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In petroleum exploration, the acoustic log (DT) is popularly used as an estimator to calculate formation porosity, to carry out
petrophysical studies, or to participate in geological analysis and research (e.g., tomap abnormal pore-fluid pressure). But sometime
it does not exist in those old wells drilled 20 years ago, either because of data loss or because of just being not recorded at that time.
Thus synthesizing theDT log becomes the necessary task for the researchers. In this paper we propose using kernel extreme learning
machine (KELM) to predict missing sonic (DT) logs when only common logs (e.g., natural gamma ray: GR, deep resistivity: REID,
and bulk density: DEN) are available. The common logs are set as predictors and the DT log is the target. By using KELM, a
prediction model is firstly created based on the experimental data and then confirmed and validated by blind-testing the results in
wells containing both the predictors and the target (DT) values used in the supervised training. Finally the optimal model is set up
as a predictor. A case study for wells in GJH survey from the Erdos Basin, about velocity inversion using the KELM-estimated DT
values, is presented. The results are promising and encouraging.

1. Introduction

Oil and gas exploration in sedimentary basins is very compli-
cated, since all the targets are buried underground and they
cannot be viewed or touched directly. So all the properties for
the buried targets have to be predicted or estimated by using
modern electrical or magnetic tools. The physical properties
of the geologic formations include pore-fluid pressure, rock
lithology, porosity, permeability, and oil or water saturation.
Nowadays the conventional tool for characterizing these
geophysical properties is well logging, and some logs such
as gamma ray (GR), dual induction log, formation density
(DEN) compensated, deep resistivity (REID), self-potential
(SP), and sonic log (DT) are usually recorded. Among them,
the sonic log (DT) has largely been used to predict rock
porosity, to perform petrophysical analysis, or to carry out
well-to-seismic inversion.

Owing to historical operation mistakes or recording loss,
the sonic log may not be available in well logging suites. The
traditional way solving this problem is to transform the DEN
or REID log to DT log based on some experimental formula

built between these logs. It might be feasible for some area,
but sometimes the errors are unacceptable.

Artificial intelligence techniques have the advantage
in connecting unrelated parameters and solving nonlinear
problems. Such techniques, including BP neural network,
fuzzy reasoning, or evolutionary computing for data anal-
ysis and interpretation have become effective tools in the
workflow for well drilling and reservoir characterization
[1–10]. However, traditional neural networks have many
known drawbacks in the learning process, such as multiple
local minima, slow learning speed, and poor generalization
performances [11].

Extreme learningmachine (ELM) is a single-hidden layer
feed-forward neural network (SLFN) proposed by Huang et
al. [12, 13]. The ELM approach to training SLFN consists in
the random generation of the hidden layer weights, followed
by solving a linear system of equations by least-squares for
the estimation of the output layer weights. This learning
strategy is very fast and gives good prediction accuracy.
Theoretically and practically, this algorithm can produce
good generalization performance in most cases and can
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learn thousands of times faster than conventional popular
learning algorithms for feed-forward neural networks [14]. A
lot of real-life applications [15–18] have already demonstrated
advantages of using basic ELM.A kernel-based ELM (KELM)
has also been developed lately [19], where the hidden layer
feature mapping is determined by the kernel matrix. In this
version, only the kernel function and its parameters are
needed to be defined; the number of hidden nodes is not
required. With the use of kernel function, KELM is expected
to achieve better generalization performance than basic ELM.
Furthermore, as randomness does not occur in KELM, the
chance of result variations could be reduced [20].

In this paper, kernel-based extreme learning machine is
used to predict missing sonic (DT) logs when only common
logs (e.g., natural gamma ray—GR, bulk density—DEN, or
deep resistivity—REID) are available. By using KELM, we
first create and train a supervised network model based on
experimental data and then confirm and validate the model
by blind-testing the results. The optimal model is at last
applied to wells containing the predictor data but with lack
of DT log. We use this workflow in GJH survey from Erdos
Basin and the KELM-estimated DT logs are then integrated
in the seismic inversion to identify the sandstone reservoir.

The rest of this paper proceeds as follows. Section 2 gives
a short review of ELM and KELM. Section 3 describes the
experiments using KELM, including the data preparation,
parameter selection, andmodel validation. Section 4 gives the
prediction application in GJH survey. Finally, Section 5 gives
the conclusion of this work.

