 11 is proposed.

Theorem 11. Consider system (1) subject to Assumptions 1–3.
For a given positive constant 𝛼 > 0, if there exist a scalar 𝜀 > 0
and matrices 𝑃1 = 𝑃𝑇1 > 0, 𝑃2 = 𝑃𝑇2 > 0, 𝑄1 = 𝑄𝑇

1 > 0,𝑄2 = 𝑄𝑇
2 > 0, 𝑌, and 𝑉 such that

Ξ =

[[[[[[[[[[[[[[[[
[

Ω1 0 𝑃1𝐴𝑑 0 𝑃1𝐵𝑓 − 𝑌𝐷𝑓 𝑃1𝐵𝑑 − 𝑌𝐷𝑑 𝐶𝑇𝑉𝑇 𝑃1𝐺
∗ Ω2 0 𝑃2𝐴𝑑 𝑃2 (𝐵𝑓 − 𝐻𝐷𝑓) 𝑃2 (𝐵𝑑 − 𝐻𝐷𝑑) −𝐶𝑇𝑉𝑇 0
∗ ∗ 2𝜀𝜌𝑇2 𝜌2 − 𝑄1 0 0 0 0 0
∗ ∗ ∗ 𝑄2 0 0 0 0
∗ ∗ ∗ ∗ −𝛾2𝐼 0 𝐷𝑇

𝑓 (𝑉𝑇 − 𝑉𝑇) 0
∗ ∗ ∗ ∗ ∗ −𝛾2𝐼 𝐷𝑇

𝑑 (𝑉𝑇 − 𝑉𝑇) 0
∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀𝐼

]]]]]]]]]]]]]]]]
]

< 0, (57)

𝐹𝐶 = (𝐵𝑓 − 𝐻𝐷𝑓)𝑇 𝑃 (58)

then, using the following adaptive laws:

̇̂ℎ = −1𝜂𝑀(󵄩󵄩󵄩󵄩𝑃𝐴𝑑
󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑃𝐺𝜌2󵄩󵄩󵄩󵄩) 𝛼 (𝑡) , ℎ̂ (0) > ℎ,

̇̂𝑓 (𝑡) = −𝜂−1𝑓 Γ𝐹𝑒𝑦 (𝑡) , ̇̂𝑓 (0) = 0,
(59)

the closed-loop system (56) is stable with ‖𝑒‖2 < 𝛼‖𝑑‖2, where𝛼(𝑡) = ‖ ̇̂𝑥(𝑡)‖, 𝜂𝑓 > 0, and Γ = Γ𝑇 > 0 are adaptive rates, and𝜂 is selected such that ℎ̂(0) ≥ ℎ, 𝑄 − 𝐼 > 0, and 𝐼 denotes the
identity matrix with appropriate dimensions.

Proof. Define the following Lyapunov-Krasovskii function:

𝑉3 (𝑡) = 𝑒𝑇 (𝑡) 𝑃𝑒 (𝑡) + ∫𝑡

𝑡−ℎ
𝑒𝑇 (𝜏) 𝑄𝑒 (𝜏) 𝑑𝜏

+ 2𝑀(󵄩󵄩󵄩󵄩𝑃𝐴𝑑
󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑃𝐺𝜌2󵄩󵄩󵄩󵄩) ∫−ℎ

−ℎ̂
𝑑𝜃∫0

𝜃
𝛼 (𝑡 + 𝑠) 𝑑𝑠

+ 𝜂2 (ℎ̂ − ℎ)2 + 𝜂𝑓 (𝑓 − 𝑓)𝑇 Γ−1 (𝑓 − 𝑓) ,
(60)

where 𝑃 = [ 𝑃1 0
0 𝑃2

], 𝑄 = [ 𝑄1 0
0 𝑄2

] .
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Differentiating 𝑉3 with respect to time 𝑡, one has
𝑉̇3 ≤ 𝑒𝑇 (𝑡) (𝑃 (𝐴 − 𝐻𝐶) + (𝐴 − 𝐻𝐶)𝑇 𝑃) 𝑒 (𝑡)

