
Hindawi Publishing Corporation
Advances in Condensed Matter Physics
Volume 2010, Article ID 380710, 28 pages
doi:10.1155/2010/380710

Review Article

Some Effective Tight-Binding Models for Electrons in DNA
Conduction: A Review

Hiroaki Yamada1 and Kazumoto Iguchi2

1 Yamada Physics Research Laboratory, Aoyama 5-7-14-205, Niigata 950-2002, Japan
2 KazumotoIguchi Research Laboratory, 70-3 Shinhari, Hari, Anan, Tokushima 774-0003, Japan

Correspondence should be addressed to Hiroaki Yamada, hyamada@uranus.dti.ne.jp

Received 2 April 2010; Accepted 25 May 2010

Academic Editor: Victor Moshchalkov

Copyright © 2010 H. Yamada and K. Iguchi. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Quantum transport for DNA conduction has been widely studied with interest in application as a candidate in making nanowires
as well as interest in the scientific mechanism. In this paper, we review recent works concerning the electronic states and the
conduction/transfer in DNA polymers. We have mainly investigated the energy-band structure and the correlation effects of
localization property in the two- and three-chain systems (ladder model) with long-range correlation as a simple model for
electronic property in a double strand of DNA by using the tight-bindingmodel. In addition, we investigated the localization
properties of electronic states in several actual DNA sequences such as bacteriophages of Escherichia coli, human-chromosome 22,
compared with those of the artificial disordered sequences with correlation. The charge-transfer properties for poly(dA)-poly(dT)
and poly(dG)-poly(dC) DNA polymers are also presented in terms of localization lengths within the frameworks of the polaron
models due to the coupling between the charge carriers and the lattice vibrations of the double strand of DNA.

1. Introduction

Recent interests on semiconducting DNA polymers have be-
en stimulated by successful demonstrations of the nanoscale
fabrication of DNA, where current-voltage (I-V) measure-
ments for poly(dA)-poly(dT) and poly(dG)-poly(dC) DNA
polymers have been done [1–4]. For such artificial periodic
DNA systems, the energy-band structure is a useful starting
point in order to interpret the experimental results such as
semiconductivity and the metal-insulator transition [5].

On the other hand, Tran et al. measured conductivity
along the double helix of lambda phage DNA (λ-DNA)
at microwave frequencies, using the lyophilized DNA in
and also without a buffer [6]. The conductivity is strongly
temperature-dependent around room temperature with a
crossover to a weakly temperature dependent conductivity at
low temperatures [2]. Yu and Song showed that the λ-DNA
can be consistently modeled by considering that electrons
may hop through the variable-range hopping for conduction
without invoking additional ionic conduction mechanism,
and that electron localization is enhanced by strong thermal

structural fluctuations in DNA [7]. Indeed, the sequence
of base pairs (bp) of the λ-DNA is inhomogeneous as in
disordered material systems.

Moreover, charge migrations in DNA have been mainly
addressed in order to clarify the mechanism of damage
repair which are essential to maintain the integrity of the
molecule. The precise understanding of the DNA-mediated
charge migration would be important in the descriptions of
damage-recognition process and protein binding, or in the
engineering biological processes [8, 9]. The stacked array of
DNA bp provides an extended path to a long-range charge
transfer although the dynamical motions or the energetic
sequence-dependent heterogeneities are expected to reduce
the long-range migration. Photoexcitation experiments have
unveiled that charge excitations can be transferred between
metallointercalators through the guanine highest occupied
molecular orbitals of the DNA bridge [10]. The subsequently
low-temperature experiments showed that the radiation-
induced conductivity is related to the mobile charge carriers,
migrating within frozen-water layers surrounding the DNA
helix, rather than through the base-pair core.
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Those experiments are summarized as follows: (i) band
gap reduction of a double strand of DNA, (ii) transition
from the tunneling hopping to the band hopping, (iii)
anomalously strong temperature dependence of band gap,
(iv) highly nonlinear temperature dependence of the DC
conductivity, and (v) low conductivity of DNA with a
complicated sequence such as λ-DNA and high conduc-
tivity of DNA with a simple sequence such as poly(dG)-
poly(dC) and poly(dA)-poly(dT). These results suggest that
the anomalously strong temperature dependence on the
physical quantities is attributed to the “self-organised”
extrinsic superconductive character of DNA due to the
formation of donors and accepters. Here we would like to
note the following. Usually, as in solid-state physics, the
extrinsic semiconductor is realized when external impurities
are introduced in pure substrate materials. Such impurities
produce the extrinsic semiconductive nature. However, in
real DNA helices, there are no such impurities from outside;
but there exists already a complicated arrangement of bases
of adenine (A), guanine (G), cytosine (C), and thymine (T)
inside the DNA, where among the bases each one of bases
may regard other bases as impurities. Hence, a kind of “self-
organized” extrinsic semiconductive nature may appear.

However, the electronic transport properties in DNA
are still controversial mainly due to the complexity of the
experimental environment and the molecule itself. Although
theoretical explanations for the phenomena have been tried
by some standard pictures used in solid-state physics such as
polarons, solitons, electrons, and holes, the situation is still
far from unifying the theoretical scheme.

Each DNA sequence is packed in a chromosome, varying
in length from 105 bp in yeast to 109 bp in human. In
general, the length of a mutation is relatively short (10 bp)
as compared to the length of a gene (103–106 bp). Because
the mutation rate is very low the mechanical and thermody-
namic characteristics are maintained for the mutation [11].
In Section 6, we give a brief discussion about the mutation as
the proton transfer between the normal and tautomer states.

The Watson-Crick (W-C) base-pair sequence is essential
for DNA to fulfill its function as a carrier of the genetic
code. The specific characteristics are also used extensively
even in various fields such as anthropology and criminal
probe. As observed in the power spectrum, the mutual
information analysis and the Zipf analysis of the DNA-base
sequences such as human-chromosome 22 (HCh-22), the
long-range correlation exists in the total sequence, as well as
the short-range periodicity. In this paper, we mainly discuss
the relationship between the correlation in the DNA-base
sequences and the electronic transport/transfer.

The electrical transport of DNA is closely related to
the density of itinerant π-electrons because of the strong
electron-lattice interaction. Resistivities of two typical DNA
molecules, such as poly(dG)-poly(dC) and λ-DNA, are
calculated. At the half-filling state, the Peierls phase transi-
tion takes place and the poly(dG)-poly(dC) and poly(dA)-
poly(dT) DNA polymers exhibit a large resistivity. When the
density of itinerant π-electrons departs far from the half-
filling state, the resistivity of poly(dG)-poly(dC) becomes
small. For the λ-DNA, there is no Peierls phase transition

due to the aperiodicity of its base-pair arrangement. The
resistivity of poly(dG)-poly(dC) decreases as the length of
the molecular chain is increasing, while that of λ-DNA
increases as the length is increasing.

In Section 3, we introduce the Hückel model of DNA
molecules to treat with the π-electrons. Moreover, in
Section 4, we give the effective polaron model including the
electron-lattice coupling dynamics. In Section 5, we present
correlation effects of localization in the ladder models and
the formation of localized polarons (Holstein’s polarons or
solitons) due to the coupling between the charge carriers and
the lattice vibrations of the double strand of DNA. These
polarons in DNA act as donors and acceptors and exhibit an
extrinsic semiconductor character of DNA. The results are
discussed in the context of experimental observations.

The present paper essentially follows the line in [5, 12–
18]. In particular, it is written with a view of the localization
and/or delocalization problem in the quasi-one-dimensional
tight-binding models with disorder. In appendices we give
some calculations and explanations related to main text.

2. Correlated DNA Sequences

As is well known, DNA has the specific binding properties;
that is, only A-T and G-C pairs are possible, where the bases
of nucleotide are A, T, G, C. The backbones of the bases,
sugar and phosphate groups, ensure the mechanical stability
of the double helix and protect the base pairs. Since the
phosphate groups are negatively charged, the topology of the
duplex is conserved only if it is immersed into an aqueous
solution containing counterions such as Na+ and Mg+ that
neutralize the phosphate groups.

The clustering of similar nucleotides can be clarified by
studying the properties of the cluster size distributions on the
various real DNA sequences, ranging from the viral to the
higher eukaryotic sequences. It is shown that the distribution
function P(S) about the number S of the consecutive C-G or
A-T clusters becomes P(S) ∝ exp{−αS} [19, 20]. The values
of the scaling exponent α of CG are much larger than α of
AT. The maximum value of the A-T cluster size is found to be
much larger than that of the C-G cluster size, which implies
the existence of large A-T clusters.

Moreover, it has been found that the base sequences of
various genes exhibit a long-range correlation, characterized
by the power spectrum S( f ) ∼ f −β (0.1 < β < 0.8) in
the low-frequency limit ( f � 1) [21, 22]. As was observed
in the power spectrum, the mutual information analysis
and the Zipf analysis of the DNA-base sequences such as
the HCh-22, the long-range structural correlation exists in
the total sequence as well as the short-range periodicity.
The eukaryote’s DNA sequence has an apparently periodic
repetition in terms of the gene duplication. The correlation
length in the base sequence of genes changes from the early
eukaryote to the late eukaryote as a result of evolutionary
process. It is found that the long-range correlation tends to
manifest in the power spectrum of the total sequence rather
than in the power spectra of the exon and intron parts,
separately [23].
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On the other hand, in a DNA molecule, the charge car-
riers move along a double helix formed by two complemen-
tary sequences of four basic nucleotides: A, T, G, and C.
A conduction band would form, if the DNA texts would
exhibit some periodicity. The electrical resistance of the DNA
molecule strongly fluctuates even if a single nucleotide in a
long sequence is replaced (or removed). Quantum transport
through the DNA molecule is also strongly affected by
the correlations. The localization property of single-chain
disordered systems with long-range correlation has been
also extensively studied. The correlated disorder can lead to
delocalized states within some special energy windows in the
thermodynamic limit.

Accordingly, it is very interesting to compare the localiza-
tion nature of the electronic states in the real DNA sequence
with those in the artificial disordered sequence with long-
range correlation. Recently, Krokhin et al. have reported that
much longer localization length has been observed in the
exon regions than in the intron regions for practically all
of the allowed energies and for all randomly selected DNA
sequences [24]. Through the statistical correlations in the
nucleotide sequence, they suggest that the persistent differ-
ence of the localization property is related to the qualitatively
different information stored by exons and introns.

In Section 5, we numerically give localization nature of
the electronic states in some real DNA sequences such as
bacteriophages of Escherichia coli (E. coli) and HCh-22, and
so on in ladder models [15, 16, 25]. We also investigate the
correlation effect on the localization property of the one-
electronic states in the disordered ladder models with a long-
range structural correlation that is generated by the modified
Bernoulli map. Obviously, the correlation in the DNA
sequences affects not only the electronic conduction but also
the twist vibration of the backbones. However, such effects
can be approximately ignored in the scope of this paper.

3. HOMO-LUMO Gaps

Each compositional unit of a DNA polymer is complex
although the DNA polymers can be regarded as quasi-one-
dimensional systems (see Figure 1). In this section, we give
a brief review on the Hückel theory in order to analyze the
relationship between electronic structures of the separate
nucleotide groups and of their infinite periodic chains. Ladik
tentatively concluded that electrons hop mainly between the
bases along the helical axis of DNA, so that it is enough to
take into account the overlap integrals between the π-orbitals
of the adjacent base pairs in the DNA duplexes [8, 9]. These
studies have revealed that DNA polymers are insulators with
an extremely large band gap Eg (about 10–16 eV) and narrow
widths of the valence and conduction bands (about 0.3–
0.8 eV). This is a consequence of the orbital mixing between
the highest-occupied molecular orbital (HOMO) and the
lowest-unoccupied molecular orbital (LUMO) in the base
groups of nucleotide in the DNA. We can control the charge
injection into DNA and the conduction in DNA, by adjusting
the HOMO-LUMO of the polymer and the Fermi energy of
electric leads, respectively.

