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ABSTRACT
Fine-grained software configuration management offers sub-
stantial benefits for large-scale collaborative software devel-
opment, enabling a variety of interesting and useful fea-
tures including complexity management, support for aspect-
oriented software development, and support for communica-
tion and coordination within software engineering teams, as
described in [4]. However, fine granularity by itself is not suf-
ficient to achieve these benefits. Most of the benefits of fine
granularity result from the ability to combine fine-grained
artifacts in various ways: supporting multiple overlapping
organizations of program source by combining fine-grained
artifacts into virtual source files (VSFs); supporting coor-
dination by allowing developers to precisely mark the set
of artifacts affected by a change; associating products from
different phases of the development process; etc.

In this paper, we describe how a general aggregation mech-
anism can be used to support the various functionality en-
abled by fine grained SCM. We present a set of requirements
that an aggregation facility must provide in order to yield
these benefits, and we provide a description of the imple-
mentation of such an aggregation system in our experimen-
tal SCM system.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Evolution—Version Control ; D.2.9 [Software Engi-

neering]: Management—Software Configuration Manage-
ment ; D.2.3 [Software Engineering]: Coding Tools and
Techniques; D.2.6 [Software Engineering]: Programming
Environments—Programmers Workbench; K.6.3 [Management

of Computing and Information Systems]: Software
Management—Software Selection; H.3.3 [Information Stor-

age and Retrieval]: Information Search and Retrieval—
Retrieval models, search process, selection process
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1. WHY? MOTIVATING AGGREGATION
Managing software artifacts in a software configuration

management system is a fundamental part of modern soft-
mare engineering practices. Most SCM systems manage
software artifacts in terms of files, which are relatively coarse
grained entities. Adopting a finer granularity such as indi-
vidual methods or functions offers substantial benefits for
large-scale collaborative software development, particularly
in the areas of complexity management and communica-
tion/coordination support for software engineering teams,
as described in [4]. However, an SCM tool cannot produce
these benefits simply by adopting finer storage granularity.
Most of the benefits of fine granularity result from the ability
to combine fine-grained artifacts in various ways: support-
ing multiple overlapping organizations of program source by
combining fine-grained artifacts into virtual files; support-
ing coordination by allowing developers to precisely mark
the set of artifacts affected by a change; associating prod-
ucts from different phases of the development process, etc.

In the context of an SCM system, aggregation is a facil-
ity to allow the creation of versioned objects formed from
collections of other objects. For example, in a typical SCM
system, a directory is an aggregate object formed from a col-
lection of file objects. In a fine-grained system, aggregates
can be used to represent a wide variety of interesting rela-
tionships between collections of versioned artifacts. For ex-
ample, in figure 1, we illustrate two overlapping aggregates:
one representing a relationship between a UML interaction
diagram and the code artifacts that are participants in the
interaction; and the other representing a set of Z schema ar-
tifacts and the code implementing the operations specified
by the schema.

Fine granularity without aggregation support does have
value. With file-based SCM, all repository facilities (from
locks to version histories) operate at the file level and above.
In these systems, it is hard to assess the cost of integrat-
ing change-sets, file locking causes unnecessary bottlenecks
when several developers need access to different sections of a
given source file, and change histories for individual methods
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Figure 1: Aggregates representing versionable cross-

cutting relationships

and functions are difficult to generate (especially if methods
migrate between files over time). Fine-grained SCM can
help address all of these problems.

However, fine-grained SCM without aggregation also in-
troduces substantial complexities into a system. Experi-
mental data gathered using our current implementation in-
dicates that changing from file to method level granularity
increases the number of managed artifacts by one to two
orders of magnitude. To make fine granularity manageable,
especially given the resulting increase in the number of ar-
tifacts, both the SCM repository and related development
tooling must provide mechanisms that support sophisticated
aggregation functionality.

Our solution for these issues is based on the comprehen-
sive use of aggregates as first-order entities. We claim that
such reified aggregates enable a host of useful capabilities
that extend well beyond simply making SCM work better,
including:

• Multidimensional program organization,

• Support for distributed development,

• Linkage and relationship management for heteroge-
neous artifacts,

• SCM support for fragment-oriented technologies such
as aspect-oriented programming,

• Improved coordination support for collaborative devel-
opment, and

• Improved lifecycle and process support.

Details on how these features can be provided by a fine-
grained SCM system can be found in [4, 5]. In this paper,
we will describe the details of the aggregation system needed
to implement them.