+ 𝑒𝑇 (𝑡) 𝑃𝐴𝑑𝐴𝑇
𝑑𝑃𝑒 (𝑡) + 𝑒𝑇 (𝑡 − ℎ) 𝑒 (𝑡 − ℎ) + 2𝑒𝑇 (𝑡)

⋅ 𝑃(𝐴𝑑 ∫−ℎ̂

−ℎ

̇̂𝑥 (𝑡 + 𝑠) 𝑑𝑠 + 𝐺Ψ) + 2𝑒𝑇 (𝑡) 𝑃 (𝐵𝑓
− 𝐻𝐷𝑓) 𝑓 + 2𝑒𝑇 (𝑡) 𝑃 (𝐵𝑑 − 𝐻𝐷𝑑) 𝑑 (𝑡) + 𝑒𝑇 (𝑡)
⋅ 𝑄𝑒 (𝑡) − 𝑒𝑇 (𝑡 − ℎ)𝑄𝑒 (𝑡 − ℎ) + 𝜂 (ℎ̂ − ℎ) ̇̂ℎ
− 2𝑀 (󵄩󵄩󵄩󵄩𝑃𝐴𝑑

󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑃𝐺𝜌2󵄩󵄩󵄩󵄩) [(ℎ̂ − ℎ) 𝛼 (𝑡)
− ∫−ℎ

−ℎ̂
𝛼 (𝑡 + 𝜃) 𝑑𝜃 + ̇̂ℎ ∫0

−ℎ̂
𝛼 (𝑡 + 𝑠) 𝑑𝑠]

+ 2𝜂𝑓𝑓𝑇Γ−1 ̇̂𝑓.

(61)

From Assumption 2 and ‖Ψ‖ ≤ ‖𝜌1𝑒(𝑡)‖ + ‖𝜌2 ∫−ℎ−ℎ̂ ̇̂𝑥(𝑡 + 𝑠)𝑑𝑠‖,
it yields

2𝑒𝑇 (𝑡) 𝑃𝐺Ψ ≤ 𝜀−1𝑒𝑇 (𝑡) 𝑃𝐺𝐺𝑇𝑃𝑒 (𝑡)
+ 2𝜀𝑒𝑇 (𝑡) 𝜌𝑇1 𝜌1𝑒 (𝑡) + 2 ‖𝑒 (𝑡)‖
⋅ 󵄩󵄩󵄩󵄩𝑃𝐺𝜌2󵄩󵄩󵄩󵄩 ∫−ℎ

−ℎ̂
𝛼 (𝑡 + 𝑠) 𝑑𝑠.

(62)

Because ̇̂ℎ = −(1/𝜂)𝑀(‖𝑃𝐴𝑑‖ + ‖𝑃𝐺𝜌2‖)𝛼(𝑡) ≤ 0, we havė̂ℎ ∫0
−ℎ̂

𝛼(𝑡 + 𝑠)𝑑𝑠 ≤ 0. Notice that 𝑄 − 𝐼 > 0; then
𝑉̇3 ≤ 𝑒𝑇 (𝑡) (𝑃 (𝐴 − 𝐻𝐶) + (𝐴 − 𝐻𝐶)𝑇 𝑃 + 𝑃𝐴𝑑𝐴𝑇

𝑑𝑃
+ 𝑄 + 𝜀−1𝑃𝐺𝐺𝑇𝑃 + 2𝜀𝜌𝑇1 𝜌1) 𝑒 (𝑡) + 2𝑒𝑇 (𝑡) 𝑃 (𝐵𝑓

− 𝐻𝐷𝑓) 𝑓 + 2𝑒𝑇 (𝑡) 𝑃 (𝐵𝑑 − 𝐻𝐷𝑑) 𝑑 (𝑡)
+ 2𝜂𝑓𝑓𝑇Γ−1 ̇̂𝑓 ≤ 𝑒𝑇 (𝑡) (𝑃 (𝐴 − 𝐻𝐶)
+ (𝐴 − 𝐻𝐶)𝑇 𝑃 + 𝑃𝐴𝑑𝐴𝑇