Table 1: The total numbers |N|, |C|, |O|, and |P| of N, C, O, and P
atoms and of π-orbitals and π-electrons in the bases of A, G, C, and
T, and the sugar(S) and phosphate(Ph) groups, respectively. Here
there are 12, 14, 10, and 10 π-electrons for the 10, 11, 8, and 8 π-
orbitals in the A, G, C, and T base molecules, respectively, while
there are 8 and 8 π-electrons for the 4 and 5 π-orbitals in the sugar
and phosphate groups, respectively. Here we note that the carbon
atom of CH3 in the T molecule does not have any π-electron since
it forms the sp3-hybrid orbitals. This provides 8 π-electrons for the
T molecule.

Base A G C T S Ph

|N| 5 5 3 5 — —

|C| 5 5 4 2 5 0

|O| 0 1 1 2 4 4

|P| — — — — 0 1

Total 10 11 8 9 9 5

π-orbitals 10 11 8 8 4 5

π-electrons 12 14 10 10 8 8

Burnel et al. found that semiconduction in DNA is very
important for such systems since the activation energies of
nucleotides are lower than those of nucleoides [26]. This
was the first suggestion that propagation along the sugar and
phosphate groups plays a significant role in the transport
properties of DNA as well as propagation along the base-
stacking of the nucleotide groups in the center of the DNA
molecule.

We revisit the problem of the electronic properties of
individual molecules of DNA, in order to know electron
transport in the double strands of DNA as a mother material
for the single and double strand of DNA, by taking into
account only π-electrons in the system [5]. To do so, we
review the theory of π-electrons in DNA, using the Hückel
approximation for π-electrons in both the sugar-phosphate
backbone chain and the π-stacking of the nitrogenous bases
of nucleotide.

3.1. The Hückel Model. Applying the basic knowledge of
quantum chemistry to biomolecules of nitrogenous bases, we
can find the total number of π-orbitals and π-electrons in the
bases. It is summarized in Table 1.

Let us consider the famous Hückel model in quantum
chemistry [26–31]. This model concerns only the π-orbitals
in the system. In this context, this theory is closely related
to the so-called tight-binding model in solid-state physics,
which concerns very localized orbitals at atomic sites such
as Wannier’s wavefunction. Therefore, this approach has
been extensively applied to many polymer systems such as
polyacetylene with a great success. In the so-called Hückel
approximation we adopt the orthogonality condition for the
overlap integrals

Srr = 1, Srs = 0 (r /= s), (1)

where Srs denotes overlap integrals between atomic orbitals
at rth and sth sites. We assume the special form of the
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Figure 1: The single bases of A, G, C, and T. Here dots (•) mean π-electrons.

resonance integrals as

hrs = 1
2
KSrs(hrr + hss), (2)

with K = 1.75 and the overlap integrals Srs (r = s) are not
necessary to be diagonal, and otherwise; almost the same
procedure is kept as in the Huckel approximation. Usually
the on-site (r=s) resonance integrals are called the Coulomb
integrals denoted by αr , while the off-site (r /=s) integrals are
called the resonance integrals denoted by βrs such that αr =
hrr , βrs = hrs (r /=s). Here we would like to emphasize the
following. In the sense of the Hückel theory, the parameters
are taken empirically. This means that the parameters are
adjustable and feasible to give consistent results with the
experimental results or the ab initio calculation results.
Therefore, the exact values of the parameters neither are
so important nor should be taken so seriously in this
framework. This is because, once one can obtain much more
precise values for the Hückel parameters, one can provide
the more plausible results from the Hückel theory. Although
many efforts of the ab initio calculations have been done for
DNA systems, unfortunately at this moment there seem to
be very few first principle calculations for such parameters in
the DNA systems to fill out this gap. Nevertheless, we must
assign some values for the Hückel parameters in order to
calculate the electronic properties of DNA in the framework
of the Hückel theory. So, we look back to the original method
about time when the Hückel theory was invented.

For this purpose, to use the standard Hückel theory, let
us adopt some simple formulae for the Hückel parameters,
which are defined as follows. Let X and Y be two different

atoms. Denote by αX the Coulomb integral at theX atom and
by βXY the resonance integral between the X and Y atoms:

αX = α + αXβ, βXY = lXYβ. (3)

Here aX and �XY are the empirical parameters that are
supposed to be adopted from experimental data. And the
parameters α and β are important. These can be thought of as
the fundamental parameters in our problem of biopolymers.
Conventionally we take α as the Coulomb integral for
the 2px-orbital of carbon and β as the resonance integral
between the 2px-orbitals of carbon, such that α = αC ≡
0, β = βCC ≡ 1. This means that the energy level of a carbon
atom is taken as the zero level, and the energy is measured
in units of the resonance integral between carbon atoms. We
note that the empirical values obtained from experiments are
usually given by

α ≈ −6.30 ∼ −6.61 eV, β ≈ −2.93 ∼ −2.95 eV. (4)

Since the biomolecules consist of the atoms C, N, O, and P,
let us find the plausible values of the Hückel parameters for
them to apply the Hückel model to biomolecules of DNA.
Pauling’s electronegativities for carbon (C), nitrogen (N),
oxygen (O), and phosphorus (P) are the following:

χC ≈ 2.55, χN ≈ 3.0, χO ≈ 3.5, χP ≈ 2.1. (5)

Then we can define the Hückel parameters for carbon.
using therefore, Sandorfy’s formula [32], Mulliken’s formula
[33, 34], and Streitwieser’s formula [35], we find that αĊ =
α,αṄ = α + 0.7β,αȮ = α + 1.53β, and αṖ = α − 0.724β,
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Figure 2: (a) The spectrum of the π-orbitals of A, G, C, and T. (b) The spectrum of the π-orbitals of a sugar-phosphate group. PO4 stands for
the phosphate group where the electron hopping between the oxygen sites is taken into account, while PO′
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between the oxygen sites is taken into account. The energies are measured in units of |β|. Here dots (•) mean π-electrons and the level with
four dots means the double degeneracy of the level.

and we obtain αÖ = α + 2.53β,αN̈ = α + 0.276β. as
well as βĊ–Ċ = β, βĊ=Ċ = 1.1β, βĊ–Ṅ = βĊ–N̈ = 0.8β,
βĊ=Ṅ = 1.1β, βĊ–Ȯ = 0.9β, and βĊ=Ȯ = 1.7β. Here
αẊ(αẌ) denotes the Coulomb integral of atomic state X
with one(two) electron(s) occupied. See Appendix A for the
formula. And if one can get more accurate values from the ab
initio calculations, then we can always replace the Coulomb
integrals by the new set of values.

3.2. HOMO-LUMO of Biomolecules. For example, consid-
ering the topology of the hopping of electrons on the π-
orbitals, we now find the following Hückel matrices HA for
A:

HA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αṄ βĊ–Ṅ 0 0 0 βĊ=Ṅ 0 0 0 0
βĊ–Ṅ αĊ βĊ=Ṅ 0 0 0 0 0 0 0

0 βĊ=Ṅ αṄ βĊ–Ṅ 0 0 0 0 0 0
0 0 βĊ–Ṅ αĊ βĊ=Ċ 0 0 0 βĊ–N̈ 0
0 0 0 βĊ=Ċ αĊ βĊ–Ċ βĊ–Ṅ 0 0 0

βĊ=Ṅ 0 0 0 βĊ–Ċ αĊ 0 0 0 βĊ–N̈

0 0 0 0 βĊ–Ṅ 0 αṄ βĊ=Ṅ 0 0
0 0 0 0 0 0 βĊ=Ṅ αĊ βĊ–N̈ 0
0 0 0 βĊ–N̈ 0 0 0 βĊ–N̈ αN̈ 0
0 0 0 0 0 βĊ–N̈ 0 0 0 αN̈

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6)

Pauli’s exclusion principle tells us that each state with an
energy level is occupied by a pair of electrons with spin
up and down. So, π-electrons occupy the energy levels in
the spectrum from the bottom at low temperature. Since
the lower energy levels with one half of the total number
of π-electrons can be occupied by the π-electrons, there
appears an energy separation between the occupied and the
unoccupied states, which is called the energy gap.

The energy levels of the HOMOs and LUMOs are given
by εH = 0.888, εL = −0.789 for A, where the energy is

measured in units of β. We can do the same calculation for
G, C, and T, respectively. Defining the energy gap between the
LUMO and HOMO, Δε = εL − εH . Then we obtain the result
as ΔεA = 1.677, ΔεG = 1.555, ΔεC = 1.535, and ΔεT = 1.713
(see Figure 2(a)). The total energies Etot = 2

∑
j=occ.states εj

of the π-electrons of A, G, C, and T are Etot(A) = 20.74,
Etot(G) = 26.47, Etot(C) = 19.05, and Etot(T) = 21.14,
respectively. Therefore,

Etot(C) > Etot(A) > Etot(T) > Etot(G). (7)
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This shows that, since the lower the ground-state energy
the more stable the system, the most stable molecule is G
while the most unstable molecule is C.

HOMOs and LUMOs of sugar and phosphate may be
required when we consider charge conduction of the DNA
polymer because the sugar and phosphate group constituting
the backbones of DNA polymer also has π-electrons. We
give the results for the single sugar-phosphate in Figure 2(b).
Moreover, the results based on the Hückel approximation
have been extended to the single-nucleotide systems such
as A, G, C, and T with the single sugar-phosphate group,
and the system of a single strand of DNA with an infinite
repetition of a nucleotide group such as A, G, C, and T,
respectively. See [5] for more details. This reorganization,
which is difficult to calculate due to the complexity of the
combined system, may lead to a smaller HOMO-LUMO gap
and wider band-widths than for the bare molecule.

When the system of the nucleotide bases such as A, G,
C, and T exists as an individual molecule, there is always an
energy gap between the LUMO and HOMO states, where
the order of the gap is about several eV’s. This means that
the nucleotides of A, G, C, and T have the semiconducting
character in its nature. If the π-stacking of the base is perfect,
then there are two channels for π-electron hopping: one is
the channel through the base stacking and the other is the
one through the backbone chain of the sugar-phosphate. In
this limit, the localized states of the original nucleotide bases
become extended such that the levels form the energy bands.

Thus, we believe that our Hückel approach in this
paper fills out the gap between the simple approach of
mathematical models for tight-binding calculations and the
approach of the quantum chemical models for ab initio
calculations from the first principle, where in the former we
assume one orbital with one electron at one nucleotide while
in the latter we include all electrons and atoms in the system

4. Effective Polaron Models

First principle methods are powerful enough to under-
stand the basic electronic states of the molecules. On the
other hand, the complementary model-based Hamiltonian
approach is effective for understanding those of polymers as
well. In this section, we give some effective 1D models and
the basic properties of polymers such as transpolyacetylene
and DNA polymers. In the previous section, we treated
HOMOs and LUMOs and the occupation of orbitals by the
π-electrons with spin. Hereafter, we omit spin of electrons
when we consider the one-electron problems, for the sake of
simplicity in notation.