2. WHAT? AGGREGATE REQUIREMENTS
As discussed earlier, aggregate support is required for

many distinct purposes. In order to properly support ag-
gregation within an SCM system, the aggregation mecha-
nisms must be carefully designed with all of these purposes
in mind. We have analyzed various applications of aggrega-
tion in fine-grained SCM and produced a set of requirements
for aggregate typing and generation and support for legacy
source code and tooling.

2.1 Aggregate Typing
Aggregates are used for purposes ranging from represent-

ing source-file-like collections of source code fragments to
providing high-level semantic interlinkages between artifacts
of many different kinds. The common thread between these
varied usages is that all rely on reifying a relationship be-
tween other artifacts as a first class artifact in its own right.
This basic principle dictates two primary requirements:

First and foremost, the aggregate system must support
a type mechanism that allows users to define relationships,
to define the types of artifacts that can fill a particular role
within a relationship, and to distinguish between aggregates
representing relationships of different types. ([?] has an
excellent discussion of role modeling and OOD.)

Second, the aggregate system needs to provide an extensi-
ble mechanism for defining how a given aggregate type inter-
acts with the versioning functionality of the repository. In
particular, the system must provide support for maintaining
the identity of the aggregate representing a particular rela-
tionship, and for defining how to handle a given aggregate
when overlapping changes are merged.

2.2 Aggregate Generation
The set of aggregates managed by the system is highly

dynamic, so there must be support allowing both developers
and tools to create and destroy aggregates as needed.

Based on published experiments with similar fine-grained
systems[25], it has been observed that developers frequently
create aggregates as an exploratory tool, and that most of
these are transient artifacts that will be discarded; however,
users often do not know whether a particular aggregate will
be valuable enough to preserve. Therefore, we believe that
the mechanism for aggregate creation should have the fol-
lowing properties:

1. The aggregate system must support both transient and
persistent aggregates;

2. The system must be able to generate transient aggre-
gates extremely quickly;

3. All aggregates should be created as transients;

4. It must be possible to rapidly and simply convert tran-
sient aggregates into persistent artifacts.

Furthermore, to take full advantage of the aggregate sys-
tem, and to support dynamic creation of interesting aggre-
gates, the SCM system needs some level of knowledge of the
semantics of atomic artifact types. For example, to create an
aggregate showing all of the methods related to a particular
program aspect, the system requires semantic knowledge in
order to identify code matching a predicate specifying the
aspect of interest.
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2.3 Externalization
Fine-grained program repositories provide a dramatically

different interface to software artifacts than that expected
by traditional programming tools. Programmers cannot be
expected to simply abandon their familiar editors, compil-
ers, debuggers, and profilers; further, it is unreasonable to
expect that all future tools will be implemented within the
fine-grained model. Therefore, we believe that the aggregate
system must provide support for generating external forms
of aggregate artifacts suitable for use by other software de-
velopment tools, and importing and extracting aggregates
from output produced by such tools.

These externalization and internalization mechanisms must
be integrated with the aggregate type system so that differ-
ent types of aggregates can each support external formats
that are appropriate for their contents.

3. HOW? AGGREGATION IN STELLATION
We have been building an experimental SCM system called

Stellation, which is based on the use of fine (method-level)
storage granularity. For Stellation, we have designed an ag-
gregate system meeting the requirements identified. The
system is based on a powerful typing mechanism for aggre-
gate objects, combined with an efficient search technique
that allows aggregates to be generated quickly and easily,
and with externalization support based on standard mech-
anisms.

3.1 Aggregate Typing in Stellation
The Stellation aggregate type system is a simple system,

resembling structure definitions in a language like ML, with
a defined aggregate merge algebra (An overview of the no-
tion of merge algebra can be found in [27] and [16]). An ag-
gregate type is a structure consisting of named fields, each of
which has a type. In addition, each field may be annotated
by a merge descriptor, which defines how that field will be
handled during a merge.

We will describe the type system in two parts. First,
we will describe the basic types and the mechanisms for
defining new types. Then, we will describe how annotations
allow developers to easily define merge operations that make
sense for their aggregate types.

3.1.1 Basic Types and Type Definitions
An aggregate type is similar to a structure type in a pro-

gramming language: it defines a collection of named fields,
each of which has a type. The types for a field can be a
primitive atomic type, a semantic atomic type, a collection
type, or a previously defined aggregate type.

The primitive atomic types are Integer, String (single line
text values), Text (arbitrary length text values), and Data
(arbitrary length binary data).

Semantic types are language dependent types added to the
system using extension components. Each semantic type
is a text or data artifact tagged with a constructor asso-
ciating that semantic type with a particular semantic ele-
ment of a programming language. For example, for Java
we have semantic types for package declarations, imports,
class/interface declarations and class members.

