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The relief distributions after large disasters play an important role for rescue works. After disasters there is a high degree of
uncertainty, such as the demands of disaster points and the damage of paths. The demands of affected points and the velocities
between two points on the paths are uncertain in this article, and the robust optimization method is applied to deal with the
uncertain parameters.This paper proposes a nonlinear location routing problemwith half-time windows and with three objectives.
The affected points can be visited more than one time. The goals are the total costs of the transportation, the satisfaction rates of
disaster nodes, and the path transport capacities which are denoted by vehicle velocities. Finally, the genetic algorithm is applied to
solve a number of numerical examples, and the results show that the genetic algorithm is very stable and effective for this problem.

1. Introduction

In recent years, man-made or natural disasters which caused
huge casualties and economic losses occurred frequently in
different regions and countries. Timely and effective rescue
works are very important after disasters. The emergency
logistics management mainly includes two aspects [1]: the
facility location problem (FLP) and the vehicle routing prob-
lem (VRP). In fact, there is a close relationship between facil-
ity location problemand vehicle routing problemabout emer-
gency logistics, that is, location routing problem (LRP). Com-
pared with the traditional transportation logistics, the facility
location problem and vehicle routing problem about emer-
gency logistics are more challenging and complex [2]. von
Boventer [3] combined the facility location problem and the
vehicle routing problem. Up to now, there have been abun-
dant research results about LRP [4, 5].

After disasters, there are a high degree of uncertainties in
all aspects, such as the relief demands and the path transport
capacities. Three major methods for dealing with the uncer-
tain parameters are stochastic programming, fuzzy method,
and robust optimizationmethod.Ahmadi-Javid and Seddighi
[6] studied a stochastic LRP problem. The materials which
were provided by facilities are random variables. Under

uncertain demands in the short time after disasters [7], large
scale emergency scheduling problems were studied, includ-
ing the selection of supply points, route selection, the deci-
sions of the transport quantities, and the distribution meth-
ods, and the fuzzy set was applied to express the uncertain
demands. ZareMehrjerdi andNadizadeh [8] studied the LRP
problemwith capacity restrictions of the vehicles and the dis-
tribution centers. Triangular fuzzy number represented the
uncertainty demands. Lu [9] considered the robust weighted
P-center model, and the travel time and demands of affected
pointswere all uncertain.Wang et al. [10] proposed a dynamic
time-space network model. It was a network flowmodel with
multistages andmultimaterials. Robust optimizationmethod
was applied to deal with the uncertain demand. Wang et al.
[11] proposed a multiobjective location routing model with
split delivery. It optimized the allocation of reliefs after earth-
quake. The objectives were to minimize the travel time, to
minimize the total costs including the fixed costs of the
distribution centers and the vehicles transportation costs and
to maximize the path reliability, but the demands of disaster
points and the probabilities of available arcs were certain.
Koç et al. [12] studied the LRP problem with time windows.
It was a certain problem with heterogeneous fleets and with
spit delivery, and the objectivewas tominimize the total costs.
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It can be seen from the existing literatures that there are
little researches on LRP problem with uncertain parameters
which are solved by robust optimization. In this paper, the
robust optimizationmethod is used to deal with the uncertain
demands and the uncertain velocities between two disaster
points on the paths. In addition, the most scholars take the
cost as the objective of LRP problem. Actually, the distances
and the travel time between two points after disasters will be
affected, and we will pay the price. Then, the distance and
travel time can be understood as the travel cost. In this paper,
the half-time windows constraints are quoted, so the time
when the materials reach the demand points cannot be later
than the specified time. Thus, the timeliness of emergency
rescues is improved. After disasters, all kinds of materials are
in short supplies, so it is very important to possess adequate
relief supplies. Therefore, the minimization of the total dis-
tribution costs is one of the objectives, and the maximization
of the worst path satisfaction rates is the second objective.
After incidents, the transport network will be destroyed. In
order to find a better path, themaximization of path transport
capacities is the third objective in this paper.