4.1. Tight-Binding Models for Polymers. It is known that
the electronic properties of planar conjugated systems are
dominated by π-systems with one orbital per site. The
electronic Hamiltonian for 2pz orbitals through a tight-
binding model with the nearest neighbors interactions only
is given as

Hel =
∑
n

EnC
†
nCn −

∑
n

Vnn+1

(
C†nCn+1 + Cn+1C

†
n

)
, (8)

where Cn and C†n are creation and annihilation operators of
an electron at the site n. The matrix elements are obtained
from the extended Hückel theory as given in the previous
section:

En = −αn,

Vnm =
(
K

2

)
(αn + αm)Snm,

(9)

where αn is ionization energy (Coulomb integral) of the
nth 2pz orbital and Snm is overlap integral (resonance
integral) between the nth and mth orbitals centered at
neighbour sites given in Section 3. We usually treat the
copolymer as a π-system with one orbital per site and
represent the electronic Hamiltonian for the 2pz carbon and
nitrogen orbitals through a tight-binding model with nearest
neighbor interactions. DNA polymers are also believed to
form an effectively one-dimensional molecular wire, which
is highly promising for diverse applications. Basically, the
carriers mainly propagate along the aromatic π-π stacking of
the strands (the interstrand coupling being much smaller),
so that the one-dimensional tight-binding chain model can
be a good starting point to minimally describe a DNA wire
[12, 13].

Bruinsma et al. also introduced the effective tight-
binding model that describes the site energies of a carrier
located at the nth molecule as

H =
∑
n

EnC
†
nCn −

∑
n

tDNA cos
(
θn,n+1(t)

)(
C†nCn+1 + C†n+1Cn

)
,

(10)

where C†n(Cn) is creation(annihilation) operator of the
carrier at the site n [7, 36–38]. The carrier site energies En are
chosen according to the ionization potentials of respective
DNA-bases as εA = 8.24 eV, εT = 9.14 eV, εC = 8.87 eV,
and εG = 7.75 eV, while the hopping integral, simulating
the π-π stacking between adjacent nucleotides, is taken as
tDNA = 0.1–0.4 eV. Moreover, θn,n+1 denotes the relative twist
angle deviated from equilibrium position between the nth
and (n + 1)th molecules due to temperature T . Then we
can estimate the order of the hopping integral. Let θn,n+1

be an independent random variable that follows Gaussian
distribution with 〈θn,n+1〉 = 0 and 〈θ2

n,n+1〉 = kBT/Iω
2
I , where

I is the reduced moment of inertia for the relative rotation
of the two adjacent bases and ωI is the oscillator frequency
of the mode (Iω2

I = 250K). Therefore the fluctuation of
the hopping term is about tDNA〈cos(θn,n+1)〉 ∼ tDNA(1 −
(〈θ2

n,n+1〉/2)) ∼ 0.16 eV at room temperature, which is
much smaller than that (∼ 1.4 eV) in the diagonal part.
Accordingly, as a simple approximation, we can deal with
the diagonal fluctuation with keeping the hopping integral
constant.

Roche investigated such a model for poly(GC) DNA
polymer and λ-DNA, with the on-site disorder arising from
the differences in ionization potentials of the base pairs
and with the bond disorder tDNA cos(θn,n+1(t)) related to the
random twisting fluctuations of the nearest neighbor bases
along the strand [37, 38]. While for poly(GC) the effect of
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disorder does not appear to be very dramatic, the situation
changes when considering λ-DNA.

Actually, modern development of physicochemical
experimental techniques enables us to measure directly
the DNA electrical transport phenomena even in single
molecules. Moreover, several groups have recently performed
numerical investigations of localization properties of the
DNA electronic states based on the realistic DNA sequences.

4.2. Twist Polaron Models for DNA Polymers. In this subsec-
tion we give an effective 1D model with realistic parameters
for the electronic conduction of the poly(dA)-poly(dT) and
poly(dG)-poly(dC) DNA polymers.

Specially, a distinctive feature of biological polymers is a
complicated composition of their elementary subunits and
an apparent ability of their structures to support long-living
nonlinear excitations. In their polaron-like model, Hennig
and coworkers studied the electron breather propagation
along DNA homopolynucleotide duplexes, that is, in both
poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers,
and, for this purpose, they estimated the electron-vibration
coupling strength in DNA, using semiempirical quantum
chemistry [39–42]. Chang et al. have also considered a
possible mechanism to explain the phenomena of DNA
charge transfer. The charge coupling with DNA structural
deformations can create a polaron and thus promote a
localized state. As a result, the moving electron breather may
contribute to the highly efficient long-range conductivity
[43]. Recent experiments seem to support the polaron
mechanism for the electronic transport in DNA polymers.

The Hamiltonian for the electronic part in the DNA
model is given by

Hel(t) =
∑
n

En(t)C†nCn −
∑
n

Vnn+1(t)
(
C†nCn+1 + Cn+1C

†
n

)
,

(11)

where Cn and C†n are creation and annihilation operators
of an electron at the site n. The on-site energies En(t) are
represented by

En(t) = E0 + krn(t), (12)

where E0 is a constant and rn denotes the structural fluctu-
ation caused by the coupling with the transversal Watson-
Crick H-bonding stretching vibrations. The schematic illus-
tration is given in Figure 3. The transfer integral Vnn+1

depends on the three-dimensional distance dnn+1 between
adjacent stacked base pairs, labeled by n and n+1, along each
strand. And it is expressed as

Vnn+1(t) = V0(1− αdnn+1(t)). (13)

Parameters k and α describe the strengths of interaction
between the electronic and vibrational variables, respectively.
The 3D displacements dnn+1 also give rise to variation of the
distances between the neighboring bases along each strand.
The first-order Taylor expansion around the equilibrium
positions is given by

dnn+1(t) = R0

�0
(1− cos θ0)(rn(t) + rn+1(t)), (14)

R0 θ0 rn+1

l0 + dnn+1

l0

θ0

Figure 3: Sketch of the structure of the DNA model. The
bases are represented by bullets, and the geometrical parameters
R0, �0, θ0, rn+1, and dnn+1 are indicated.

where R0 represents the equilibrium radius of the helix, θ0

is the equilibrium double-helical twist angle between base
pairs, and �0 is the equilibrium distance between bases along
one strand given by

�0 =
(
a2 + 4R2

0 sin2
(
θ0

2

))1/2

, (15)

with a being the distance between the neighboring base pairs
in the direction of the helix axis. We adopt realistic values of
the parameters obtained from the semiempirical quantum-
chemical calculations (see Table 2). Further, we consider {rn}
as independent random variables generated by a uniform
distribution with the width (rn ∈ [−W ,W]). Accordingly,
fluctuations in both the on-site energies and the off-diagonal
parts in the Hamiltonian (1) are mutually correlated because
they are generated by the same random sequence rn (see
Figure 2(c)). The typical value of W is W = 0.1[Å], which
approximately corresponds to the variance in the hydrogen
bond lengths in the Watson-Crick base pairs, as seen in the
X-ray diffraction experiments [44].

A quasicontinuum spectrum possessed a wealth of
dynamical modes. In principle, each of these can influence
the DNA charge transfer/transport. But, since there are more
or less active modes, it is possible to take the whole manifold
of the DNA molecular vibrations into two parts: vibrations
which are most active and a stochastic bath consisting of all of
the other ones. Computer simulations have pinpointed that
the dynamical disorder is crucially significant for the DNA
transfer/transport. Several attempts to formulate stochastical
models for the interplay of the former and the latter have
already appeared in the literature (see , [45, 46], e.g.).
In this paper, we will deal with the polaron-like model
of Hennig and coworkers as described in the works in
[40–42], where charge + breather propagation along DNA
homopolynucleotide duplexes (i.e., in both the poly(dG)-
poly(dC) and poly(dA)-poly(dT) DNA polymers) has been
studied.
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Table 2: Basic parameters for DNA molecules. The subscripts AT
and GC for k and α denote the ones of the poly(dA)-poly(dT)
and poly(dG)-poly(dC) DNA polymers, respectively. The other
parameters are E0 = 0.1 eV, V0 = 0.1 eV, a = 3.4 Å, R0 = 10 Å,
and θ0 = 36◦.

Parameter Value

kAT 0.778917 eV Å−1

αAT 0.053835 Å−1

kGC −0.090325 eV Å−1

αGC 0.383333 Å−1

4.3. Localization due to Static Disorder. In this subsection, we
assume that the fluctuations of {rn} are frozen (quenched
disorder) and independent for different links; that is, we
investigate localization properties of the poly(dA)-poly(dT)
and poly(dG)-poly(dC) DNA polymers [47].

The Schrödinger equation Hel|Φ〉 = E|Φ〉 is written in
the transfer matrix form

(
φn+1

φn

)
=

⎛
⎝
E − En
Vnn+1

−Vnn−1

Vnn+1
1 0

⎞
⎠
(
φn
φn−1

)
, (16)

where φn is the amplitude of the electronic wavefunction
|Φ〉 = ∑

n φn|n〉, where |n〉 = C†n |0〉 at the base-pair site
n and |0〉 is the Fermi vacuum. We use the localization
length ξ and/or the Lyapunov exponent γ calculated by
the mapping (16) in order to characterize the exponential
localization of the wavefunction. Originally the Lyapunov
exponent (the inverse localization length) is defined in the
thermodynamic limit (N → ∞). However, here we use
the following definition of the Lyapunov exponent for the
electronic wavefunction with a large system size N [47, 48]:

γ(E,N) = ξ−1(E,N) =
ln
(∣∣φN

∣∣2 +
∣∣φN−1

∣∣2
)

2N
. (17)

We use the appropriate initial conditions φ0 = φ1 = 1, and
for large N(� ξ) the localization length and the Lyapunov
exponent are independent of the boundary condition. The
energy-dependent transmission coefficient T(E,N) of the
system between metallic electrodes is given as T(E,N) =
exp(−2γN) and is related to the Landauer resistance via
ρ = (1 − T)/T in units of the quantum resistance h/2e2(∼
13[kΩm]) [49, 50].

We have numerically investigated the localization prop-
erties of electronic states in the adiabatic polaron model of
poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers
with the realistic parameters obtained using the semiempiri-
cal quantum-chemical calculations.

We compare the localization properties of the poly(dG)-
poly(dC), poly(dA)-poly(dT) DNA polymers and the mixed
cases. Figures 5(a) and 5(b) show the localization length
and the Lyapunov exponent in the three types of polymers
with W = 0.1. In low-energy regions, the localization length
in the poly(dG)-poly(dC) DNA polymer is larger than that
in the poly(dA)-poly(dT) DNA polymer. The system size
dependence of the localization length is given in Figure 6

in relation to the resonance energy. Indeed, the localization
length of the DNA polymers is larger than ξ > 2000[bp] in
almost all of the energy bands for all models; it is much larger
than the system size of the oligomer used in the experiments.
As is seen in Figure 6, the smaller the size of the system the
more complex the resonance peaks become.

4.4. Quantum Diffusion in the Fluctuating Environment. In
this subsection we numerically investigate quantum diffusion
of electrons in the Hennig model of poly(dG)-poly(dC)
and poly(dA)-poly(dT) with a dynamical disorder [18]. We
assume that the diffusion is caused by a colored noise
associated with the stochastic dynamics of distances r(t)
between two Watson-Crick base-pair partners: 〈r(t)r(t′)〉 =
r0 exp(−|t − t′|/τ) . These fluctuations can be regarded
as a stochastic process at high temperature, with phonon
modes being randomly excited [51, 52]. In the model, the
characteristic decay time τ of correlation can control the
spread of the electronic wavepacket. Interestingly, the white-
noise limit τ → 0 can in effect correspond to a sort
of motional narrowing regime (see, examples), because we
find that such a regime causes ballistic propagation of the
wavepacket through homogeneous DNA duplexes. Still, in
the adiabatic limit τ → ∞, DNA electronic states should
be strongly affected by localization. The amplitude r0 of
random fluctuations within the base pairs (the fluctuation
in the distance between two bases in a base pair) and
the correlation time τ are very critical parameters for the
diffusive properties of the wavepackets. It is interesting to
find the ballistic behavior in the white-noise limit versus the
localization in the adiabatic limit, since there are a number of
experimental works observing ballistic conductance of DNA
in water solutions, which is also temperature independent.
Van Zalinge et al. have tried to explain the latter effect, using
a kind of acoustic phonon motions in DNA duplexes, which
seems to be plausible, but not the only possible physical
reason [53, 54]. We will propose an alternative explanation
for the observed temperature-independent conductance,
based upon our numerical results.