The built-in collection types are sets (for unordered col-
lections), and lists (for ordered collections). In addition, an
aggregate field can use the type of any previously defined
aggregate type.

aggregate java class { (a)
name : [conflict] String
package : [conflict] java package decl
imports : [union] java import decl
decl : [conflict] java class decl
members : [linear] java member List

}

aggregate java viewpoint { (b)
name : [conflict] String
description : [linear] Text
members : [dynamic] java member List

}

aggregate test case { ... } (c)

aggregate bug report { (d)
title : [conflict] String
severity : [largest] Integer
description : [conflict] Text
subject code : [dynamic] java member decl Set
test data : [union] test case Set

}

aggregate specifies relationship { (e)
specification : [union]Z fragment Set
implementation : [union]java member decl Set

}

Figure 2: Sample Aggregate Declarations

Figure 2 presents some examples of aggregate usage and
related aggregate type definitions with merge annotations
(described in the following section). (a) shows how the ag-
gregate mechanism can associate the set of artifacts compris-
ing a Java class declaration. (b) represents a Java viewpoint.
(c) and (d) show how an aggregate can associate a bug re-
port with a set of subject code and test data. (e) illustrates
how aggregates can represent relationships between hetero-
geneous artifacts — in this case, the relationship between a
set of program specifications and the source code that im-
plements the specified operations.

This type system provides a flexible way of defining new
kinds of aggregates that is adequate for expressing all of the
artifact types required by our aggregation facilities. It has
the useful property that types can never be cyclic (no type
declaration can reference any type that is not completely
defined), which supports clear, simple merge operations for
aggregates, as described in the following section.

3.1.2 Merge Annotations
Proper support for versioning of aggregates requires a

mechanism for merging concurrent changes to a particular
aggregate. The purpose of this system is not to define a per-
fect mechanism for merging changes: such a mechanism is
an impossibility. The intention is to provide an easy to use
mechanism that produces a good approximation of a valid
merge result, which developers then examine and modify to
produce the final result.

Our solution for defining merge operations is to allow de-
velopers to define field-wise merge behaviors in terms of
simple merge annotations. Each merge annotation is either
equivalent to a merge behavior definition in a traditional
merge algebra, or defines an easily computed value in terms
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Annotation Applicability Result
Base Generic b
Conflict Generic signal error
Latest Generic most recent of δ1 and δ2

Largest Integer max(δ1, δ2)
Smallest Integer min(δ1, δ2)
Linear Text or List common merge
Intersect Set δ1 ∩ δ2

Union Set δ1 ∪ δ2

DeltaSum Set (δ1 ∩ δ2) ∪ (δ1 − b) ∪ (δ2 − b)
Dynamic Set or List result of dynamic query

Table 1: Aggregate Merge Annotations

of the different cases entering the merge.
A merge operation is defined in terms of three versions

of an artifact: a base aggregate, and two modified artifacts
derived from the base. We enumerate and briefly define the
meanings of the annotations in Table 1. In the definitions,
b refers to the base version; δ1 refers to one of the mod-
ified versions, and δ2 refers to the other modified version.
A merge operation has two possible outcomes: a predicted
result value, and conflict, which is an indication that there
were concurrent changes that the system could not even at-
tempt to reconcile.

The linear merge in the table refers to a common merge
algebra based algorithm used to merge text files in most
SCM systems. We generalize this algorithm to work not
only on text merges, but on general ordered lists of values.

The DeltaSum merge operation is the set equivalent of the
linear algorithm for ordered lists. It first removes anything
that was removed in either delta, and then adds anything
that was added in either delta. We call it deltasum because,
intuitively, it is the result of adding the changes from the
two deltas.

The dynamic merge annotation indicates that the collec-
tion value of the field is computed using a dynamic query.
In this case, when an aggregate instance is created, a query
is associated with the field. When two versions of the aggre-
gate are merged, the field value is generated by recomputing
the value of the query. (We introduce dynamic queries in
section 3.2.) For dynamic merge, the merge result should
be generated by re-evaluating the query only if the query
expressions in δ1 and δ2 are the same; if not, we signal a
conflict. Dynamic merges are executed in type-definition
order, ensuring that the values a query operates on are de-
termined before that query is executed. (For a type T to
contain a field of type S, it must be true that S was defined
before T ; therefore, the values of artifacts of type S will have
been resolved before any artifacts of type T are merged.)

We selected this set of merge annotations with two criteria
in mind. First, we wanted to support merges for aggregate
fields that behaved as much as possible like the text merges
developers are familiar with (linear, deltasum); second, we
wanted to provide operators capable of merging semantic
aggregates without generating conflicts (union, intersection,
and again deltasum).