2. The Problem Description

Generally, the distribution network of reliefs after disasters is
described as a graph 𝐺 = (𝑉, 𝐸). 𝑉 is a vertex set, and 𝑀 ={𝑛+1, 𝑛+2, . . . , 𝑛+𝑚} is a set of candidate distribution centers.
We assume that there are no demands for a point in the set𝑀.𝑁 = {1, 2, . . . , 𝑛} is disaster point set. 𝐸 = {(𝑖, 𝑗) : 𝑖, 𝑗 ∈ 𝑉, 𝑖 ̸=𝑗} is effective arc set.𝐾 = {1, 2, . . . , 𝑘} is vehicle set.This paper
considers the following three objectives:

(1) Minimize total costs including fixed costs and vehicle
transportation costs.

(2) Maximize the minimummaterial satisfaction rates of
demand points.

(3) Maximize the transport capacities of the worst path.
(The transport capacities are represented by the veloc-
ities of the vehicle.)

This paper has the following assumptions:

(1) The disaster points and the candidate distribution
centers are known and the capacities of the candidate
distribution centers are large enough.

(2) The available arcs and distances between two points
on the transport network are known.

(3) Because the reliefs are calculated by volume, different
types of relief supplies can be regarded as a kind of
material.

(4) The relief demands of the demand points are greater
than or equal to the amounts of supplies because of
the materials shortage after disasters.

(5) In this paper, we can only consider the disaster points
which can be serviced by vehicles, and the disaster
points which can be serviced by the special trans-
portation methods (e.g., helicopters) are ignored.

The parameters and variables used in this paper are intro-
duced in Notations.

3. The Multiobjectives LRP Model

3.1. Objective 1: Minimization of the Total Distribution
Cost—min𝑓1. In the location routing problem, it is neces-
sary to determine the number and location of the distribution
centers and to arrange the disaster points to the distribu-
tion centers, and the corresponding vehicle routing will be
decided. Therefore, the total costs of the relief distributions
include the fixed costs of distribution centers and the vehicle
transport costs.

𝑓1 = ∑
𝑗∈𝑀

𝑓𝑗𝑥𝑗 + ∑
𝑘∈𝐾

∑
(𝑖,𝑗)∈𝐸

𝑐𝑘𝑑𝑖𝑗𝑦𝑖𝑗𝑘. (1)

3.2. Objective 2: Maximization of the Worst Path Satisfaction
Rates—max𝑓2. We hope that reliefs can reach the demand
point timely and effectively after disasters, so we should
consider the relief satisfaction rates of the demand points.
We hope to maximize the relief satisfaction rates in affected
areas, and the fairness of the relief distributions is taken into
account. Therefore, the second objective is maximization of
the worst satisfaction rates.

𝑓2 = min
𝑖∈𝑁

𝑟𝑖, (2)

where 𝑟𝑖 = ∑𝑘∈𝐾 𝑞𝑖𝑘/𝐷𝑖, ∀𝑖 ∈ 𝑁, is called the relief satis-
faction rate of demand point 𝑖. The demands of point 𝑖 are
uncertain: 𝐷𝑖 ∈ [𝐷𝑖, 𝐷𝑖], ∀𝑖 ∈ 𝑁, 0 ≤ 𝐷𝑖 < 𝐷𝑖.
3.3. Objective 3: Maximization of the Worst Path Transport
Capacities—max𝑓3. The original paths after disasters are
affected more or less. At this time, we take into account the
path transport capacities, and the worst path transport capa-
cities are maximized in this paper. The sum of velocities
indicates the path transport capacities. The vehicle velocities
are uncertain. Let V𝑖𝑗 ∈ [V𝑖𝑗, V𝑖𝑗], ∀(𝑖, 𝑗) ∈ 𝐸, 0 < V𝑖𝑗 < V𝑖𝑗.

𝑓3 = min
𝑘∈𝐾

∑
(𝑖,𝑗)∈𝐸

V𝑖𝑗𝑦𝑖𝑗𝑘. (3)

The following formulas are the constraint conditions. In
adition, the constraints conditions (4), (5), (6), (7), (8), (9),
(16), (17), and (18) of the literature [11] are still used in our
study.