Generally, in the case of quantum diffusion the temporal
evolution of the electronic state vector |Φ〉 is described by
the time-dependent Schrödinger equation i�(∂|Φ〉/∂t) =
Hel(t)|Φ〉, which then becomes

i�eff
∂φn
∂t

= En(t)φn −Vnn+1(t)φn+1 −Vn−1n(t)φn−1, (18)

where φn = 〈n|Φ〉 and the effective Planck constant is
given as �eff = 0.53. We redefined the scaled dimensionless
variables En(t) and Vnn+1(t) in (1) such that En/V0 → En,
Vnn+1/V0 → Vnn+1. We used mainly the 4th-order Runge-
Kutta-Gill method in the numerical simulation for the time
evolution with time step δt = 0.01. In some cases, we
ourselves confirmed that the accuracy in the obtained results
is in accord with the one in the results that are gained by the
help of the 6th-order symplectic integrator that is the higher-
order unitary integration.

It has been demonstrated that the motional narrow-
ing affects the localization in the poly(dG)-poly(dC) and
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Figure 4: (a) The on-site energy En eV and (b) transfer integral Vnn+1 eV as a function of the base pair site n. The parametric plot En versus
Vnn+1 is shown in (c). W = 0.1 and the other parameters are given in text. The unit of the energy and the spatial length are eV and the
number of nucleotide base pair (bp), respectively, throughout the present paper.

poly(dA)-poly(dT) DNA polymers. In either case of the
model DNA polymers, the temperature dependence becomes
virtually suppressed when the motion of the wave packet is
characterized by the ballistic propagation.

We have also investigated the temporal diffusion rate in
almost all of the diffusive ranges (see Figure 7). We found
that the diffusion rate of the A-T model is larger than
that of the G-C model at comparatively low temperatures.
Interestingly enough, for relatively high temperatures in
the diffusive range of the wavepacket motion the difference
between the two DNA systems gets smaller.

Figure 8 shows the short-time behavior in the cases of
τ = 1 and τ = 0.01 depicted on a larger time scale. It follows
that in the short-time behavior the (dG)15–(dC)15 case is
more diffusive than its (dA)15–(dT)15 counterpart within the
range from which the spread of the wavepacket is

√
m ∼ 15.

We used periodic sequences, which means that E0 and
V0 are constant values as the static parts of the on-site
and hopping terms for poly(dG)-poly(dC) and poly(dA)-
poly(dT) DNA polymers, respectively. This includes the
mixed model as well. Then the motional narrowing for

dynamical disorder makes time evolution of the wavepacket
ballistic. However, we remark that the motional narrowing
strongly localizes the wavepacket if we use a disordered
sequence for the static parts of En and/or Vnn+1.

4.5. Quantum Diffusion Coupled with Vibrational Modes. Let
us denote rn(t) by the stretching vibration of W-C bonds at
the n site as before. The external harmonic perturbation is
equivalent to the coupling with quantum linear oscillators
or with phonon modes in solid-state physics [55, 56]. We
replace the disordered fluctuation rn(t) with the harmonic
time-dependent one such as

rn(t) = rn0

M∑

i=1

εi cos
(
ωit + θ(i)

n

)
, (19)

where M and εi are the number of the frequency component
and the strength of the perturbation, respectively. The initial

phases {θ(i)
n } ∈ [0, 2π] at each site n are randomly chosen.

In the numerical calculation of this section, we take εi =
ε/
√
M, for simplicity, and take incommensurate numbers of
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Figure 5: Comparison: (a) localization length and (b) the Lyapunov exponent in poly(dG)-poly(dC), poly(dA)-poly(dT), and the mixed
DNA polymers. W = 0.1, θ0 = 36◦, and N = 222.
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Figure 9: (a) MSD m(t) in A-T, G-C, and mixed models perturbed by M = 1, ε = 0.5. (b) MSD m(t) of A-T model perturbed by M = 1 for
ε = 0.5, 0.7, 1.0, 2.0 from above. We set rn0 = 1.

ωi ∼ O(1) as the frequency set. In the limit of M → ∞,
the time-dependent perturbation approaches the stochastic
fluctuation as discussed in the previous subsection. In
particular, we can regard the approximation as an electronic
system coupled with highly excited quantum harmonic
oscillators. One of the advantages of this model is that,
although the number of autonomous modes is limited due
to the computer power, we can freely control the number
M of frequency components in the harmonic perturbation.
This is also a simple model to investigate electronic diffusion
coupled with lattice vibrations.

In Figure 9(a), the MSD is shown for the poly(dG)-
poly(dC), the poly(dA)-poly(dT), and the mixed DNA
polymers. We find that all of the cases exhibit the normal
diffusion of electron without any stochastic perturbation.
As shown in Figure 9(b), the diffusion rate decreases as the
perturbation strength ε increases. As a result, the coupled
motion of charges and the lattice breathers connected with
the localized structural vibrations may contribute to the
highly efficient long-range conductivity (see Appendix D).

5. Tight-Binding Models for the Ladder Systems

In this section, to investigate the energy band structure for
periodic sequences and the localization properties for the
correlated disordered sequences, we introduce the ladder
models of DNA polymers. Although in [12, 13, 15, 16, 25]
we assumed the ladder structure consisting of sugar and

a b a b a b
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n− 1 n n + 2n + 1
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B

(a)

a b aVn Vn+1Vn−1

Cn−1n Cnn+1
Un−1 Un Un+1

n− 1 n n + 1a b a

A

C

B

(b)

Figure 10: Models of the double strand of DNA. (a) The two-chain
model and (b) the three-chain model we adapted in the main text.

phosphate groups, the model can be applicable to the DNA-
like substances such as the ladder structure of base pairs
without sugar-phosphate backbones. When we apply the
model for the sugar and phosphate chains, the chains A and
B are constructed by the repetition of the sugar-phosphate
sites, and the interchain hopping Vn at the sugar sites come
from the nucleotide base pairs, that is, A-T or G-C pairs (see
Figure 10(a)).
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5.1. The Ladder Models and the Dispersions. Since there is
only one π-orbital per site, there are totally 2Nπ-orbitals in
the ladder model of the DNA double chain. Let us denote
by φAn (φBn ) the π-orbital at site n in the chain A(B). By
superposition of the π-orbitals, the Schrödinger equation
Ĥ|Ψ〉 = E|Ψ〉 becomes

An+1,nφ
A
n+1 + An,n−1φ

A
n−1 + An,nφ

A
n +Vnφ

B
n = EφAn ,

Bn+1,nφ
B
n+1 + Bn,n−1φ

B
n−1 + Bn,nφ

B
n +Vnφ

A
n = EφBn ,

(20)

where An+1,n (Bn+1,n) means the hopping integral between
the nth and (n + 1)th sites, An,n (Bn,n) means the on-site
energy at site n in chain A (B), and Vn is the hopping
integral from chain A(B) to chain B(A) at site n, respectively.
Furthermore, it can be rewritten in the matrix form: Φn+1 =
MnΦn, where Φn = (φAn ,φAn−1,φBn ,φBn−1)

†
. The transfer

explicit matrix is given in Appendix B. Generally speaking,

we would like to investigate the asymptotic behavior (N →
∞) of the products of the matrices Md=2(N) = ΠN

k=1Mk =
MNMN−1 · · ·M1.

We consider the band structure for the periodic case by
setting An+1,n = Bn+1,n = a(b) at odd(even) site n and Vn =
v(0) at odd(even) sites Ann = Bnn = α(Ann = Bnn = β) for
odd(even) site n, for simplicity.

A simple way to solve the above equations is to use the
Bloch theorem:

φAn+2 = ei2ksφAn ,φBn+2 = e2iksφBn , (21)

where s is the length between the adjacent base groups and is
assumed to be equivalent to the length between the adjacent
sugar-phosphate groups and the wavenumber k is defined
as −π/2s ≤ k ≤ π/2s. (We take s = 1 in the following
calculations.) The Schrödinger equation becomes

Φn+1 =MΦn,

M =

⎛
⎜⎜⎜⎜⎜⎝

E − β −
(
a + beik

)
0 0

−
(
a + be−ik

)
E − α 0 −v

0 0 E − β −
(
a + beik

)

0 −v −
(
a + be−ik

)
E − α

⎞
⎟⎟⎟⎟⎟⎠

,
(22)

where Φn = (φA2n+1,φA2n,φB2n+1,φB2n)t. Denote the determinant
of M by D(M). Solving the equation D(M) = 0 for E, we
obtain the energy dispersion of the system. Here we show the
simple case of α = β = 0 as

E(±)
+ (k) = 1

2

(
v ±

√
v2 + 4(a2 + b2) + 8ab cos 2k

)
,

E(±)
− (k) = 1

2

(
−v ±

√
v2 + 4(a2 + b2) + 8ab cos 2k

)
,

(23)

where E(+)
± (k) (E(−)

± (k)) stand for the upper (lower) bands
in channel ±, respectively [12, 13]. The lowest and upper
middle (the lower middle and highest) bands correspond to
bonding (antibonding) states between the adjoint orbitals in
the interchains. More details of the energy band for general
case are given in Appendix C. In Figure 11(a) the energy
band structure is given with varying the interchain hopping
v. Figure 11(b) shows the cross-section view at v = 1. There
is a band gap Eg(v) at the center in between the lower and
upper middle bands in the spectrum for the whole range of
v when α = β = 0:

Eg(v) = E(+)
−

(
π

2

)
− E(−)

+

(
π

2

)
=

√
4(a− b)2 + v2 − v. (24)

The other band gap Δg(v), given as

Δg(v) = v +
1
2

(√
4(a− b)2 + v2 −

√
4(a + b)2 + v2

)
, (25)

appears in between the lowest and the lower middle
bands (the upper middle and highest bands) when v >
vc ≡ 2ab/

√
a2 + b2 (otherwise, it is negative and therefore

semimetallic). There is a transition from semiconductor to
semimetal as the π-electron hopping between the nitroge-
nous bases of nucleotide is increased.

The two-chain model can be easily extended to the three-
chain case (see Figure 10(b)). Cn+1,n means the hopping
integral between the nth and (n + 1)th sites, Cn,n means
the on-site energy at site n in chain C, and Vn and Un are
the hopping integrals between the chains. The Schrödinger
equation Ĥ|Ψ〉 = E|Ψ〉 becomes

An+1,nφ
A
n+1 + An,n−1φ

A
n−1 +An,nφ

A
n +Vnφ

C
n = EφAn ,

Cn+1,nφ
C
n+1 + Cn,n−1φ

C
n−1 + Cn,nφ

C
n +Vnφ

A
n +Unφ

B
n = EφCn ,

Bn+1,nφ
B
n+1 + Bn,n−1φ

B
n−1 + Bn,nφ

B
n +Unφ

C
n = EφBn .

(26)

It can be also rewritten in the matrix form: Φn+1 =
Md=3(n)Φn, where Φn = (φAn+1,φAn ,φCn+1,φCn ,φBn+1,φBn )t and
the explicit transfer matrix is given in Appendix C.

For simplicity, we set An+1,n = Bn+1,n = a and Cn+1,n = c
at site n, and Vn = Un. We can analytically obtain the energy
band structure for the three-chain model by using the Bloch
theorem:

φAn+1 = eiksφAn , φCn+1 = eiksφCn , φBn+1 = eiksφBn . (27)
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Figure 11: Energy bands of the decorated ladder model. (a) The energy bands as a function of V . (b) The snap shot of the energy bands
when V = 1. k means the wavevector in units of π/s such that −1.0 ≤ k ≤ 1.0, V means the π-electron hopping integral between the
interchain sites, and E means the energy in units of V = 1. Here we have taken the values α = 0, β = 0, a = 0.9, and b = 1.2.