Our approach has two fundamental advantages over ex-
isting file-granularity merge algorithms:

1. Methods are atomic, therefore changes and merges are
presented in terms of semantically self-contained chunks
with clearly delimited context. There will never be
conflicts which cross method boundaries.

2. Many conflicts can be resolved automatically, and those
that cannot are often easier to deal with.

Conflicts frequently occur because of simple rearrange-
ments within a file or the addition or deletion of methods.
Because our system manages and presents source as aggre-
gates containing semantic fragments, the addition, deletion
or relocation of a method is shown as exactly what it is
and can often be resolved automatically. By contrast, when
such changes are viewed as line-bounded difference regions
(as with file-granularity merges), the loss of semantic con-
text makes such changes difficult to understand and conflicts
difficult to resolve.

Some examples of aggregate definitions with merge anno-
tations are shown in Figure 2.

3.2 Dynamic Aggregate Generation
As discussed earlier, we claim that for an SCM system

to fully deliver the benefits of fine granularity, that system
must support some mechanism by which users can easily and
rapidly search the repository for fragments that are likely el-
ements of an interesting aggregate, and then use those search
results either transiently or as a persistent versioned artifact.

In Stellation, the key to aggregate creation is a query lan-
guage. When the user wants to create an aggregate, she is
presented with a form. The form allows the user to enter
the values of fields, either as literal values (with UI assis-
tance to identify candidate for field values), or as dynamic
expressions that will be evaluated to produce the value of
the field.

In both cases, the developer will frequently use a query
mechanism to search the repository for relevant fragments.
If a field has a static artifact or artifact collection value, the
developer can use the query language to identify a set of
candidate artifacts, which can then be used to set the value
of the field. If the field is dynamic, the developer provides
a query which will be evaluated whenever a new version of
the aggregate is generated.

3.2.1 The Stellation Query Language
The Stellation query language was designed with the fol-

lowing goals in mind:

1. Expressiveness. Users should be able to express rea-
sonably complex predicates in order to generate the
appropriate set of aggregates.

2. Ease of use. The query language should be easy to
use and understand, and should be based on familiar
underlying concepts.

3. Efficiency. It should be possible to evaluate a query
and return the result quickly.

4. Incrementality. Once a query result is complete, it
should be easy to incrementally refine that result, by
modifying the query predicate and/or manually adding
and removing artifacts from the result.

5. Extensibility. It should be possible to add extensions
to the query language, and to allow the query engine
to be extended in ways that allow query extensions to
be executed as quickly as built-ins.

We have developed a language loosely based on the idea
of set comprehensions in a typed set theory. A query ex-
pression describes a set of program artifacts which should

102



be included, and may contain nested quantifiers and sub-
queries.

v is a java viewpoint aggregate
s is a specifies relationship aggregate

(1) Populate a java viewpoint aggregate
v.name = "type analysis"
v.description = ’code that analyzes types’
v.members = all x : java member |

x.name = ’analyzeTypes’ OR
(exists y : java member |
y.name = "analyzeTypes" AND y dependsOn x)

(2) Adding a specific fragment to a query:
v.members = v.members UNION { artifact(id=297) }

(3) Populate a specifies relationship for artifacts related
to a pre-selected schema S582. Assumes developer is
using UI to mark fragments which implement specs via
their ”implements” property
s.specification = { S582 } UNION

(all x : Z fragment| references(S582, x)
s.implementation = all x : java member |

x.implements = S582

Figure 3: Pseudocode examples using queries to

populate aggregates

The query language syntax is illustrated in Figure 3. The
set of types and predicates available depends on the pro-
gramming language extensions loaded by the system. The
query syntax shown is used by developers, but the field as-
signment syntax is not; rather, developers will typically use
a UI allowing them to build aggregates and queries using
both manually entered query clauses, and clauses generated
automatically by the system. For instance, in query (1),
the dependency clause would not be entered manually, but
would be appended by a UI action.

The query language structure makes it simple to augment
queries with clauses corresponding to the kinds of incremen-
tal updates that occur in typical systems. This is illustrated
by Figure 3, Example 2.

3.2.2 Implementing Queries Efficiently
The Stellation repository typically contains a large-to-

very-large number of artifacts. Because we use a finer arti-
fact granularity than file-based SCM systems, we typically
store almost two orders of magnitude more artifacts for a
given project, compared to a file-based system. However,
our system is also designed so that developers view code
through dynamically created aggregates. It is therefore cru-
cial to provide prompt query evaluation, even for a devel-
oper’s workspace containing an extremely large number of
artifacts.