2. Methodology

In this study, the kernel extreme learningmachine (KELM) is
employed to predict the DT logs for the wells in GJH survey.
So we present an overview of the ELM and kernel-based ELM
as follows.

2.1. ELM. The classical ELM was proposed for SLFNs by
Huang et al. [12, 13]. Different from BP network, the input
weights and biases of ELM are randomly assigned and need
not be fine-tuned within the training phase, and the output
weights can be determined analytically by finding the least-
square solution. The prediction of ELM is given by

𝑓𝐿 (x) =
𝐿

∑
𝑖=1

𝛽𝑖h𝑖 (x) = h (x)𝛽, (1)

where 𝛽 = [𝛽1, . . . ,𝛽𝐿]𝑇 is the weight vector connect-
ing the hidden node and the output nodes and h(x) =
[h1(x), . . . , h𝐿(x)]𝑇 is the output of the hidden layer with
respect to the sample x. Since the weights and biases are
initially assigned for the hidden layer, when the activation
function is set, h(x) is determined and need not be tuned.
And the only unknown parameter is 𝛽, which can be solved
as constrained optimization problem:

Minimize: 󵄩󵄩󵄩󵄩H𝛽 − 𝑇󵄩󵄩󵄩󵄩𝛼1𝑝 + 𝐶
2
󵄩󵄩󵄩󵄩𝛽󵄩󵄩󵄩󵄩𝛼2𝑞 , (2)

where𝐶 is control parameter for a tradeoff between structural
risk and empirical risk, 𝑇 is the target output for the network.

And when 𝑝, 𝑞 = 𝐹 and 𝛼1, 𝛼2 = 2, a popular and efficient
closed-form solution for 𝛽 is

𝛽 = {{
{
H𝑇 (𝐶I +HH𝑇)−1 𝑇 𝑁 ≥ 𝐿
(𝐶I +HH𝑇)−1H𝑇𝑇 𝑁 ≤ 𝐿

(3)

2.2. KELM. As proposed in Huang et al. [19], if h(⋅) is
unknown, that is, an implicit function, one can applyMercer’s
conditions on ELM and define a kernel matrix for ELM that
takes the form

KELM = HH𝑇 :
KELM𝑖,𝑗 = h (x𝑖) ⋅ h (x𝑗) = k (x𝑖, x𝑗) ,

(4)

where k(x𝑖, x𝑗) is a kernel function. Many kernel functions
can be used in kernel-based ELM, such as linear, polynomial,
and radial basis function, so that we can obtain the kernel
form of the output function as follows:

𝑓𝐿 (x) =
[[[[
[

k (x, x1)
...

k (x, x𝑁)

]]]]
]
(𝐶I + KELM)−1 𝑇 (5)

Similar to the SVM, h(x) need not be known; instead,
its kernel can be provided (e.g., Gaussian kernel k(u, v) =
exp(‖u−v‖2/𝜎)).The optimal penalty parameter𝐶 and kernel
width 𝑠 are determined by try and error way. Node number
of the hidden layer 𝐿 need not be available beforehand
either. The experimental and theoretical analysis of Huang
et al. showed that KELM produces improved generalization
performance over the SVM/LS-SVM [21].

For the given type of the kernel function, the training
dataset, and the initial parameters of the network, the
following steps are considered.

Step 1. Initiate the population based on the kernel function.

Step 2. Evaluate the fitness function of each parameter.

Step 3. The optimal parameters of kernel function can be
determined. Then, based on the optimized parameters, the
hidden layer kernel matrix is computed.

Step 4. Determine the final output weights.

3. Experimental Study

3.1. Problem Description and Related Work. Well logging is
the practice of making a detailed record of the geologic
formations penetrated by a borehole. Normally the log is
based on the physical measurements made by instruments
lowered into the borehole. According to the geophysical
properties of the rocks, the logs are always classified as
follows: electrical logs, porosity logs, lithology logs, and
miscellaneous logs. Sonic log (DT) belongs to the porosity
logs, and it provides a formation interval transit time, which
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typically varies lithology and rock texture, especially porosity
for the rocks. Gamma ray log is a log of the natural
radioactivity of the formation along the borehole, measured
in API units, particularly useful for distinguishing between
sands and shales in a siliciclastic environment.This is because
sandstones are usually nonradioactive quartz, whereas shales
are naturally radioactive due to potassium isotopes in clays
and adsorbed uranium and thorium.