5.2. Localization in the Ladder Models. As was discussed
in Sections 2 and 3, the sequences of the realistic DNA
polymers are not periodic and accompany a variety of
disorders. Generally, the randomness makes the electronic
states localized because of the quasi-one-dimensional system
and affects electronic conduction and optical properties, and
so on. In the present section, we investigate the correlation
effect on the localization properties of the one-electronic
states in the disordered, two-chain (ladder) and three-
chain models with a long-range structural correlation as
a simple model for the electronic property in the DNA
[17]. The relationship between the correlation length in the
DNA sequences and the evolutionary process is suggested.
Moreover, it is interesting if the localization property is
related to the evolutionary process.

Figure 12 shows the DOS as a function of energy for the
binary disordered systems. The sequence of the interchain
hopping Vn takes an alternative value WGC or WAT. We find
that some gaps observed in the periodic cases close due to the
disorder corresponding to the base-pair sequences.

Figure 13(a) shows the energy dependence of the Lya-
punov exponents (γ1 and γ2) for some cases in the
asymmetric modified Bernoulli system characterized by the
bifurcation parameters B0 and B1 controlling the correlation
(see Appendix G for modified Bernoulli system). They are
named as follows: Case (i): B0 = 1.0,B1 = 1.0, Case (ii): B0 =
1.0,B1 = 1.9, and Case (iii): B0 = 1.7,B1 = 1.9. Apparently,
Case (i) is more localized than Cases (ii) and (iii) in the
vicinity of the band center |E| < 1. The comparison between
Case (ii) and Case (iii) shows the effect of asymmetry of
the map on the localization. The ratio of the G-C pairs is
RGC ∼ 0.2 for Case (ii) and is RGC ∼ 0.47 for Case (iii).
In the energy regime |E| > 1, the Lyapunov exponent γ2

in Case (ii) is smaller than the one in Case (iii) in spite of
the same correlation strength B1. As a result, we find that, in
the DNA ladder model, correlation and asymmetry enhance
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Figure 12: DOS as a function of energy for the binary disordered
cases in the two-chain model. (a)WAT = 2.0, WGC = 1.0, and a =
1.0, b = 1.0. (b)WAT = 2.0,WGC = 1.0, a = 1.0, and b = 0.5. The
on-site energy is set at Ann = Bnn = 0.

the localization length ξ(≡ 1/γ2) of the electronic states
around |E| < 1, although the largest Lyapunov exponents
γ1 do not change effectively at all. Figures 13(b), 13(c),
and 13(d) show the nonnegative Lyapunov exponents in
the real DNA sequences of (b) HCh-22, (c) bacteriophages
of E. coli, and (d) histone proteins. In the case of HCh-
22, we used two sequences with N = 105, extracted from
the original large DNA sequences. The result shows that
the Lyapunov exponents do not depend on the details of
the difference in the sequences of HCh-22. Although the
weak long-range correlation has been observed in HCh-22 as
mentioned in the introduction, it does not affect the property
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Figure 13: Lyapunov exponents (γ1, γ2) as a function of energy in the ladder model. (a) Modified Bernoulli model, where case (1): B0 =
1.0,B1 = 1.0, Case (2): B0 = 1.0,B1 = 1.9, and Case (3): B0 = 1.7,B1 = 1.9 are shown. (b) HC-22. (c) Bacteriophages of E. coli (phage-λ,
phage-186). (d) Early histone H1 and late histone H1. The on-site energy is set at Ann = Bnn = 0, a = −1.0, and b = −0.5. The size of the
sequence is N = 105 for (a), N = 105 for (b), N = 48510 for the phage-λ in (c), N = 30624 for the phage-186 in (c), N = 787 for the early
histone H1 in (d), and N = 1182 for the late histone H1 in (d).

of localization. The sequences we used are almost symmetric
(RGC ∼ 0.5).

In addition, in the numerical calculation we set the on-
site energy as Ann = Bnn = Cnn = 0 for simplicity. The

sequence {Cnn+1} can be also generated by corresponding
to the base-pair sequence. The localization properties in
the simple few-chain models with the on-site disorder
have been extensively investigated [57]. Figure 14 shows
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Figure 14: Lyapunov exponents γi(i = 1, 2, 3) as a function of
energy in the correlated three-chain model. The parameters WAT =
2.0,WAT−AT = 1.0, a = 1.0, and b = 0.5 are shown. The on-site
energy is set at Ann = Bnn = Cnn = 0.

the energy dependence of the Lyapunov exponents in the
three-chain cases. We can observe that all of the Lyapunov
exponents γi(i ≤ d) are changed by the correlation. The
least nonnegative Lyapunov exponent γ3 is diminished by
the correlation. In particular, it is found that the correlation
of the sequence enhances the localization length defined by
using the least nonnegative Lyapunov exponent. We can see
that the localization length diverges at the band center E = 0.

In Figure 15(a) the result for asymmetric modified
Bernoulli system is shown. Apparently, the correlation
and/or asymmetry of the sequence effects a change in the
second and third Lyapunov exponents. In contrast, although
the global feature of γ1 is almost unchanged, the local
structure of the energy dependence is changed by the change
of B0. Figure 15(b) shows the results in phage-fd and phage-
186 in the three-chain model. It is found that the structure of
the energy dependence around |E| < 2 is different from that
in the artificial sequence by the modified Bernoulli map.

The charge transfer efficiency based on mismatch and
correlation effect for some genomic and synthetic sequences
are also investigated [58].

5.3. Polaron Models for a Double Strand of DNA. The
overlap of the electronic orbitals along the stacked base pairs
provides a pathway for charge propagation over 50 Å, and
the reaction rate between electron donors and acceptors
does not decay exponentially with distance. A multiple-step
hopping mechanism was recently proposed to explain the
long-range charge transfer behavior in DNA. In this theory,
the single G-C base pair is considered as a hole donor
due to its low ionization potential if compared to the one
on the A-T base pairs. Besides the multiple-step hopping
mechanism, polaron motion has also been considered as
a possible mechanism to explain the phenomena of DNA

charge transfer. The charge coupling with the DNA structural
deformations may create a polaron and cause a localized
state. The polaron behaves as a Brownian particle such that
it collides with low-energy excitations of its environment
that acts as a heat bath. For the most physical systems,
the acoustical and optical phonons are the main lattice
excitations as in the single-chain case given in Appendix D.

In this section, we present the formation of localized
polarons due to the coupling between charge carriers and
lattice vibrations of a double strand of DNA [14]. These
polarons in DNA act as donors and acceptors, which exhibit
an extrinsic semiconductor character of DNA. The results are
discussed in the context of experimental observations.

Let xn and yn be configuration angles for rotation of the
nth base group along the course of the backbone chains A
and B of DNA ladder, respectively. For the sake of simplicity,
we assume that all masses Mn of the nucleotide groups and
the bond lengths dn between S and Bn groups are identical
so that Mn = M and dn = d, giving the moment of inertia
In = I0 = Md2. In this case, the lattice Hamiltonian Hph can
be given by

Hph
(
xn, yn

) =
N∑

n=1

{
I0
2

(
ẋ2
n + ẏ2

n

)
+
A

2

(
x2
n + y2

n

)

+
K

2
(xn+1 − xn)2 +

K

2

(
yn+1 − yn

)2

+
S

2

(
xn − yn

)2
}

,

(28)

where A, K, and S are the parameters for the rotational
energy, the stacking energy, and the bonding energy of the
bases, respectively. We note here that various generalizations
and modifications of the model are straightforwardly possi-
ble by adapting a different combination of the interactions
and the hopping integrals. In the following, we give result
only for HOMO. We can obtain the result for LUMO in
simple replacements.

On the other hand, generalizing the idea of Holstein for
the one-dimensional molecular crystal to our case of the
double strand of DNA, the tight-binding Hamiltonian for
electrons is given by

HH
el =

N∑

n=1

{
−taA†(n+1)a

A
n − taA†(n−1)a

A
n + εAH(xn)aA†n aAn

+vn
(∣∣xn − yn

∣∣)aA†n aBn
}

+
N∑

n=1

{
−taB†(n+1)a

B
n − taB†(n−1)a

B
n + εBH

(
yn
)
aB†n aBn

+vn
(∣∣xn − yn

∣∣)aB†n aAn
}
.

(29)

For the case of LUMO, we can obtain the result by a → b
in HL

el. Here aA†n (bA†n ) is the electron creation operator in the
HOMO (LUMO) at the nth nucleotide group of P, S, and Bn
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Figure 15: The Lyapunov exponents (γ1, γ2, γ3) as a function of energy in the three-chain model. (a) Modified Bernoulli model and (b)
bacteriophages of E. coli (phage-fd, phage-186). The parameters are the same as the ones in Figure 14 except for on-site energies of C-chain
(Cn,n = 0).
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Figure 16: The DC-conductivity is shown for the n-type (or p-
type) extrinsic semiconductor where the energy gap Eg = 0.33 eV,
the hopping energy for the HOMO (or LUMO) band t = 0.2 eV,
and the activation energy for the polaron hopping of (a) Ea =
0.001 t, (b) Ea = 0.03 t, and (c) Ea = 0.05 t are taken, respectively.
Nc = Pv = 108 and n = ND −NA = 103 are assumed.

for the chain A. εAH(xn) and εBH(yn) are the electron-lattice
coupling Hel–ph given by

εAH(x) = εAH + FHx, (30)

εBH
(
y
) = εBH − FH y, (31)

respectively. We can also obtain εAL (xn), εBL (yn) for LUMO.
Moreover, we assume the relation

|εL − εH | � 4|t|, (32)

since this condition is realized in most of the DNA systems
and guarantees the semiconductivity of the DNA. The total
Hamiltonian Htot is given by

Htot = Hph +HH
el +HL

el, (33)

while the wavefunction |Φ〉 is given by

|Φ〉=
∑

s=A,B

N∑

n=1

{
φsna

s†
n |0〉+φsnb

s†
n |0〉+ϕsna

s†
n |0〉+ϕsnb

s†
n |0〉

}
,

(34)

where a†nσ (b†n) means the electron creation operator at site
n in chain A (B). φAn (φBn ) represents the HOMO and ϕAn (ϕBn)
represents the LUMO, at the nth nucleotide site in the chain
A(B), respectively. Applying to the Schrödinger equation
Htot|Φ〉 = Etot|Φ〉, we obtain the following equations for the
HOMO states of nucleotide groups in the double strand of
DNA:

−t
{
φAn+1 + φAn−1

}
+ εAHφAn + FHxnφ

A
n − vnφBn = EφAn ,

−t
{
φBn+1 + φBn−1

}
+ εBHφBn − FH ynφBn − vnφAn = EφBn ,

(35)

where E ≡ Etot − Hph(xn, yn), vn ≡ v(|xn − yn|). For the
LUMO states of nucleotide groups in the double strand of
DNA, the similar equations are given by replacing φ andH by
ϕ and L, respectively. Moreover, according to the argument of
Holstein, we find the following coupled discretized nonlinear
Schrödinger equation (DNSE) describing the electronic
behavior under the lattice vibrations in the ladder model
of DNA. In Appendix E, we give the derivation of the
coupled DNSEs. The single-chain version of the DNSE and
some comments on the physical meanings are also given in
Appendix D.