Furthermore, like most SCM systems, Stellation stores all
artifacts in a central repository;and programmers typically
view a subset of their system in a workspace. In such an
environment, performing global analysis is extremely expen-
sive. In order for a search technique to meet our performance
requirements, analysis must be local and incremental.

To this end, we employ a query engine that incorporates
information retrieval (IR) techniques. Our approach is loosely
based on the keyword vector method of searching document
libraries, introduced by Gerald Salton in the SMART system
[24].

The keyword vector solution is an early IR technique based
on selecting a set of keywords likely to identify the subject
matter of a document. To generate an index, one searches
the document library and records the frequency of each key-
word in each document. For each document, a vector is
generated; each keyword is assigned a vector index. Thus,
each document is represented by a sparse multidimensional
vector defined by its contents.

Each query is likewise analyzed for the keywords it con-
tains, and a query vector is generated. The system then
searches the library by computing the cosine of the query
vector against each document vector. The result is known
as the cosine score for a document. Any document with a
cosine score within a given distance from 1 is considered as
a potential match. This mechanism typically creates an ex-
tremely small candidate set from a large initial document
set; the candidate set is then examined further to produce
the query result.

Our approach is based on this technique, modified to take
advantage of program code semantics. In classic IR, the
search texts are natural language documents, for which pre-
cise semantic information is difficult or impossible to gener-
ate. However, when the search texts are program source in a
given programming language, it is simple to extract and use
contextual semantic information. We apply this information
in three ways.

First, we can rely on precise matching; cosine scoring is
not necessary. With program source, both query and sum-
maries can be expressed precisely, without the need to han-
dle ambiguity. Second, in a program artifact, the set of
relevant index keywords is the set of non-local identifiers
referenced by the fragment. Finally, for program source, it
is possible to enumerate the specific usage of each referenced
identifier, and not simply its presence.

Applying these properties of program artifacts, we replace
the keyword vector with what we call a usage summary.
This comprises a list of the non-local identifiers contained
in the artifact, annotating each member with usage context
tags. (The analysis to generate a usage summary and the
precise set of usage tags is programming language depen-
dent, and is provided in our system by an extension compo-
nent.) As we will show in section 3.4.2, query performance
with this approach is much faster than with a conventional
IR approach.

Each query produces a candidate set of artifacts that are
potential elements of the resulting collection. For some
queries (e.g. queries with nested existentials), further anal-
ysis may be needed to determine if the candidate elements
are proper members of the result set.

For example, our Java component analyzes Java artifacts
for the following usage contexts, where x denotes an identi-
fier: Declaration (artifact contains a declaration of x), As-
signment (artifact contains an assignment to x), Use (ar-
tifact uses the value x), Call (artifact contains a call to a
method named by x), Target (artifact contains a call to a
method where x is the target of the invocation), Inherit (ar-
tifact contains an inheritance clause naming x).
Figure 4 gives a small example:

Stellation currently performs queries against a workspace:
a collection of program artifacts from the repository that
include at most one version of each managed artifact. The
workspace can access a table containing the full set of arti-
fact identifiers and usage summaries.
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The first step in query evaluation is normalization: we
require all queries to be in disjunctive normal form. This
is done using standard algorithms. Once the query is in
DNF, we generate a summary string for each conjunctive
sub-clause of the DNF query. Generating a summary string
is trivial: each usage class in the summary has an associated
query language predicate, and each reference to a predicate
generates an entry in the summary string.

For example, given the query “all x : JavaMember | x

defines foo AND x assigns bar”, the system would generate
a query summary of “{ foo(assigned),bar(assigned) }”.

Thus, for each query we get a set of query summaries, one
for each conjunctive clause in the DNF. We compare these
against the summary strings for each workspace artifact,
using IR vectors for the query expression and candidate ar-
tifacts. The IR vector for each candidate is then collapsed to
the dimensionality of the query. If the two resulting vectors
are identical, there is a potential match. All such matches
are then verified to produce the result.

An evaluation of the performance of this query mechanism
for aggregate generation is provided in section 3.4.2.

3.3 Aggregate Externalization
Externalization is the capability to take an aggregate ar-

tifact within a Stellation repository and translate it into a
form which can be used by external tools. There are two
key pieces to this process: export (take an aggregate within
the repository and translate it into its external form), and
import (take an externalized aggregate, and translate that
back into an internal form, generating a new version if the
aggregate was modified).