𝑡𝑖𝑘 − 𝑡𝑗𝑘 + 𝑠𝑖 + 𝑑𝑖𝑗 ≤ 𝑀(1 − 𝑦𝑖𝑗𝑘) ,
∀ (𝑖, 𝑗) ∈ 𝐸, 𝑘 ∈ 𝐾, (4)

𝑡𝑖𝑘 ≤ 𝑏𝑖, ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, (5)

∑
𝑖∈𝑁

∑
𝑘∈𝐾

𝑞𝑖𝑘 ≤ 𝑄, (6)

∑
𝑖∈𝑁

𝑞𝑖𝑘 ≤ 𝐿𝑘, ∀𝑘 ∈ 𝐾, (7)
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𝑞𝑖𝑘 ≥ 0, ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑁, (8)

𝑦𝑖𝑗𝑘 ∈ {0, 1} , ∀ (𝑖, 𝑗) ∈ 𝐸, 𝑘 ∈ 𝐾. (9)

Formulas (4) and (5) are the time window constraints.𝑀
is a great positive number. This article requires that the sum
of travel time and the service time is not bigger than the set
time. Constraint (6) shows that the total amounts of reliefs
delivered from the distribution centers to the disaster points
shall not exceed the total amounts of available reliefs. Con-
straint (7) ensures that the relief volume transported to the
affected areas by vehicle cannot exceed the load capacities of
vehicles. Constraints (8)-(9) ensure that the decision vari-
ables are 0-1 nonnegative variables.

There are subloop elimination constraints in order to
avoid the subloop.The constraints proposed byDror et al. [13]
are applied in this paper. Let 𝑑𝑖 indicate the outgoing degree
of point 𝑖: 𝑑𝑖 = ∑𝑘∈𝐾∑𝑗∈𝑉 𝑦𝑖𝑗𝑘 (𝑖 ∈ 𝑁).

∑
𝑘∈𝐾

∑
𝑖,𝑗∈𝑁

𝑦𝑖𝑗𝑘 ≤ ∑
𝑖∈𝑁

𝑑𝑖 − 𝑘,
∑
𝑗∈𝑀

∑
𝑖∈𝑁

𝑦𝑗𝑖𝑘 ≤ 1, ∀ (𝑖, 𝑗) ∈ 𝐸, 𝑘 ∈ 𝐾,
∑
𝑘∈𝐾

∑
𝑗∈𝑉

𝑦𝑗𝑖𝑘 ≥ 1, ∀𝑖 ∈ 𝑁,
∑
𝑗∈𝑉

𝑦𝑗𝑖𝑘 ≤ 1, ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾.

(10)

4. The Solution Method of This Model

4.1. Data Uncertainty Description and Robust Solution. The
travel velocities of vehicles on each arc are uncertain, so the
interval of the vehicles travel velocity on arc(𝑖, 𝑗) is V𝑖𝑗 ∈[V𝑖𝑗, V𝑖𝑗], ∀(𝑖, 𝑗) ∈ 𝐸, 0 < V𝑖𝑗 < V𝑖𝑗. The relief demands on
each point 𝑖 are uncertain too. The relief demands on each
point 𝑖 are

𝐷𝑖 ∈ [𝐷𝑖, 𝐷𝑖] , ∀𝑖 ∈ 𝑁, 0 ≤ 𝐷𝑖 < 𝐷𝑖. (11)

Let 𝑧 = (𝑋, 𝑌) be a feasible scheme for the above model,
where 𝑋 = {𝑥𝑗, 𝑗 ∈ 𝑀} and 𝑌 = {𝑦𝑖𝑗𝑘, (𝑖, 𝑗) ∈ 𝐸}. Let 𝑍 be
the feasible solutions set, so a scheme 𝑧 ∈ 𝑍 corresponds to a
group of 𝑞𝑖𝑘(𝑧) and a path 𝑟(𝑧). 𝑆 = [𝐷𝑖, 𝐷𝑖] × [V𝑖𝑗, V𝑖𝑗], ∀𝑖 ∈𝑁, (𝑖, 𝑗) ∈ 𝐸 indicates Cartesian product of two intervals.𝑠 ∈ 𝑆 is called a scenario. In order to facilitate the description
of the problem, 𝑓2, 𝑓3 are changed equally.

𝑓󸀠2 = max
𝑖∈𝑁

𝐷𝑖∑𝑘∈𝐾 𝑞𝑖𝑘 , (12)

𝑓󸀠3 = max { 1∑(𝑖,𝑗)∈𝐸 V𝑖𝑗𝑦𝑖𝑗𝑘 , ∀𝑘 ∈ 𝐾} . (13)

Given a scenario, problems (12) and (13) are certain. In certain
problem the objective function 2 is

𝐹2 (𝑠) = max
𝑧∈𝑍

𝑓󸀠2 (𝑠, 𝑧) . (14)

We need to define the maximum velocities sum of path 𝑟(𝑧)
under the scheme 𝑧 and the scenario 𝑠.