5.4. DC-Conductivity of the Double Strand of DNA. We
exclusively focused on the low-energy transport, when the
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charge injection energies are small compared with the
molecular bandgap of the isolated molecule which is of
the order of 2-3 eV. In the experiment of the conductance
property of the DNA, temperature dependence is important.
Finite temperature can also reduce the effective system size
and leads to the changes in the transport property. Moreover,
the effects of the stacking energy and of temperature
can be considered by introducing the fluctuation in the
hopping energy such as the Su-Schrieffer-Heeger model for
polyacetylene [59–61].

We consider DC-conductivity of periodic DNA sequence
based on the LUMO, HOMO band of π-electrons and
small polaron [14]. It is known that DNA behaves as n(p)-
type extrinsic semiconductor, where the donors (acceptors)
for the LUMO (HOMO) band are positively (negatively)
charged small polarons with the total number Nd(Na) and
the energy εd = E

sp
L = Ec − F2

L/I0ω
2
0, εa = E

sp
H = Ev +

F2
H/I0ω

2
0, where Ev(Ec) is the valence (conduction) band

edge. Following the standard argument, denote by nc and nD
the numbers of electrons in the conduction (LUMO) band
and in the donor levels, respectively; and denote by pv and pA
the numbers of electrons in the valence (HOMO) band and
in the acceptor levels, respectively. We now have the relation
nc + nd = Nd −Na + pv + pa, where

nd = Nd

1/2eβ(εd−μ) + 1
, pa = Na

1/2eβ(μ−εd) + 1
, (36)

where β ≡ 1/KBT and μ is chemical potential of the system.
If we suppose that εd − μ � kBT , μ − εa � kBT , nd � Nd,
and pa � Na, then

nc = eβ(μ−μi)ni, (37)

where ni =
√
NcPve−βEg /2 and μi = (Ec+Ev)/2+log(Pv/Nc)/2β.

The DC-conductivity is given as

σ = e2ncτe
me

(
= e2pvτh

mh

)
, (38)

by Drude formula. This suggests that if τe = const then
the temperature dependence of σ comes from nc, while if
nc = const then it comes from τe. Since the temperature
dependence of τe comes from other mechanisms of scattering
such as the activation of polaron motion considered by Yoo
et al., we can assume that τe = τ0e−βEa , where Ea is the
activation energy. Hence, we have

σ = e2ncτ0

me
exp−βEa. (39)

If we adopt the log σ versus 1/T plots, then we find the strong
temperature dependence found by Tran et al. and Yoo et al.
(see Figure 16).

It is found that the band gap is reduced by the formation
of the double strand of DNA and small polarons exist to
behave as localized donors and acceptors in the DNA double
helix (see Figure 17). This extrinsic semiconducting nature
of DNA qualitatively explains many experimental results that
are observed recently.
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Figure 17: Energy gap Eg(T) of the n-type (or p-type) extrinsic
semiconductor is shown for electron conduction (or hole conduc-
tion) where the energy gap Eg = 2 eV, t = 0.1 eV, Nc = Pv = 109,
and n = 106 are used, respectively.

As was stated in the introduction, it is very well known
that, in solid-state physics, the extrinsic semiconductor
character is added by impurity atoms that are exerted from
outside into host materials. For example, if the host material
is a homogeneous crystal of Si or Ge with four valence bonds,
then the impurities are As atoms with five valence bonds
and boron (B) atoms with three valence bonds, which then
provides an inhomogeneous material with impurity levels.
The As atoms play a role of donors with positive charge such
that the system becomes an n-type semiconductor, while
the B atoms play a role of acceptors with negative charge
such that the system becomes a p-type semiconductor.
Such a system of n- or p-type semiconductor exhibits an
extrinsic semiconductor character. On the other hand, in
our systems of DNA semiconductors, there exist no such
impurities exerted from outside; but already there exist
inside the DNA a complicated arrangement of bases of A,
G, C, and T, such that, among the bases, each one of the
bases may regard other bases as impurities. Hence, a kind
of extrinsic semiconductive nature may appear as a result
of self-organization of the base arrangement. This is the
meaning of our terminology of “extrinsic semiconductor”
for the DNA systems. Therefore, it is more preferable for us
to put “self-organized” in front of “extrinsic semiconductor”
for DNA such as “self-organized extrinsic semiconductor” in
order to represent the semiconducting character of DNA.

We would like to note that, in the d-dimensional
disordered systems, the activated hopping between localized
states, that is, the variable-range hopping, could be a
dominant mechanism for the Dc-conductivity, and the
temperature dependence is governed by

σ = σ0e
−(T0/T)d/(d+1)

, (40)

where T0 = 8Waγ/kB. Here W is the energy difference
between the two sites, γ is the Lyapunov exponent, and
a is the distance between the nearest neighboring bases.
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It is reasonable to expect that the experiments of charge
transport in λ-DNA suggest such temperature dependence

σ ∝ e−
√
T0/T at relatively low temperature due to the

1D aperiodic base-pair sequence. The main contribution
was given by the interaction with water molecules and
not with counterions. Further, polaron formation was not
hindered by the charge-solvent coupling. And the interaction
rather increased the binding energy (self-localization) of the
polaron by around 0.5 eV, which is much larger than relevant
temperature scales.

Before closing this section, we give brief comments
concerning the measurements of electronic conductivity in
DNA again. The DNA is quasi-1D systems coupled with
the environment including the surrounding substrate and
contact leads. In general, the Landauer-Buttiker formula
using transfer matrix method and the Kubo-Greenwood
formula using linear-response theory have been used to
estimate the transport properties in the quantum systems.
The transfer matrix method is straightforward for the quasi-
1D systems; however, it is inconvenient for the complicated
cases involving the environmental effects although the two
formulae are equivalent at least for single-particle cases [62,
63]. There is an indication that the transfer matrix method is
also effective even for law transmission coefficient due to the
contact effect, despite a very good charge transfer along the
DNA sequence [64].

6. Conduction and Proton Transfer

Gene mutations sometimes cause human disorders such as
cancer. Simultaneously, gene mutation can be a driving force
for processes of biodiversity and evolution [65]. When a
system contains hydrogen bonds, proton motion also needs
to be considered. Instead of oscillatory motions in a single-
well potential, protons can tunnel from one side to another
in a double-well potential of the hydrogen bond. This proton
tunneling causes an interstrand charge hopping. And it could
generate the tautomeric base pairs and destroy the fidelity of
the W-C base pairs.

Löwdin proposed that proton tunneling contributes to
the formation of rare tautomeric of DNA W-C base pairs
whose accumulation could result in DNA damages, point
mutations, and even tumor growth [66]. The argument
relies on the assumption that the rare tautomers are more
stable, and once the intermolecular proton transfer occurs,
lifetime of the tautomers is significantly larger than time of
DNA repair. Indeed, the results from the quantum chemical
and statistical mechanical calculations indicate that at room
temperature at least the GC tautomers (G∗ ≡ C∗) would
have a sufficient lifetime to cause the DNA damage through
mismatches of the W-C base pairs.

Ladik speculated that semiconductivity of DNA might be
related to the origin of cancer due to transmutation of genes
[8, 9]. Very recently, Shih et al. have also reported correlation
between the cancerous mutation hot spots and the charge
transport along DNA sequences [67].

The proton transfer causes fluctuation of the potential
and more or less affects the localization/transport property

of the charged carriers. At the same time, the proton transfer
suffers from the lattice vibration and the electron transport
along the base sequences of DNA. Accordingly, we should
treat the coupling between the proton transfer and the
phononic and electronic states when we investigate the
stability of the tutomatic states (the excited states). Recent
theoretical studies have shown that charged protonated base
pairs display smaller activation barriers, which make the
proton transfer and the tunneling more facile.

Chang et al. [43] have given the effective 1D model
Hamiltonian Htot = Hel−ph(t) + Hσ + Hel−σ , where Hσ =∑

n Hσn represents Hamiltonian describing the proton trans-
fers. Here Hamiltonian Hel−ph includes the electron and
phonon modes and the coupling. For the proton motion in
hydrogen bonds, they used a two-level system in order to
describe the tunneling behavior at molecular site n:

Hσn = 1
2

(
−εpσzn + tpσ

x
n

)
, (41)

where σzn and σxn are Pauli matrices assigned at site n, εp is the
energy bias between the two localized proton states, and tp is
the tunneling matrix element between the states. They have
modeled the coupling between the protons in the hydrogen
bond and the charges in the DNA strand as

Hel−σ =
∑
n

γσn
(
σzn − 1

)
C†nCn, (42)

where γσn is the coupling intensity. When the proton is in the
lower-energy state or there is no charge around the hydrogen
bond (〈C†nCn〉 = 0), the coupling vanishes.

Indeed, the normal G-C base pair is in the lower-energy
state and its tautomeric form is in an excited state. When
εp � tp, the probability of having a tautomeric form is
extremely small. However, the cation of a G-C base pair has
almost the same energy as that of its tautomeric form εp ≤ tp.
In this case, the proton state becomes delocalized in hydrogen
bonds.

The symmetry of potential well and the height of
barrier essentially affect the tunneling probability between
the potential wells. The probabilistic amplitude of proton
could influence the transport of the charged carriers through
the Coulomb interaction. In addition, the two-level approx-
imation will be broken down if the chaotic motion occurs in
the dynamics due to the coupling with lattice vibrations [68].

7. Summary and Discussion

We briefly reviewed our recent works together with con-
cerning the electronic states and the conduction/transfer in
DNA polymers. In Section 3, based on the Hückel model, we
have discussed the basics of quantum chemistry where the
electronic states of atoms in biochemistry such as C, N, O,
and P and the electronic configurations of the nitrogenous
bases, the sugar-phosphate groups, the nucleotides, and the
nucleotide bases are summarized, respectively. In Section 4,
based on the tight-binding approximation of the DNA
sequences, we have investigated the localization properties of
electronic states and quantum diffusion, using a stochastic
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bond-vibration approach for the poly(dG)-poly(dC), the
poly(dA)-poly(dT), and the mixed DNA polymers within the
frameworks of the polaron models. At that time, we assumed
that the dynamical disorder is caused by the DNA vibrational
modes, which are caused by a noise associated with stochastic
dynamics of the distances r(t) between the two Watson-Crick
base-pair partners. In Section 5, we have mainly investigated
the energy band structure and the localization property of
electrons in the disordered two- and three-chain systems
(ladder model) with long-range correlation as a simple
model for electronic property in a double strand of DNA by
using the tight-binding model. In addition, we investigated
the localization properties of electronic states in several
actual DNA sequences such as bacteriophages of Escherichia
coli and human chromosome 22, compared with those of
the artificial disordered sequences. In Sections 2 and 4, we
gave a brief explanation for DNA-bases sequences and gene
mutations, respectively, which are related to the DNA carrier
conduction phenomena [69–72]. The relationship between
the long-range correlations and the coherent charge transfer
in the substitutional DNA sequences has been studied, based
on the transfer matrix approaches [73, 74].

Recently, the tight-binding models for the DNA polymers
have been extended to the decorated ladder models and
the damaged DNA models by some groups. Furthermore,
the I-V characteristics of the ladder models coupled with
environments have been investigated as simple models for
DNA polymers [75–77].

Appendices

A. Hückel Parameters

Sandorfy’s formula [32], Streitwieser’s formula [35], and
Mulliken’s formula [33, 34] are given by following relations:

αẊ = α +
χX − χC
χC

× 4.1β, (A.1)

αẌ = αẊ + β, (A.2)

�CX = SCX
SCC

, (A.3)

respectively. See [5] for the details.