Our approach to externalization is based on the use of
standard XML tools. The XML community has done exten-
sive work on document transformation using XSLT[8] and
XML formatting objects[21]. We export all aggregates into
an XML format defined by an aggregate schema, and then
allow developers to use any XML tool they prefer to trans-
late the resulting document into a desired format. Import is
handled similarly; developers use external tools to translate
their external form back into the Stellation XML schema,
and the resulting document is reintegrated into the reposi-
tory. We plan to provide import/export tooling for several
common formats.

We expect that, to make round-trip operations work with
non-XML external formats, developers will use external forms
that include marker tags identifying the boundaries between
areas that should be translated into XML elements. Figure
5 presents one such external format. With these markers, it
is easy to write a script that translates from this format to

public void foo() {
x.bar(y);
int k = z;
bar(12, k);
bim(x);
x = bim(k);

}

Usage Summary: { bar(invoked), bim(invoked),
foo(declared), x(assigned,passed), y(passed), z(used) }

Figure 4: A simple code artifact and its usage sum-

mary

a simple XML format, which can be transformed back into
Stellation aggregate form using XSLT tools.

3.4 Evaluation
Evaluating Stellation’s aggregate support is difficult with-

out extensive user studies, which we have not yet had the op-
portunity to perform. However, we can informally evaluate
our system based on two criteria: the flexibility of the aggre-
gate mechanism applied to a variety of tasks, and the per-
formance of the aggregate generation mechanism on those
tasks.

3.4.1 Aggregate Flexibility
We assessed the flexibility of the aggregate system by ex-

amining a set of three moderate sized software projects im-
plemented in Java: JEdit[?] (a developers editor), Jakarta
Ant[?] (a build tool), and a distributed programming envi-
ronment developed at IBM Research called Manitoba. We
identified a set of tasks that we believe are typical uses for
aggregate facilities: program understanding, concern/aspect
identification, problem management, and linking specifica-
tions with program code.

We then considered how to conduct each task using Stel-
lation. Overall, our assessment is positive. For each task
area, it was easy to assemble aggregates that did an ade-
quate job. However, we did find that for some tasks, our
ability to easily produce uniform models was limited. We
will briefly describe our use and assessment of Stellation’s
aggregate facilities for each task area.

• Program Understanding and Concern Identifi-

cation. Here, we first selected an aspect of a subject
system that we wished to understand better, and then
generated transient aggregates using queries specified
to identify program artifacts likely to be related to
that aspect. For example, the menu generation pro-
cess in Manitoba is performed using a loosely coupled
contribution mechanism. Using the Stellation aggrega-
tion generation mechanism, we produced an excellent
approximation of the body of code involved in menu
contributions.

• Problem management. In this case, our objective
was to take selected bugs, and, for each, generate an
aggregate containing data for test runs that produced
the bug, along with a collection of code containing
likely locations for the bug. Our experience here was
mixed. On the positive side, our aggregation mecha-
nisms did provide a good way of selecting and manip-
ulating candidate program fragments for the bug. On
the negative side, we concluded that Stellation’s type
mechanisms were overly strict for this task. Sets of
test data are not homogeneous; we cannot build a sin-
gle aggregate containing collections of heterogeneous
type data while maintaining the ability to identify the
types of that test data.

• Linkage of code and specification. In this case,
our objective was to take formal specifications in Z,
and associate each specification schema with the col-
lection of code fragments that implement the specified
operations. Our experience here was positive. The pri-
mary issue is the difficulty of writing queries to auto-
matically identify program fragments that may be part
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<Aggregate type="java class" id="23">
<Field name="name">

<String>project.util.StringMap</String>
</Field>
<Field name="package">
<Semantic type="Text" label="java package decl" id="27">

package project.util;
</Semantic></Field>
<Field name="imports"><Set type="java import decl">

<Semantic type="text" label="java import decl" id="42">
import java.util.Map;

</Semantic>
<Semantic type="text" label="java import decl" id="43">

import java.util.HashMap;
</Semantic>

</Set></Field>
<Field name="decl">

<Semantic type="Text" label="java class decl" id="29">
class StringMap implements Map extends HashMap

</Semantic></Field>
<Field name="members"><List type="java member">

<Semantic type="text" type="java member" id="48">
public void putString(String key, String value) {
... }

</Semantic>
<Semantic type="text" type="java member" id="49">

public void getString(String key) { ... }
</Semantic>

</List></Field>
</Aggregate>

(a) Java Aggregate XML Form

package project.util;

import java.util.Map;
import java.util.HashMap;

/*+id=29*/
class StringMap implements Map extends HashMap {
/*+id=48*/
public void putString(String key, String value) {
... }
/*+id=49*/
public void getString(String key) { ... }