V (𝑧, 𝑠, 𝑟 (𝑧)) = max
{{{

∑
(𝑖,𝑗)∈𝑟(𝑧)

V𝑖𝑗, ∀𝑘 ∈ 𝐾}}}
, (15)

𝑓󸀠󸀠3 (𝑠, 𝑧) = max
𝑧∈𝑍

1
V (𝑧, 𝑠, 𝑟 (𝑧)) . (16)

The objective function 3 is expressed by formula (17) under
the scheme 𝑧 and the scenario 𝑠.

𝐹3 (𝑠) = max
𝑧∈𝑍

𝑓󸀠󸀠3 (𝑠, 𝑧) . (17)

The robust deviations dev2(𝑧, 𝑠) and dev3(𝑧, 𝑠) about formu-
las (12) and (16) under the scheme 𝑧 and the scenario 𝑠 are
indicated by formulas (18). Let 𝑧∗(𝑠) be the optimal scheme
of (14) and (17) under scenario 𝑠.

dev2 (𝑧, 𝑠) = 𝑓󸀠2 (𝑧, 𝑠) − 𝑓󸀠2 (𝑧∗ (𝑠) , 𝑠) ,
dev3 (𝑧, 𝑠) = 𝑓󸀠󸀠3 (𝑧, 𝑠) − 𝑓󸀠󸀠3 (𝑧∗ (𝑠) , 𝑠) . (18)

The robust costs of a scheme can be represented by the
following problems:

𝑟𝑐2 (𝑧) = max
𝑠∈𝑆

dev2 (𝑧, 𝑠) , (19)

𝑟𝑐3 (𝑧) = max
𝑠∈𝑆

dev3 (𝑧, 𝑠) . (20)

The second objective and the third objective of the above
problem can be expressed as follows:

min
𝑧∈𝑍

𝑟𝑐2 (𝑧) ,
min
𝑧∈𝑍

𝑟𝑐3 (𝑧) . (21)

Formula (21) implies minimizing the maximum of the robust
deviations.

4.2. Robust Cost Analysis. Because the uncertain demands
and uncertain transport velocities are represented by contin-
uous intervals, the scenario set is an infinite set. Therefore, it
is very difficult to get the estimate values of 𝑟𝑐2(𝑧), 𝑟𝑐3(𝑧). To
find the worst scenario under scheme 𝑧 is an urgent problem.
Let 𝑠𝑖(𝑧) be a scenario introduced by scheme 𝑧 on the point𝑖, and 𝑟(𝑧) is the corresponding path for scheme 𝑧. The
following two assumptions are satisfied:

(1) The demands of point 𝑖 equal the corresponding
upper bound 𝐷𝑖 = 𝐷𝑖, and the demands of other
points equal the corresponding lower bound𝐷𝑗 = 𝐷𝑗,𝑗 ̸= 𝑖.
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(2) The transport velocities of arc on the path 𝑟(𝑧) equal
the corresponding lower bounds V𝑖𝑗 = V𝑖𝑗, (𝑖, 𝑗) ∈𝑟(𝑧), and the transport velocities of arc on the other
paths equal the corresponding upper bounds V𝑖𝑗 =
V𝑖𝑗, (𝑖, 𝑗) ∉ 𝑟(𝑧). 𝑠𝑖(𝑧) and 𝑠𝑖 can be used to make the
following changes.

Lemma 1. With the above introduction of 𝑠𝑖 and 𝑠, for a scheme𝑧,
𝑟𝑐2 (𝑧) = 𝑓󸀠2 (𝑠, 𝑧) − 𝑓󸀠2 (𝑠, 𝑧∗ (𝑠))

= 𝑓󸀠2 (𝑠𝑖, 𝑧) − 𝑓󸀠2 (𝑠𝑖, 𝑧∗ (𝑠𝑖)) ,
𝑟𝑐3 (𝑧) = 𝑓󸀠󸀠3 (𝑠, 𝑧) − 𝑓󸀠󸀠3 (𝑠, 𝑧∗ (𝑠))

= 𝑓󸀠󸀠3 (𝑠𝑖, 𝑧) − 𝑓󸀠󸀠3 (𝑠𝑖, 𝑧∗ (𝑠𝑖)) ,
(22)

where 𝑧∗(𝑠) and 𝑧∗(𝑠𝑖) are optimal schemes under the scenarios𝑠 and 𝑠𝑖.
Proof. Taking the second objective function as an example,
the third objective function can be proved by the same
method. Let 𝑧∗(𝑠) be the optimal solution of problem (14),
and (𝑠, 𝑧∗(𝑠)) is the optimal solution of problem (19).