B. Transfer Matrix Method

Let us define the four-dimensional column vector in the
main text as Φn ≡ (φAn ,φAn−1,φBn ,φBn−1)

t
. Then, it can be

rewritten in the following form: Φn+1 =MnΦn, where

Mn =
(
An Vn

Un Bn

)
. (B.1)

Mn is the 4× 4 transfer matrix with the 2× 2 matrices:

An ≡
⎛
⎜⎝
E − An,n

An+1,n
−An,n−1

An+1,n
1 0

⎞
⎟⎠,

Bn ≡
⎛
⎜⎝
E − Bn,n

Bn+1,n
−Bn,n−1

Bn+1,n
1 0

⎞
⎟⎠,

Un ≡
⎛
⎜⎝
−Un

An+1,n
0

0 0

⎞
⎟⎠, Vn ≡

⎛
⎜⎝
−Vn

Bn+1,n
0

0 0

⎞
⎟⎠.

(B.2)

According to the sequence of N segments, we have to take
the matrix product M(N) ≡ MNMN−1 · · ·M1, which is also
a 4×4 matrix. When the double-chain system is periodic, we
adopt the Bloch theorem:

φAn+N = ρφAn , φBn+N = ρφBn , (B.3)

where ρ = eikN and k is the wavevector. Then, we find a 4× 4
determinant D(ρ) that is a fourth-order polynomial of ρ:

D
(
ρ
) ≡ det

[
M(N)− ρI4

]

= ρ4 − a1ρ
3 + a2ρ

2 − a3ρ + a4 = 0.
(B.4)

It provides the wave vector k in the system such that k =
2π j/N for j = −N

2
, . . . ,N/2. Here, if four roots are written

as ρ1, ρ2, ρ3, and ρ4, then the following conditions hold:

a1 ≡ trM(N) =
4∑

i=1

ρi, a2 ≡
4∑

i< j=1

ρiρj ,

a3 ≡
4∑

i< j<k=1

ρiρjρk, a4 ≡ detM(N) = ρ1ρ2ρ3ρ4.

(B.5)

Using a physical intuition, if an electron propagation with
k along one direction in the double chain is represented by
ρ, then the reverse propagation with −k is represented by
ρ−1. Therefore, the latter should be also accessible, since the
choice of the direction of the coordinate system is arbitrary.
Hence, ρ−1 must be an eigenvalue of D(ρ) = 0 such that

D
(
ρ−1) = ρ−4(a4ρ

4 − a3ρ
3 + a2ρ

2 − a1ρ + 1
) = 0. (B.6)

This situation imposes the particular condition on the matrix
M:

M†JM = J ,

J ≡
⎛
⎝J 0

0 J

⎞
⎠, J ≡

⎛
⎝0 −1

1 0

⎞
⎠,

(B.7)

where M† means the Hermitian conjugate of M and 0 is the
2 × 2 zero matrix, respectively. This property is called the
symplectic structure of M, where we have

D
(
ρ
) = ρ4D

(
ρ−1), (B.8)
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from which we find that a1 = a3, a4 = 1. Thus,M belongs to
SL(4, R). By using this property and dividing D(ρ) by ρ2, the
biquadratic equation is reduced to the quadratic equation

x2 − a1x + a2 − 2 = 0, x = ρ +
1
ρ
. (B.9)

Therefore, its two roots are given as

x± = 1
2

(
a1 ±

√
D
)

, D = a2
1 − 4a2 + 8. (B.10)

Thus, from (B.5) and tr(M2) =∑4
i=1 ρ

2
i , we obtain a2

1−2a2 =
tr(M2).

Now we can state a simple scheme to obtain the
spectrum. If an energy E satisfies

x± = 2 cos kN , (B.11)

then the energy is allowed; otherwise it is forbidden in
channel ±, respectively. This is a generalized version of the
Bloch condition for the single linear chain system with the
2× 2 transfer matrix M, where

trM = 2 cos kN. (B.12)

The density of states (DOS) D±(E) is calculated for each
channel ±, respectively:

dk± = 1
N
d cos−1

[
x±(E)

2

]

= − 1
N

∂x±/∂ε√
4− x2±

dE = D±(E)dE.
(B.13)

Therefore, the total DOS is given as the sum of D+(E) and
D−(E):

D(E) = D+(E) +D−(E), (B.14)

where D−(E) [D+(E)] means the DOS contributed from the
bonding (antibonding) channel − (+), respectively. It agrees
with the result on the tight-binding model for the ladder
structure. Physically speaking, the − (+) channel means the
bonding (antibonding) states between two parallel strands of
the DNA.

C. Transfer Matrices for Ladder Systems

In this appendix, we give the explicit expression of the energy
band for the decorated ladder model given in Figure 10(a). In
the unit cell, the period is taken asN = 2 and it contains four
π-orbitals. We apply the result in Appendix B for the case. Let
the transfer matrix method be

M =
(
A V
U B

)
. (C.1)

M is a 4× 4 transfer matrix with 2× 2 matrices:

A = An+1An ≡

⎛
⎜⎜⎜⎜⎝

(
E − β)(E − α)

ab
− a

b
−E − β

a

E − α
a

−b
a

⎞
⎟⎟⎟⎟⎠
= B,

V = An+1Vn ≡

⎛
⎜⎜⎜⎝

−E − β
ab

v 0

−v
a

0

⎞
⎟⎟⎟⎠ = U.

(C.2)

Let us calculate trM and tr(M2). We find that

trM = tr(A) + tr(B) = 2P − 2R,

tr
(
M2) = tr

(
A2) + tr

(
B2) + tr(UV) + tr(VU)

= 2(P +Q)2 + 2
(
R2 − 2

)
,

(C.3)

where

P =
(
E − β)(E − α)

ab
, Q =

(
E − β)v
ab

, R = a2 + b2

ab
.

(C.4)

The discriminant D is given by D = 2 tr(M2)− (trM)2 + 8 =
4Q2. As a result, we obtain

2 cos 2k = 1
2

(
trM ±√D

)

= P − R±Q

=
(
E − β)(E − α)

ab
− a2 + b2

ab
±

(
E − β)v
ab

.

(C.5)

Solving the above for E, we can obtain the energy bands:

E(±)
+

= 1
2

((
α + β

)− v

±
√(
α−β)2 +v2 +4(a2 +b2)+2

(
α + β

)
v+4βv+8ab cos 2k

)
,

E(±)
−

= 1
2

((
α + β

)
+ v

±
√(
α−β)2+v2+4(a2 +b2)−2

(
α+β

)
v−4βv+8ab cos 2k

)
.

(C.6)

In Figure 18(a) the energy band structure for a = b = 1 when
α = 1,β = 0 is given with varying the interchain hopping v.
Figure 18(b) shows the cross-section view at v = 1.

The extension to the decorated three chains (d = 3) is
straightforward. Here we give the transfer matrix for a simple
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Figure 18: Energy bands of the decorated ladder model. (a) The energy bands as a function of V . (b) The snap shot of the energy bands
when V = 1. k means the wave vector in units of π/s such that −1.0 ≤ k ≤ 1.0, V means the π-electron hopping integral between the
interchain sites, and E means the energy in units of V = 1. Here we have taken the values α = 1.0, β = 0, and a = b = 1.

system of coupled three chains: Φn+1 = MnΦn, where Φn =
(φAn+1,φAn ,φCn+1,φCn ,φBn+1,φBn )

t
. Furthermore, 6 × 6 transfer

matrix with the 2×2 submatrices is given in block tridiagonal
form

Mn =
⎛
⎜⎝
An VA

n 0
VC
n Cn UC

n

0 UB
n Bn

⎞
⎟⎠, (C.7)

where

Cn ≡

⎛
⎜⎜⎝

E − Cn,n

Cn+1,n
−Cn,n−1

Cn+1,n

1 0

⎞
⎟⎟⎠,

VC
n ≡

⎛
⎜⎜⎝
− Vn

Cn+1,n
0

0 0

⎞
⎟⎟⎠, VA

n ≡

⎛
⎜⎜⎝
− Vn

An+1,n
0

0 0

⎞
⎟⎟⎠,

UC
n ≡

⎛
⎜⎜⎝
− Un

Cn+1,n
0

0 0

⎞
⎟⎟⎠, UB

n ≡

⎛
⎜⎜⎝
− Un

Bn+1,n
0

0 0

⎞
⎟⎟⎠.

(C.8)

For simplicity, we set An+1,n = Bn+1,n = a, Cn+1,n = c,
Ann = Bnn = α, Cnn = κ, and Vn = Un = v at site n. Then

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E − α
a

−1 −v
a

0 0 0

1 0 0 0 0 0

−v
c

0
E − κ
c

−1 −v
c

0

0 0 1 0 0 0

0 0 −v
a

0
E − α
a

−1

0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C.9)

Even for general multichain models, some useful formulae
exist in order to obtain the eigenvalues of block tridiagonal

matrices and the determinants of the corresponding block
tridiagonal matrices [78–80].

D. Nonlinear Schrödinger Equation

In this appendix, we derive the discrete nonlinear
Schrödinger equation for 1D electronic system coupled
with lattice oscillations. The relative motions between two
different base pairs can be represented by an acoustical
phonon mode and the vibrational motion inside a base
pair by optical phonons. These modes represent the lattice
distortions such as sliding, twisting, or bending. The
Hamiltonian that describes these modes is given by

Hph =
∑
n

{
p2
n

2M
+

1
2
Mω2

s (un+1−un)2

}
+
∑
n

{
P2
n

2M
+

1
2
Mω2

ov
2
n

}
.

(D.1)

Here un and vn are lattice displacements and the internal
vibration coordinates of the nth unit cell and pn and Pn are
their conjugated momentum, respectively. AndM is the mass
of the unit cell, ωo is the oscillation frequency of the optical
phonon, and the dispersion relation of the acoustical motion
is ωs(k) = csk, where cs is the sound velocity along the chain.
Note that the two kinds of oscillations can be regarded as the
dynamics of radial and angular coordinates in the polaron
models in Section 4.

Then in the Hamiltonian for electrons, both the on-
site potentials En and the hopping integrals Vm,n depend
upon these vibrations, in principle. The charge coupling
to the acoustical phonons is given by the Su-Schrieffer-
Heeger (SSH) model [59–61], and the interaction with the
optical phonons is described via the molecular crystal model
of Holstein [81–83]. The SSH model deals classically with
the lattice degrees of freedom, while electrons are treated
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quantum mechanically. Thus the total Hamiltonian for the
electron-phonon interactions in the DNA system is given by

Hel−ph =
∑
n

α(V0 + un+1 − un + δVnn+1)

×
(
C†nCn+1 + C†n+1Cn

)
+
∑
n

(
En + γnvn

)
C†nCn,

(D.2)

where α and γn are the coupling constants. Here V0 is the
bare amplitude of the hopping term and the term δVnn+1 is
a random contribution from the conformational disorder,
which we include to describe. The Anderson localization
takes place when En is a static on-site randomness. When
En = constant in the system with half-filled conduction
band, such as a 1D ionic crystal, the SSH term generates
dimerization in the ground state (the Peierls instability) and
forms solitons in the excited states.

However, DNA is considered as a band insulator. Both
interactions can generate lattice distortions and lead to
polaron formation when a charge is doped into the molecule.

The coupling with (un+1 − un) usually induces small
polarons in ionic crystals. The calculations showed that
a polaron may be built and be robust within a wide
range of model parameters. The influence of random base
sequences was apparently not strong enough to destroy it.
Thus, polaron drifting may constitute a possible transport
mechanism in DNA oligomers.

From the total Hamiltonian Htot = Hph + Hel−ph of
the system, we can derive the equations of motion for the
variables φn, un, and vn as follows:

d2un
dt2

+ ω2
s (2un(t)− un+1(t)− un−1(t))

= 2αRe
(
φ∗n+1(t)φn(t)φn ∗ (t)φn−1(t)

)
,

(D.3)

d2vn
dt2

+ ω2
ovn(t) = γn

∣∣φn(t)
∣∣2, (D.4)

i�
dφn
dt

= (
En + γnvn

)
φn(t) +

∑
m

tmnφm(t), (D.5)

where tmn = (V0 + um − un + δVmn). This means that
the equilibrium position of each atom in the lattice is
charged by an amount proportional to the probability for
the electron to occupy that special atom. The twist polaron
modifies the inter-base electronic coupling, though this effect
is apparently less strong than the coupling in the Holstein
model. Accordingly, we also assume that the dependence of
the hopping integrals on the un is so weak so that it can be
ignored. In the following part, we deal with only the Holstein
polarons.