The main datasets used in this study include acoustic log
(DT), the gamma ray (GR), the resistivity log (REID), which
represents the variation of the electric resistivity, the density
(DEN), which records the density variation with depth in
the borehole, and the self-Potential (SP), a measurement
of natural electric potential. These geophysical parameters
DT, GR, REID, DEN, and SP are intrinsically linked, since
each of them reflects some physical property of the same
rock layer. Take sandstone as an example. Pores are sure
to exist at the sandstone interval, and if the pores are not
filled with other types of tight materials, fluid is the only also
important stuffing. There might be oil or gas and water as
well. Since the fluid has different physical parameters than the
surrounding sandstone, obvious differences will be recorded
on the measuring logs: lower GR, lower DT, higher REID,
lower DEN, and abnormal change on SP. Thus just observing
the characters of the logs, especially those abnormal changes,
the experienced researchers have confidence to tell the
geological information along the borehole. And then some
researchers try to build theoretical relationships between the
logs.Thousands of experiments result in empirical equations.
For example, DEN could be transformed using DT log when
DEN is missing and the relation is defined as Gardener
formula [6]:

DEN = 𝛼DT−𝛽, (6)

where, 𝛼, 𝛽 are the coefficients and their values are up to the
core tests for the studied area.

In this study, the key we focus on is the DT log, and we
want to find the optimal way to get the DT log when it is
missing.

The sonic log (DT) is very important in petroleum
exploration phase. One way for using DT is to estimate rock
porosity, which is the critical parameter for the reservoir
evaluation, and identify the fluid information along the bore-
hole. Additionally, since DT log has both time and velocity
information, it becomes the reliable key for the time-depth
conversion when using seismic data to interpret structures
and geologicalmapping. In oneword, theDT log is indispens-
able for the geophysical and geological study.

But there has always been imperfection, and sometimes,
owing to operation mistake or recording loss, DT log may
not be available in some wells. One solution for obtaining
the DT log is to carry out empirical transformation from
other logs, and the model is built by experiment analysis.
The formula is just for specific field condition, and it can
not be used for all the formation conditions. For instance,
Faust formula is just for DT calculation using REID log, and
cases [7] have shown that the formula is not suitable when
fluid exits in the formation. So another study to synthesize

missing DT is to use soft-computing methods, such as
artificial neural network, gene expressing programming, and
fuzzy reasoning. ANN (artificial neural network) has been
frequently used in petrophysical properties estimation, and
results show satisfied performances when choosing proper
models and parameters [8, 9, 16]. The most important
property of ANNs is their ability to approximate virtually any
function in a stable and efficient way. By using ANNs, it is
possible to create a platform on which different models can
be constructed. Baziar et al. [22] tested coactive neurofuzzy
inference system which combines fuzzy model and neural
network in permeability prediction in a tight gas reservoir
and gained convincing results.

Since DT has intrinsic links with the other geophysical
logs, researchers often use logs like GR, REID, and so forth
as the original inputs and the DT as outputs. Linear and
nonlinear relationships have been set up using the soft-
computing methods. But the results are not always satisfied.
Thus our purpose is to build an optimal and reliable relation-
ship between those geophysical logs and DT log.

In this paper, we investigate the capability of a kernel
extreme learning machine in building the nonlinear math-
ematical model that best explains DT (target) as a function of
GR, REID, DEN, and SP (predictors).

3.2. Data Preparation. In order to validate the use of KELM
in the context of log data recorded in oil and gas wells, we
employed datasets obtained from seven wells drilled in the
GJH survey in Erdos Basin.

The study involves the following well logging parameters:
gamma ray (GR), deep resistivity (REID), self-potential (SP),
formation density (DEN), and sonic log (DT). Among the
wells, wells of YQ2, Y209, S211, S212, and S215 have full suites
ofwell logs, whileDT log is not available in the other twowells
(S219 and S205). According to the evaluation conclusion for
the logging process, we choose the farther four wells as train-
ing dataset sources andwell S215 as the testing dataset. Shanxi
group of the Permian formation is set as the analysis interval.
Logs of GR, REID, SP, DEN, and DT in the interval from the
mentioned four wells are collected and grouped as training
dataset, while logs of well S215 as the validation target.