𝑑𝑃 + 𝑄 + 𝜀−1𝑃𝐺𝐺𝑇𝑃
+ 2𝜀𝜌𝑇1 𝜌1) 𝑒 (𝑡) − 2𝑓𝑇𝐹𝐷𝑓𝑓 (𝑡) − 2𝑓𝑇𝐹𝐷𝑑𝑑 (𝑡)
+ 2𝑒𝑇 (𝑡) 𝑃 (𝐵𝑑 − 𝐻𝐷𝑑) 𝑑 (𝑡) .

(63)

Now, define the following performance index:

𝐽3 = ∫∞

0
𝑒𝑇 (𝑡) 𝑒 (𝑡) 𝑑𝑡 − 𝛼2 ∫∞

0
𝑑𝑇 (𝑡) 𝑑 (𝑡) 𝑑𝑡

= ∫∞

0
[𝑒𝑇 (𝑡) 𝑒 (𝑡) − 𝛼2𝑑𝑇 (𝑡) 𝑑 (𝑡) + 𝑉̇3 (𝑡)] 𝑑𝑡

− 𝑉1 (𝑡)󵄨󵄨󵄨󵄨𝑡 + 𝑉3 (𝑡)󵄨󵄨󵄨󵄨𝑡=0
(64)

Since under zero initial condition and ℎ̂(0) > ℎ and𝑉1(𝑡)|𝑡=0 = 0, 𝑉1(𝑡) ≥ 0 for all 𝑡. Thus,

𝐽3 < ∫∞

0
[𝑒𝑇 (𝑡) (𝑃 (𝐴 − 𝐻𝐶) + (𝐴 − 𝐻𝐶)𝑇 𝑃

+ 𝑃𝐴𝑑𝐴𝑇
𝑑𝑃 + 𝑄 + 𝜀−1𝑃𝐺𝐺𝑇𝑃 + 2𝜀𝜌𝑇1 𝜌1 + 𝐼) 𝑒 (𝑡)

− 2𝑓𝑇𝐹𝐷𝑓𝑓 (𝑡) − 2𝑓𝑇𝐹𝐷𝑑𝑑 (𝑡) + 2𝑒𝑇 (𝑡) 𝑃 (𝐵𝑑
− 𝐻𝐷𝑑) 𝑑 (𝑡) − 𝛼2𝑑𝑇 (𝑡) 𝑑 (𝑡)] 𝑑𝑡

(65)

which can be rewritten as

𝐽3 < ∫∞

0

[[[
[

𝑒 (𝑡)
𝑓 (𝑡)
𝑑 (𝑡)

]]]
]

𝑇

Ξ1 [[[
[

𝑒 (𝑡)
𝑓 (𝑡)
𝑑 (𝑡)

]]]
]
𝑑𝑡, (66)

where

Ξ1 = [[[
[

𝑃 (𝐴 − 𝐻𝐶) + (𝐴 − 𝐻𝐶)𝑇 𝑃 + 𝑃𝐴𝑑𝐴𝑇
𝑑𝑃 + 𝑄 + 𝜀−1𝑃𝐺𝐺𝑇𝑃 + 2𝜀𝜌𝑇1 𝜌1 + 𝐼 0 (𝐵𝑑 − 𝐻𝐷𝑑)𝑇 𝑃

0 −𝐹𝐷𝑓 −𝐷𝑇
𝑑𝐹

𝑃 (𝐵𝑑 − 𝐻𝐷𝑑) −𝐷𝑑𝐹 −𝛼2𝐼
]]]
]

(67)

From (57), one has Ξ1 < 0. Therefore, 𝐽3 < 0 with ‖𝑒‖2 <𝛼‖𝑑‖2. If

Ξ󸀠1 = [[[[
[

𝑃 (𝐴 − 𝐻𝐶) + (𝐴 − 𝐻𝐶)𝑇 𝑃 + 𝑃𝐴𝑑𝐴𝑇
𝑑𝑃 + 𝑄 + 𝜀−1𝑃𝐺𝐺𝑇𝑃 + 2𝜀𝜌𝑇1 𝜌1 + 𝐼 0 0

0 −𝐹𝐷𝑓 0
0 0 −𝛼2𝐼

]]]]
]

< 0. (68)
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holds, then, 𝑉̇3 < 0 under the condition 𝑑(𝑡) = 0. Obviously,
if (57) holds, then (68) holds. Therefore, system (56) is
asymptotically stable.