Additionally, we assume that time scale of lattice vibra-
tions and electron evolution are such that vibrations are
slaved by electron probability. It is then possible to set time
derivative in (D.4) equal to zero. Then, we obtain

i�
dφn
dt

=
∑
m

tmnφm(t) + α
∣∣φn(t)

∣∣2
φn(t) + Enφn(t), (D.6)

where α = γ2
n/ω

2
o . By setting tmn = −t if |m − n| = 1 and

zero otherwise, we obtain the discrete nonlinear Schrödinger
equation (DNSE)

i�
dφn
dt

= −t(φn+1(t) + φn−1(t)
)

+ a
∣∣φn(t)

∣∣2
φn(t) + Enφn(t).

(D.7)

The time-independent version is given as

Eφn = −t
(
φn+1 + φn−1

)
+ α

∣∣φn
∣∣2
φn + Enφn, (D.8)

which appears in the Holstein polaron model on the
lattice. The DNSEs (40) and (41) show more various
properties due to the inhomogeneity of En and the strength
α for nonlinearity, and so forth [84, 85].

For example, localization-delocalization transition takes
place, depending on the coupling strength and the initial
state. The DNSE has been studied in the context of delo-
calization due to nonlinearity. Indeed, (D.7) describes the
1D disordered waveguide lattice, which is called the Gross-
Pitaevsky (GP) equation on a discretized lattice [86]. When
the absolute value of the nonlinearity parameter a is greater
than some critical value αc, the excitation is self-trapped. It
was mathematically proved that the DNLS has quasiperiodic
self-trapped solutions called the discrete breathers [87, 88].
On the other hand, it is found that at moderate strength
of nonlinearity the spreading of the wavepacket algebraically
grows as

√〈Δn)2〉 ∼ tν(μ ∼ 0.2) [89].

E. Coupled Nonlinear Schrödinger Equations

In this appendix, we derive the coupled nonlinear
Schrödinger equations in order to describe the effect of
formation of a double strand of DNA on the polarons in
the HOMO band, following Holstein’s argument [14]. The
energy of HOMO band is expressed as

EH
({
xn, yn

}) = Hph
({
xn, yn

})

+
N∑

n=1

(
εH(xn)

∣∣∣φAn
∣∣∣2

+ εH
(
yn
)∣∣∣φBn

∣∣∣2
)

−
N∑

n=1

t
((
φAn+1 + φAn−1

)
ΦB∗
n

+
(
φBn+1 + φBn−1

)
φA∗n

)

−
N∑

n=1

vn
(
φAnΦ

B∗
n + φBnφ

A∗
n

)
.

(E.1)

Differentiating the energy with respect to xp, yp, respectively,
we approximately obtain the most contributed coordinates
xp, yp by ∂EH/∂xp = 0, ∂EH/∂yp = 0,

xp = −ρ
∣∣∣φAp

∣∣∣2 − ν
(
φApφ

B∗
p + φBpφ

A∗
p

)
,

yp = −ρ
∣∣∣φBp

∣∣∣2 − ν
(
φApφ

B∗
p + φBpφ

A∗
p

)
,

(E.2)
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where ρ = FH/I0ω
2
0, ν = α/I0ω

2
0. In the derivation, we

have assumed that vp = v − α|xp − yp|, ∂SABH /∂xp = 0,
where ∂SABH /∂yp = 0, where SABH = (φApφ

B∗
p + φBpφ

A∗
p ).

Note that |ΦA
n |2(|ΦB

n |2) means the frontier orbital density
at pth nucleotide group in chain A(B) and SABH means the
overlapping integral of the frontier orbitals for electrons in
the HOMO at pth nucleotide group between the chains A
and B. Substituting the expressions into (35) and (35), we
obtain the following coupled DNSEs:

−t
{
φAn+1 + φAn−1

}
+ εABH φAn − vABn φBn = EφAn ,

−t
{
φBn+1 + φB

n−1

}
+ εBAH φBn − vABn φAn = EφBn ,

(E.3)

where

εABHn = εAH − ρFH
∣∣∣φAn

∣∣∣2
+ νFHS

AB
H ,

εBAHn = εBH − ρFH
∣∣∣φBn

∣∣∣2 − νFHS
AB
H ,

vABn = v − νFH

(∣∣∣φAn
∣∣∣2

+
∣∣∣φBn

∣∣∣2
)
.

(E.4)

By the same argument, similar equations can be obtained for
the LUMO band case as well, just by replacing the orbitals
of electrons in HOMO bands with the frontier orbitals for
holes in the LUMO bands, respectively. In the limit v →
0, ν → 0, it becomes the decoupled DNSE in (D.8) without
randomness.

F. The Lyapunov Exponents and
Multichannel Conductance

The definition for energy dependence of the Lyapunov
exponents is given by

γi = lim
N→∞

1
2N

log σi
(
Md(N)†Md(N)

)
, (F.1)

where σi(· · · ) denotes the ith eigenvalue of the matrix
Md(N)†Md(N) [47]. As the transfer matrix Td(N) is sym-
plectic, the eigenvalues of Md(N)†Md(N) have reciprocal
symmetry around the unity as eγ1 , . . . , eγd e−γd , . . . , e−γ1 , where
γ1 ≥ γ2 ≥ · · · γd ≥ 0. d denotes the number of channels; that
is, d = 2 in the two-chain model and d = 3 in the three-chain
model.

The Lyapunov exponent is related to the DOS ρ(E) as an
analogue of the Thouless relation (the generalized Thouless
relation) [90]:

d∑

i

γi(E) ∼
∫

ln
∣∣E − E′∣∣ρ(E′)dE′. (F.2)

Accordingly, we can see that the singularity in the largest
Lyapunov exponent is strongly related to the singularity in
the DOS.

Generally speaking, in the quasi-one-dimensional chain
with the hopping disorder, the singularity in the DOS, the
localization length, and the conductance at the band center

depend on the parity, the bipartiteness, and the boundary
condition. Since discussions on the details are out of scope
of this paper, we give simple comments. Note that the parity
effects appear in the odd number chains with the hopping
randomness. In the odd number chain with the hopping
randomness, only one mode at E = 0 remained as an
extended state, that is, γd = 0, while other exponents are
positive, γd−1 > · · · > γ1 > 0. The behavior is seen in
Figure 14 in the main text. Then, nonlocalized states with γ =
0 determine the conductance. Although we have ignored the
bipartite structure in the three-chain models for simplicity, if
we introduce bipartiteness in the intrachain hopping integral
Vn(= Un), another delocalized state due to chiral symmetry
appears at E = 0.

Furthermore, we find that, in the thermodynamic limit
(n → ∞), the largest channel-dependent localization length
ξd = 1/γd determines the exponential decay in the Landauer
conductance g(n) that is measured in units of e2/h at zero
temperature and serves as the localization length of the total
system of the coupled chains [49, 50]. It is given as

g(n) = 2
d∑

i=1

1
cosh 2n/ξi(n)− 1

∼ exp

(
− 2n
ξd(n)

)
, (F.3)

for n → ∞, where n denotes the system size along the
chain [48]. Recently, electron transport for molecular wires
between two metallic electrorodes has been also investigated
by several techniques.

If we impose a voltage difference V over the molecular
structure, then we have one end point with energy EF + eV
and the other is still EF . Only electrons in that range con-
tribute to the conductance. Therefore, the I-V characteristics
can be evaluated as

I(EF) = Ve

π�

∫
dE

(
−∂ f
∂E

)∑

i

Ti(E)

→ Ve

π�

∑

i j

Ti j(EF),

(F.4)

where f (E) ≡ 1/(eE/kBT + 1) means the Fermi distribution
function and Tij ≡ |ti j|2 is the squared transmission
amplitudes between the ith and jth channels. At the zero-
temperature limit, all quantities can be evaluated by the
transmission matrix at E = EF .

G. Modified Bernoulli Map

The correlated binary sequence {Vn} and/or {Cnn+1} of the
hopping integrals can be generated by the modified Bernoulli
map [91–93]:

Xn+1 =
⎧⎨
⎩
Xn + 2B0−1XB0

n (XnεI0),

Xn − 2B1−1 (1− Xn)B1 (Xn ε I1),
(G.1)

where I0 = [0, 1/2), I1 = [1/2, 1). B0 and B1 are the bifur-
cation parameters that control correlation in the sequence.
We set 1 < B0 < B1 < 2 for simplicity. The asymmetry of
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the map (B0 /=B1) corresponds to the asymmetric property
in the distribution for a real sequence in the double-helix
DNA, where the number of the A-T pairs is not equal to
that of G-C pairs; they are different from random binary
sequences with equal weight. We introduce an indicator RGC

for the rate of the G-C pairs in the sequences such as RGC =
(NG +NC)/(NG +NC +NA +NT), where NG, NC, NA, and NT

denote the numbers of symbols G, C, A, and T in the base
sequence, respectively.

In the case of B0 = B1(≡ B), depending on the value
B, the correlation function C(n)(≡ 〈Vn0Vn0+n〉) (n0 = 1;
n is even) decays following inverse power-law as C(n) ∼
n−(2−B)/(B−1) for large n (3/2 < B < 2). The power spectrum
becomes S( f ) ∼ f −(2B−3)/(B−1) for small f . We focus on the
Gaussian and non-Gaussian stationary regions (1 < B < 2)
that correspond to some real DNA-base-pair sequences with
S( f ) ∼ f −α(0.2 < α < 0.8).

In the ladder models of Section 5, we use for the
interchain hopping integrals at odd sites n the symbolized
sequences {Vn} that are defined by the following rule:

Vn =
⎧⎨
⎩
WAT =WTA (Xn ∈ I0),

WGC =WCG (Xn ∈ I1).
(G.2)

(See Figure 10(a)). In the numerical calculation, WGC is set
at a half of WAT (WGC = WAT/2) for simplicity. Then, the
artificial binary sequence can be roughly regarded as the
base-pair sequence as observed in the λ-DNA. Note that the
correlated four-letter sequence {En} such as DNA can be also
generated by using two independent sequences {Xn}, {Yn}
by the modified Bernoulli map:

En =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A (Xn ∈ I0,Yn ∈ I0),

T (Xn ∈ I0,Yn ∈ I1),

G (Xn ∈ I1,Yn ∈ I0),

C (Xn ∈ I1,Yn ∈ I1).

(G.3)

In the three-chain models, the interchain hopping integral
Vn = Un for every site n can be generated in the same
way as to the two-chain models. Furthermore, we use the
successive sequence {Xn,Xn+1}, when we make a correlated
binary sequence {Cnn+1} as the hopping integral of the
middle (nucleotide) chain as follows:

Cnn+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

WAT−AT (Xn ∈ I0,Xn+1 ∈ I0),

WAT−GC (Xn ∈ I0,Xn+1 ∈ I1),

WGC−AT (Xn ∈ I1,Xn+1 ∈ I0),

WGC−GC (Xn ∈ I1,Xn+1 ∈ I1).

(G.4)

In the numerical calculation, we assume the following rules
for simplicity:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

WGC−GC = WAT−AT

2
,

WAT−GC = (WAT−AT +WGC−GC)
2

,

WGC−AT =WAT−GC.

(G.5)

As a result, the parameters are WAT and WAT−AT. This simple
rule is based on the binary classification of the four DNA
nucleotides: adenine and guanine are purines; cytosine and
thymine are pyrimidines.
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