Figure 1 is the example of logs showing of well YQ2 in
the Shanxi group of Permian formation ranging from 2700
to 2798 meters. The lithology includes sandstone, mudstone,
and thin coal layer, and it is easy to differentiate them from
the GR log. Coal layer has very low GR and DEN response
and abnormal high DT and REID. Thus, for the same type
of rocks, these logs have close geophysical link, which is the
foundation for DT prediction using these logs.

We select data in the same interval from the four wells of
YQ2, Y209, S210, and S212 as the training samples. To ensure
the quality of the logs, we use caliper log (CAL) as the refer-
ence. Constant diameter of the wellbore (described by CAL)
means good environment for the other suite of logs. Totally
about 40,000 data items are available for the training process.

To speed up the convergence of the gradient descent algo-
rithm, data normalization is mandatory for the performance.
And the above-mentioned logs have different measurement
units. All of the logs are normalized before formally inputting



4 Journal of Electrical and Computer Engineering

2720

2740

2760

2780

D
ep

th
 (m

)
2700

us/m API g/cc

Shanxi
group

DT

100 300 500

GR

0 100 200

REID

10 100 1000

RHOB

1 2 3

SP

0 10 20 30−10

oh·m

Figure 1: Logs showing of well YQ2 in the Shanxi group of Permian formation.
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Figure 2: Example of multi-input versus single-output sonic log
prediction using KELM. Details about the well logging parameters
depicted in the figure are given in text.

into the network. The normalized variable has the following
form:

𝑋new = 𝑋old −min𝑋
max𝑋 −min𝑋, (7)

where 𝑋 stands for logs of GR, AC, DEN, REID, and SP. The
new normalized variable𝑋new takes the range from 0 to 1 for
all the parameters.

In KELM network learning, the output model is created
by learning patterns from the training examples provided.
Therefore, the training dataset should be carefully chosen
in order to provide correct examples. And noise should be
removed from the samples; otherwise errors may affect the
final performance.

3.3. KELM Model Training. For the KELM network model,
there are totally four input neurons and one target at the
output layer. The four inputs include GR, REID, SP, and
DEN logs, and the main task is to build reliable prediction
model between these inputs logs and DT log (shown as
Figure 2). Gaussian radial basis kernel function is used
because it usually produces good results and outperforms
other functions for regression.

In the algorithms of KELM, two hyperparameters,
namely, the regularization factor (𝐶) and the basis width

parameter of the kernel function (𝑠2), are necessary. To
select the best values for these hyperparameters, leave-one-
out cross-validation (LOOCV) is usually applied [9]. In the
preliminary experiment, the KELM model achieves the best
performance when the values of 𝐶 and 𝑠 are set to (10, 1), so
these values are finally chosen in our experiment.

The quality of the trained model is evaluated based on
the prediction accuracy. The Mean Squared Error (MSE) is
computed as the average over all squared deviations of the
predictions from the real values.

After training, the model could be presented in the
following form:

𝑌 = [[
[

𝐾 (𝑋, 𝑥1)
⋅ ⋅ ⋅

𝐾 (𝑋, 𝑥𝑛)
]]
]
𝛽, (8)

where 𝐾(∗) is the Gaussian radial basis kernel function, 𝑛
is the number of training data, and 𝛽 is the trained weight
matrix of the model based on the training data. By providing
unseen input data 𝑋 to the model, the corresponding model
output 𝑌 can be predicted.

Furthermore, in order to testify the advantages of KELM,
BP network algorithm is used in the model training and
testing process to compare with KELM. Backpropagation
(BP) feed-forward network is themost commonly used ANN
approach, and it is also criticized on its difficulty to decide
learning rates, being easy to be stuck on local minimums,
overfit problems, and being time-consuming [11].

Table 1 shows the results on testing data. Accuracy, MSE,
and training time are three factors in comparison, and the
values are obtained by averaging estimations of the samples
in well YQ2. The table shows the accuracy, Mean Squared
Error (MSE), and total time in seconds for the two processing
approaches, respectively. Best results are achieved by KELM
with an accuracy of 0.906,mean absolute error of 0.423%, and
fast learning speed (23 seconds).
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Table 1: Comparison of porosity prediction performance results on
KELM against BPmethodology for well YQ2.The comparison strata
belong to the Shanxi group of the Permian formation.