The proof is completed.

Remark 12. Because of the existence of unknown distur-
bances, from the fault detectionmechanism (54), the adaptive
laws can be redesigned as

̇̂𝑓 = 𝑃 {−𝜂−1𝑓 Γ𝐹𝑒𝑦 (𝑡) 𝐷 [𝑒𝑦 (𝑡) , 𝐽 (𝑡)]} , (69)

where the dead-zone operator𝐷[⋅] is defined by

𝐷[𝑒𝑦 (𝑡) , 𝑟 (𝑡)] = {{{
0, ‖𝐽 (𝑡)‖ ≤ 𝐽th
𝑒𝑦 (𝑡) , ‖𝐽 (𝑡)‖ > 𝐽th, (70)

where 𝐽th = 𝛾𝑑‖𝑑(𝑡)‖2 = 𝛾𝑑𝑆.
Remark 13. If there exist two known constants𝑓min,𝑓max such
that 𝑓min ≤ |𝑓(𝑡)| ≤ 𝑓max, then the fault 𝑓(𝑡) can be modeled
in the following form:

𝑓 (𝑡) = 12 (𝑓max − 𝑓min) (1 − tanh 𝜃) + 𝑓min, (71)

where 𝜃 is an unknown constant. Thus, estimating the fault𝑓(𝑡) consists in estimating 𝜃; that is to say
̇̂𝑓 (𝑡) = 12 (𝑓max − 𝑓min) (1 − tanh ̇̂𝜃) + 𝑓min (72)

which prevents the phenomenon of parameter drift in the
presence of bounded disturbances and ensures 𝑓min ≤|𝑓(𝑡)| ≤ 𝑓max.

4. Simulation Results

Consider the following time-delayed nonlinear system:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐴𝑑𝑥 (𝑡 − 𝑑) + 𝐵𝑢 (𝑡)
+ 𝐺𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − ℎ)) + 𝐵𝑓𝑓 (𝑡) + 𝐵𝑑𝑑 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷𝑢 (𝑡) + 𝐺𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − ℎ))
+ 𝐷𝑓𝑓 (𝑡) + 𝐷𝑑𝑑 (𝑡) ,

𝑥 (𝑡) = 0, 𝑡 ∈ [−ℎ, 0] ,

(73)

where

𝐴 = [−1.2 0.1
−0.1 −1.0] ,

𝐴𝑑 = [−0.6 0.7
−1.0 −0.8] ,

𝐵 = [ 0
0.2] ,

𝐶 = [1 0
0 1] ,

𝐷 = 0,
𝐺 = [0.1 0.3

0.2 0.5] ,

𝐵𝑓 = [ 0.7 0
−0.5 0] ,

𝐵𝑑 = [0 1.0
0 0.2] ,

𝐷𝑓 = [0 −0.4
0 0.8 ] ,

𝐷𝑑 = [1.5 0
0.2 0] ,

𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − ℎ)) = sin 0.2𝑥 (𝑡) + sin 0.1𝑥 (𝑡 − ℎ) ,
ℎ = 0.5 s,
𝑑 = 0.1 sin 𝑡.

(74)

FromTheorem 6, by solving LMI (19), one has

𝑃 = [0.6248 0.0610
0.0610 0.4262] ,

𝑄 = [ 1.1752 −0.1434
−0.1434 1.4028 ] ,

𝑍 = [0.8685 0.0672
0.0672 1.8887] ,

𝑌 = [0.8536 −0.5914
0.2573 1.9270 ] ,

𝛼min = 0.6391.

