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The dynamics of a viral infection model with nonautonomous lytic immune response is studied
from the perspective of dying out of the disease. With the help of the theory of exponential
dichotomy of linear systems, we give a new proof about the global asymptotic stability of the

infection-free equilibrium for the case Ry = 1. The result improves and complements one of the
results of Wang et al. (2006).

1. Introduction

Throughout this paper, given a bounded continuous function p defined on R, let p' and p* be
defined as

I _ s u _
pl=infp(), p"= Stgzgp(t)' (1.1)

The aim of this paper is to investigate the stability property of the infection-free
equilibrium of the following nonautonomous viral infection model:

x(t) = A —dx - pxy,
y(t) = pxy - ay - p()yz, (1.2)

z(t) = cy — bz,

where x(t), y(t), and z(t), represents susceptible host cells, a virus population, and a CTL
response, respectively. Susceptible host cells are generated at a rate A, die at a rate dx,
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and become infected by virus at a rate pxy. Infected cells die at a rate ay and are killed
by the CTL response at a rate p(t)yz. The CTL response expands in response to viral antigen
derived from infected cells at a rate cy and decay in the absence of antigenic stimulation at a
rate bz. We assume that A, d, B, a, ¢, and b are all positive constants and p(t) is a continuous,
real-valued functions which is bounded above and below by positive constants. For more
detail deduction and background of the above model, see Wang et al. [1] and Fan and Wang
[2].

We consider (1.2) together with the following initial conditions

x(0)>0, y(0)>0, z(0)>0. (1.3)

It is not difficult to see that solutions of (1.2)-(1.3) are well defined and positive for all t > 0.

Recently, Wang et al. [1] proposed and studied the dynamic behaviors of the
system (1.2). Obviously, system (1.2) admits one and only one steady state Ey = (x*,0,0) =
(A/d,0,0), which represents the infection-free equilibrium. The basic reproductive ratio
of the virus is given by Ry = Af/ad. It can be expected that disease dies out if
Ry < 1 and becomes endemic if Ry > 1. However, it seems not an easy thing to
deal with the critical case Ry = 1. In [1], the authors obtained the following interesting
result.

Theorem A. The infection-free equilibrium Ey is globally asymptotically stable if Ry = 1.

Indeed, in their proof of Theorem A, by using the variation of constants formula for
inhomogeneous linear ordinary differential equations, the solution to the third equality of
system (1.2) takes the form

t bs
~ o Jocy(s)e™ds 14
z(t) = z(0)e™ + — (1.4)
From this equality, they immediately declared that
t
'z(t) - Cyb( N 0 ast— +oo. (15)

Maybe it is obviously to some scholars that equality (1.4) implies (1.5), however, we found it
is not an easy thing for us to understand this deduction. Since (1.4) and (1.5) play crucial role
in their prove of Theorem A, it motivated us to propose the following interesting issue.

Is It Possible for Us to Give a Different Proof of Theorem A?

On the other hand, we argue that it is more suitable to consider a general nonautonomous
p(t) than that of a periodic function. Thus, it is natural to propose the following question.
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Whether the Conclusion of Theorem A Still Holds Under the Assumption That p(t) is
a General Positive Nonautonomous Continuous Function?

The aim of this paper is, by applying the theory of exponential dichotomies of linear system
[3, 4] and adapting some analysis technique recently developed by Chen et al. [5-8], to give
an affirmed answer to above two issues, more precisely, we obtain the following theorem.

Theorem B. Let p(t) be a positive continuous function bounded above and below by positive
constants. Then the infection-free equilibrium Eq of system (1.2) is globally asymptotically stable if
Ry=1

We will prove Theorem B in the next section and give a numeric simulation in
Section 3. We end this paper by a briefly discussion. For more works on viral infection model,
one could refer to [1-6, 9-17] and the references cited therein. For the works about the stability
of differential equations, one could refer to [7, 8, 18, 19] and the references cited therein.

2. Proof of Theorem B

Now we state several lemmas which will be useful in proving of our main result.

Lemma 2.1 (see [13]). Ifa>0,b > 0and x > x(b — ax), when t > ty and x(ty) > 0, one has

lim inf x(t) > E (2.1)
t—+oo a
Ifa>0,b>0and x < x(b - ax), when t >ty and x(ty) > 0, one has
. b
limsup x(t) < . (2.2)

t—+oo

Lemma 2.2. Let b be a positive constant and let c(t) is a nonnegative continuous bounded function,
then system

x(t) = —=bx + c(t) (2.3)

admits a unique bounded solution x*(t), which is globally attractive.

Proof. Since b is a positive constant, it follows that system
x(t) = —bx (2.4)

admits the exponential dichotomies. From He [3, page 59] or Lin [4, page 55] we know that
(2.3) admits a unique bounded solution

x*(t) = f e Pt9¢(s)ds. (2.5)
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Let x(t) be any solution of system (2.3), and u(t) = x(¢) — x*(t). Then

%(t) = —bx(t) + c(t),

(2.6)
X*(t) = =bx*(t) + c(t).
It follows that u satisfies
u(t) = —bu(t). (2.7)
Thus,
u(t) = u(0)e™ — 0 ast— +oo, (2.8)
that is,
tl_i)riloo(x(t) —x*(t)) =0. (2.9)
This ends the proof of Lemma 2.3. O

Lemma 2.3 (see [1]). All solutions of system (1.2) are positive for t > 0 and there exists M > 0,
such that all the solutions satisfy x(t), y(t), z(t) < M for all large t.