Algorithm Accuracy MSE (%) Training time (s)
BP 0.752 1.812 912
KELM 0.906 0.423 23

3.4. KELM Model Validation and Prediction. Through the
above-mentioned training process, the KELM model for
predicting DT is established finally. Although the training
dataset has almost 40,000 data points, the training task costs
very short time and the performance is satisfying. To validate
the KELM model, we use well S215 as blind well. The four
logs are collected and processed for the well, and then we
input them into the model and keep the network parameters.
Since the data for validation is small group with nearly 6000
samples, the process only costs 6 seconds and one predicted
DT is generated. In well S215, there has been DT log, so that
the predicted DT can be used in comparison with the real
DT. Figure 3 shows the comparison result.The curve with the
red color is the predicted one from KELM model, and the
curve with the blue color stands for the recorded DT log. It
is easy to see that the total changing trend and the finest part
are almost the same; thus the model is qualified in this study
and is reliable to be a predictor.

In this study,DT log ismissing in the twowells of S219 and
S205. Here the KELMmodel is then recommended to do the
prediction task for the two wells. Luckily, the four input logs
(GR, REID, DEN, and SP) are guaranteed in both of the wells.
Using the same noise-filtering and normalization step in the
training and validating step, we firstly input the four predictor
logs of well S219 into the model and generate DT log for this
well. And then we repeat the steps for the well S205 and also
get the DT log. Figure 4 shows the predicted DT log for well
S219 in the Shanxi group of Permian formation.

4. KELM-Estimated DT Application

The above analysis has shown the reliability and accuracy of
the KELM-based prediction model. All of the 7 wells in the
studied area have DT logs now, although two of them are
generated using KELMmodel.

In reservoir description phase, seismic profiles are just
wiggle-based and not so convenient for researchers to under-
stand and identify the potential fluid zone.Thus transforming
the wiggle shape of seismic sections into velocity or litholog-
ical profiles are the necessary step in seismic interpretation.
That goal of transformation in geophysical process is the
seismic inversion. Since DT log has time unit and velocity
information, while seismic data is just in time unit, in the
inversion task, DT can be used to do the well-to-seismic
calibration and mark the reservoir interval. Here we just
focus on the KELM-estimated DT application in the seismic
inversion other than discussing the complex inversion tech-
nique.

Figure 5 shows part section of the seismic inversion
result for line 400 using the predicted DT log of well S205.
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Figure 3: Logs comparison in Shanxi group of Permian formation
in well S215.
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Figure 4: Estimated DT log using KELM model (colored in blue)
for S219.

The inversion result is colored, and the color stands for
the velocity change within the Permian formation. Warm
color of red and yellow is the high velocity area, while the
cold color of green and blue is the relatively low velocity
area. Since the rocks within the interval have the difference
in velocity reference, the color changes can be viewed as
the lithology component difference. Normally sandstone
has higher velocity than mudstone, and coal layer has the
lowest velocity character.Therefore warm color in the section
represents the sandstone area, while the pure blue color is the
index of coal layer. So when interpreting the inversion result
with the geological reference, we may divide the interval into
three parts: the upper part-I, which is mainly composed of
sandstone and mudstone and the farther is richer, the middle
part-II, with upper half-dominant coal layer and lower half-
dominant sandstone, and the lower part-III, which has almost
the same bedding principal as the middle part, with thinner
sandstone and coal layer. The estimated DT log is inserted
as color plot and the meaning of color ranges is the same as
the inversion section. It almost matches the section in color
resolution, and that is the normal phenomenon. DT log has
finer sample interval than the section, and, for the section,
more focus will be directed to the horizontal color difference
interpretation. The continuous horizontal color zones mean
a lot for the geologists and engineers.
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Figure 5: KELM-based inverted velocity section crossing well S205.

5. Conclusions

This paper discusses kernel extreme learning machine as a
tool for predicting the sonic log in gas/oil wells based on other
available common logs. Strict steps including data normal-
ization, training set selection, and optimization of the ELM
parameters are very important for deciding the prediction
power, the generalization capability, and the complexity of the
derived regression model. Extensive applications are carried
on to investigate the prediction power ofmodel-predictedDT
log use for seismic inversion.

Themethod presented here is not limited tomodelingDT
logs only. It can be extended, with appropriate modifications
of the algorithm, in any area of well logging studies, where
missing log values are needed. Thus, we offer a blueprint for
future similar applications.
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