}
/*+AGGINFO
<Aggregate type="java class" id="23">
<Field name="name" type="String"

value="project.util.StringMap"/>
<Field name="package" type="java package decl">

package project.util
</Field>
<Field name="imports" type="java import decl Set">

<member id="42">import java.util.Map</member>
<member id="43">import java.util.HashMap</member>

</Field>
<Field name="decl" type="java class decl" id="29"/>
<Field name="members" type="java member List">

<memberref id="48"/>
<memberref id="49"/>

</Field>
</Aggregate> */

(b) Java Aggregate Java Source form

Figure 5: An Example of Stellation externalization

of a given operation implementation. We judged this
a minor issue, because in specification-driven design,
we know in advance exactly which program fragments
should be associated with each specification fragment.

3.4.2 Aggregate Generation Performance
In order to evaluate the performance of aggregate gener-

ation, we selected a set of interesting queries used in the
program understanding task from the previous section, op-
erating over Jakarta Ant. We executed those queries over a
Stellation repository containing the Jakarta Ant code using
three different strategies:

1. Baseline Strategy. This technique knows the name
of each repository artifact and uses knowledge of name
encodings to reduce the candidate set. For each arti-
fact in the candidate set, it then retrieves and analyzes
the artifact to determine if there is a match. This al-
gorithm is extremely inefficient, but is presented here
to illustrate the impact of applying IR to this problem.

2. Keyword Strategy. This technique is the common
vector-based information retrieval strategy, using an
artifacts non-local identifiers as the indexed keyword
set. It maintains an index of all non-local identifiers
referenced within a fragment, and uses this keyword
index to reduce the candidate set. For each item not
disqualified using either name-encoding information or
the keyword index; the associated artifact is then fetched
and analyzed to determine if there is a match.

3. Summary Strategy. This is the full technique we
describe. It maintains a non-local variable usage sum-
mary for each artifact.

For these tests, we generated three versions of the Stel-
lation repository: one without summary information, one
with keyword summaries of non-local variables, and one with
complete usage summaries. Detailed information about gen-
eration time is not presented because the I/O time to store
the code in the repository dwarfs the time needed to com-
pute the summaries. In our tests, there was no measurable
time difference for repository generation between the three
versions.

With this fast search system in place, if a developer can
describe the desired aggregate in terms of the necessary
queries, they can then produce the aggregate in a fraction of
a second. With appropriate UI support, the process of de-
scribing a desired aggregate can be made quite simple and
lightweight. The aggregate is created in a transient form,
implemented as a workspace object without an assigned ar-
tifact ID. To convert the aggregate into a persistent repos-
itory artifact, it is only necessary to assign it a persistent
ID, which can be done virtually instantaneously.

4. RELATED WORK
Aggregation constructs for coarse-grained SCM are noth-

ing new: every major system in the last 20 years provides
support for coarse grained aggregates in the form of direc-
tories or components. [?] provides a categorization of tools
described in part by ther use of aggretion. However, our
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1 all x | x assigns project
2 all x | x creates String AND

x assigns excludes
3 all x | x assigns buildFile

AND x assigns msgOutputLevel
4 all x | x creates BuildException

AND x passes destDir
5 all x | x implements execute

AND x creates BuildException
6 all x | x implements execute
7 all x | x implements execute AND

x creates CommandLine AND
(x invokes setValue OR
x invokes createArgument)

8 all x | x creates CommandLine AND
((x invokes setValue) OR

(x invokes createArgument))

(a) Queries over Jakarta Ant

(b) Query execution times

Figure 6: Performance measurements of queries

over the Jakarta-Ant codebase

idea of using a flexible type-based aggregate system as an
enabler for fine-grained SCM is novel. The merge annota-
tion mechanism resembles some of the feature-logic merge
specifications of Zeller’s framework for describing merge be-
havior over coarse-grained aggregates[27, 28].

Fine-grained software configuration management has been
explored by others, including the Gwydion/Sheets hyper-
code editor[25], which implements a query system much like
ours, but in a program repository that does not support
any kind of versioning; Desert[17, 23], which provides fine-
grained SCM support, including a facility providing some-
thing very similar to our virtual source files; and Lemur[?]
and COOP/Orm[1], which provide even finer-grained ver-
sioning than Stellation, but without significant aggregation
support.