Lemma 2.4 (see [1]). Let x* =limsup,_,,_ x(t). Then x* < x* := A/d.

Proof of Theorem B. Let (x(t),y(t),z(t))T be any positive solution of system (1.2), from
Lemma 2.4 it follows that y(t) is bounded for all t > 0. From the third equation of system
(1.2) we have

Z(t) = cy(t) — bz(t). (2.10)
It follows from Lemma 2.3 that system (2.10) admits a unique bounded solution

Z*(t) = ft e !9 cy(s)ds, (2.11)

also,

z(t) - 2* ()| — 0 as t —s +oo, (2.12)
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For arbitrarily small positive constant € (without loss of generality, we may assume that 2(b +
(B+p")e) € <1),it follows from (2.12) and Lemma 2.2 that there exists a T; > 0 such that for

allt > T;

z(t) > z"(t) — ¢,

x(t) <x*+e.
Substituting (2.13) to the second equation of system (1.2) leads to

v =pxy—ay-ptiyz< (B(x* +¢e) —a-pt)(z" -¢))y.

Noting that Ry = 1, which implies that fx* — a = 0, thus, above inequality leads to

t
y(t) < <(ﬂ +p(t)e - cp(t) f_ e"(”)y(s)d8>y(t)
U\ ol * -bs —s)d
< (([5 +p")e—cp fo e y(t-s) S>y(t)
t
< <(ﬂ +p")e—cp' f eyt~ s)ds>y<t>.
0
It follows from (2.15) that
y(t) < (B+p*)ey(d).
For t — s > 0, integrating (2.16) on [t — s, t], we derive
y(t—s) > y(t)e FPI=.
Substituting (2.17) into (2.15) leads to
t
y(t) < <([5 +pt)e- cp’ J‘ ebsy(t)e(ﬂ”’u)“ds)y(t)
0
t
= <(ﬂ +p“)e—cp! f 8_(b+(ﬂ+’”u)€)sdsy(t)>y(t)-
0

Noting that

1
b+ (f+p*)e

0

t o)
J‘ o+ Bps 4o J e Brpesgg L
0

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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It follows from (2.19) that for above ¢ > 0, there exists an enough large T; > 0 such that for all
t> T1 ,

t ., 1 1
e br(Ppe)s g > —e> . (2.20)
Io b+ (f+p*)e 2(b+ (B+p*)e)

Substituting (2.20) into (2.18), for t > T, one has

!

cp
-yt t). 2.21

y(t) < <(ﬁ +p*)e

Applying Lemma 2.1 to (2.18), it immediately follows that

2o+ (B+p)el (B+p)e.

hfrlfip y(t) < ~ (2.22)
Since y(t) > 0 for all t > 0, it follows that
0 <lim infy (1) < htnliip y6 < 2[b+ (B + P:p)ls] B+ P")s. 223)
Since ¢ is arbitrarily small positive constant, setting ¢ — 0 in (2.23) leads to
tl_i)Tw y(t) =0. (2.24)

The rest of the proof is similarly to the proof of Theorem 2.2 in [1] and we omit the detail
here. O
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Figure 1: Dynamic behaviors of the first component x(t) of the solution (x(t), y(t), z(t)T to system (3.1)
with the initial condition (0.1,0.1,0.1)", (1,1,1)", (2,3,4)", and (0.6,1,2)", respectively.
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Figure 2: Dynamic behaviors of the second component y(f) of the solution (x(f), y(t), z1)) to system (3.1)
with the initial condition (0.1,0.1,0.1)7, (1,1,1)7, (2,3,4)", and (0.6,1,2)", respectively.

3. An Example

Consider the following viral infection model:

x=1-x-xy,

cos <\/§t> . sin(t)

y=xy-y- 37 +1+ 3 3 vz, (3.1)

z'—1 —1z
- Y3

In this case, corresponding to system (12),A =a=d=p=1,¢=1/2,b =1/3,
p(t) = 1+ cos(+/3t)/3 + sin(t)/3. Obviously, Ry = AB/ad = 1. Thus, as a consequence
of Theorem B, the infection-free equilibrium Ey is globally asymptotically stable. Numeric
simulations (Figures 1, 2, and 3) support this conclusion. We mention here that since p(t)
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Figure 3: Dynamic behaviors of the third component z(t) of the solution (x(t),y(t),z(t))T to system (3.1)
with the initial condition (0.1,0.1,0.1)", (1,1,1)", (2,3,4)", and (0.6,1,2)", respectively.

is general nonautonomous continuous function, Theorem A could not be applied to system
(3.1).

4, Conclusion

In this paper, we revisit the model proposed by Wang et al. [1]. By applying the theory of
exponential dichotomy of linear systems and the differential inequality theory, we show that
for general nonautonomous positive continuous coefficient p(t), Ry = 1 is enough to ensure
the global asymptotic stability of the infection-free equilibrium.
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