(75)
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Furthermore, we obtain the observer gain matrix 𝐻 and the
residual weighting matrix 𝑉,

𝐻 = [1.3259 −1.4076
0.4140 4.7225 ] ,

𝑉 = [0.9315 0.0291
0.0291 1.3740] .

(76)

In this study, 𝜀, 𝜌1, 𝜌2 are selected as [16, 18]

𝜀 = 0.1,
𝜌1 = [0.2 0.1

0.3 0.2] ,

𝜌2 = [0.1 0.2
0.3 0.1] .

(77)

By usingTheorem 11, we obtain the solutions of LMI (35) with𝑃1, 𝑃2, 𝑄1, 𝑄2, 𝑉, 𝑌 and minimal 𝛾min, respectively, as follows:

𝑃1 = [ 24.0724 −12.6296
−12.6296 10.7939 ] ,

𝑄1 = [44.0436 2.0634
2.0634 71.8486] ,

𝑃2 = [29.9378 8.3931
8.3931 16.0890] ,

𝑄2 = [64.3589 17.5958
17.5958 67.3153] ,

𝑉 = [ 0.4468 −0.0364
−0.0364 0.0128 ] ,

𝑌 = [35.0527 28.7520
28.7520 78.3480] ,

𝛾min = 0.6402.

(78)

Then, one has the observer gain matrix𝐻:

𝐻 = [4.2442 12.9558
5.3140 22.4176] . (79)

In this paper, to illustrate the effectiveness of the proposed
algorithm, two fault cases are considered: abrupt fault case
and incipient fault case.
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Figure 1: Fault signal 𝑓(𝑡).
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Figure 2: Generated residual 𝑟(𝑡).

4.1. Abrupt Fault Case. In this case, fault𝑓(𝑡) = [𝑓1(𝑡), 𝑓2(𝑡)]𝑇
is defined in following form:

𝑓1 (𝑡) =
{{{{{{{

0, 0 ≤ 𝑡 ≤ 3
0.5, 3 < 𝑡 ≤ 8
0, 𝑡 > 8,

𝑓2 (𝑡) =
{{{{{{{

0, 0 ≤ 𝑡 ≤ 3
0.4, 3 < 𝑡 ≤ 8
0, 𝑡 > 8.

(80)

The fault signal 𝑓(𝑡) and the generated residual signals𝑟(𝑡) (including 𝑟1(𝑡) and 𝑟2(𝑡)) are shown in Figures 1 and
2, respectively. Figure 3 shows the evolution of residual
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Figure 3: Evolution of the residual evaluation function ‖𝑟(𝑡)‖.
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Figure 4: Fault signal 𝑓(𝑡).

evaluation function ‖𝑟(𝑡)‖, from which the fault can be
detected.

4.2. Incipient Fault Case. As pointed out in [18], in many real
physical systems, the fault evolves slowly. In this case, the fault𝑓(𝑡) is assumed to be an incipient fault, which is shown in
Figure 4. The generated residual signals 𝑟(𝑡) (including 𝑟1(𝑡)
and 𝑟2(𝑡)) and the evolution of residual evaluation function
are illustrated in Figures 5 and 6, respectively.

5. Conclusions

In this paper, the problem of fault detection and estimation of
nonlinear time-delayed systems with constant but unknown
state time-delay is studied. A new fault detection filter with
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Figure 5: Generated residual 𝑟(𝑡).
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Figure 6: Evolution of the residual evaluation function ‖𝑟(𝑡)‖.

adaptation to the time-delay is proposed. Then, a reference
residual model is introduced to formulate the robust fault
detection filter design problem as an 𝐻∞ model-matching
problem. A novel robust adaptive fault estimation algorithm
is proposed where the time derivative of the output errors
has not been computed. In addition, applying a robust 𝐻∞

optimization control technique, sufficient conditions for the
existence of the fault detection filter are derived in terms of
LMI. In future, we will consider the fault diagnosis and fault
tolerant control of actuators and sensors when both the input
and the state are time-delay.
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