Our query algorithm is based on work done in the infor-
mation retrieval (IR) community. A good survey containing
an overview of the field can be found in [10]. Our approach
is based on the vector summary algorithm used by Gerald

Salton in the SMART system[24].
IR over program repositories has been done by several

tools, such as eColabra/Asset Location[7], however these
tend to focus on either asset management or software reuse.
Other projects have done similar work using IR for program
components, but instead of asset management, they have fo-
cused on identifying complete software components that are
candidates for software reuse. For instance, Richard Helm
and Yoelle Maarek[14, 18] did work using IR to identify
reuse candidates from an object-oriented class library based
on natural language queries.

Finally, IR techniques have been applied for fine-grained
code reuse by systems like CodeFinder[12] and CodeBro-
ker[26]. These systems use IR techniques such as latent
semantic indexing to create an interactive program reuse
environment. Like Stellation, CodeBroker is based solely on
information extracted from the program. But CodeBroker
generates its queries dynamically and automatically, refining
them as the developer continues to type source code. Using
these queries, CodeBroker selects artifacts in the repository
using the cosine distance metric used by IR systems. All
artifacts within a particular distance are presented to the
user as potential reuse candidates.

Murphy and her students Baniassad and Robillard have
explored methods for searching code repositories and iden-
tifying code that is part of a cross-cutting aspect. In [2],
they describe a construct that encapsulates a cross-cutting
concern in a software system, and in [22], they describe a
method for examining code to identify the code that makes
up a particular aspect.

Their conceptual modules are a construct that we believe
can be modelled using Stellation’s aggregate support. Their
aspect discovery work closely resembles our usage summary
technique (with finer granularity), and we believe that inte-
grating usage summaries and Robillard concern graphs can
provide an even stronger query mechanism for aggregate
generation.

Program browsers, such as [3], Smalltalk[13], or more re-
cently Eclipse[6], provide support for viewing, searching, and
manipulating code in interesting ways. Eclipse and variants
of Smalltalk[20] have even integrated these techniques with
software configuration management; however, the capabili-
ties provided by these systems do not approach those of the
aggregate generation mechanisms that we have proposed.

The idea of multidimensional separation of concerns/spect-
oriented software development has been explored in the soft-
ware engineering community; an overview can be found in
[?]. Most of the work in this field has focused on tools al-
lowing developers to write systems using explicitly multi-
dimensional semantic structures. These systems generally
take one of two forms: tools that allow different perspec-
tives and viewpoints (corresponding to different dimensions
of concerns) to be reconciled [11, 9]; or systems that en-
able programs implemented with concerns separated using
linguistic structure concepts to be integrated using program
composition[19, 15].

Rather than providing another composition or reconcilia-
tion mechanism, our work has focused on the organizational
aspect, keeping code in a single dimensional semantic struc-
ture, while allowing multidimensional organizational views.
We believe our approach is complementary with the other
approaches, and that multidimensionality is best supported
through a combination of these techniques.
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5. CONCLUSION AND FUTURE WORK
Fine-grained SCM offers substantial benefits for large-

scale collaborative software development, particularly in the
areas of complexity management and team communication
and coordination. However, these benefits cannot be real-
ized through fine granularity alone.

In this paper, we have proposed the comprehensive use of
aggregates as first-order entities in order to manage the com-
plexity explosion caused by large numbers of fine-grained
artifacts. We claim that such reified aggregates also enable
a host of other useful capabilities. By leveraging aggrega-
tion, an SCM system can support multidimensional program
organization, improved collaboration, aspect discovery and
separation, relationship management for heterogeneous ar-
tifacts, and more.

We argued that proper aggregation support for SCM sys-
tems has three key requirements:

1. a type system allowing developers to define both new
kinds of aggregates and merge operations for aggregate
artifacts;

2. a mechanism by which developers can quickly generate
both transient and persistent aggregates;

3. effective round-trip interaction support for aggregates
and other tooling.

In this paper, we presented the solutions provided by our
SCM system, Stellation. These include a simple aggregate
type system using annotations to define merge operations,
a query system supporting rapid, flexible aggregate genera-
tion, a novel IR-based fast search mechanism, and an XSLT-
based externalization/ internalization system for use with
external and legacy tooling.

The performance and flexibility of the Stellation aggregate
support was evaluated through an informal study of three
moderate-size software projects and four task areas. Our
overall assessment was positive, but we did find some limits
in our ability to easily produce uniform models for in certain
cases.

In future, we plan to add sophisticated user interface sup-
port making aggregates easier for developers to use, to ex-
plore new problems that we believe our approach can ad-
dress, and to enhance our aggregate type system to provide
better support for heterogeneous collections.

The Stellation system is an open-source software develop-
ment project, and can be found on the web at
“http://www.eclipse.org/stellation”.
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