Main Claim. (𝑠, 𝑧∗(𝑠)) is the optimal solution of problem (19),
so 𝑠𝑖 is the worst scenario under scheme 𝑧, and 𝑧∗(𝑠) is the
optimal scheme of 𝐹2(𝑠𝑖). Then the following formulas can be
obtained:

𝑓󸀠2 (𝑠𝑖, 𝑧) − 𝑓󸀠2 (𝑠𝑖, 𝑧∗ (𝑠𝑖)) = 𝑓󸀠2 (𝑠𝑖, 𝑧) − 𝑓󸀠2 (𝑠𝑖, 𝑧∗ (𝑠))
= 𝑓󸀠2 (𝑠, 𝑧) − 𝑓󸀠2 (𝑠, 𝑧∗ (𝑠)) ,

𝑓󸀠3 (𝑠𝑖, 𝑧) − 𝑓󸀠3 (𝑠𝑖, 𝑧∗ (𝑠𝑖)) = 𝑓󸀠3 (𝑠𝑖, 𝑧) − 𝑓󸀠3 (𝑠𝑖, 𝑧∗ (𝑠))
= 𝑓󸀠3 (𝑠, 𝑧) − 𝑓󸀠3 (𝑠, 𝑧∗ (𝑠)) .

(23)

It can be seen that the main claim of Lemma 1 can be
proved converting 𝑠 to 𝑠𝑖. We can finish this conversion by
the following steps.

Step 1. The upper bound 𝐷𝑖 of point 𝑖 substitutes 𝐷𝑖(𝑠).
Before converting, since (𝑠, 𝑧∗(𝑠)) is the optimal solu-

tion of (19), 𝑓󸀠2(𝑠, 𝑧) − 𝑓󸀠2(𝑠, 𝑧∗(𝑠)) ≥ 0. Therefore,∑𝑘∈𝐾 𝑞𝑖𝑘(𝑧∗(𝑠)) ≥ ∑𝑘∈𝐾 𝑞𝑖𝑘(𝑧(𝑠)). In the first conversion step,𝑓󸀠2(𝑠, 𝑧∗(𝑠)) cannot increase by more than (𝐷𝑖 − 𝐷𝑖(𝑠))(1/∑𝑘∈𝐾 𝑞𝑖𝑘(𝑧∗(𝑠))) ≤ (𝐷𝑖 − 𝐷𝑖(𝑠))(1/∑𝑘∈𝐾 𝑞𝑖𝑘(𝑧(𝑠))). In addi-
tion, in Step 1, the value of 𝑓󸀠2(𝑠, 𝑧) − 𝑓󸀠2(𝑠, 𝑧∗(𝑠)) cannot
decrease because 𝐷𝑖 ≥ 𝐷𝑖(𝑠) and cannot increase because(𝑠, 𝑧∗(𝑠)) is the optimal solution of problem (19). Therefore,
the value of 𝑓󸀠2(𝑠, 𝑧) − 𝑓󸀠2(𝑠, 𝑧∗(𝑠)) does not change in Step 1.
Step 2. The lower bound 𝐷𝑙 substitutes 𝐷𝑙(𝑠), where ∀𝑙 ∈𝑁, 𝑙 ̸= 𝑖, and the values of 𝑓󸀠2(𝑠, 𝑧) and 𝑓󸀠2(𝑠, 𝑧∗(𝑠)) do not
change. Therefore, (𝑠, 𝑧∗(𝑠)) remains the optimal solution of
(19). Thus, the main claim is proven, as in Lemma 1.

The following theorem is obtained by Lemma 1, which
greatly simplifies formulas (19) and (20).

Theorem 2. For any 𝑧 ∈ 𝑍,
𝑟𝑐2 (𝑧) = max

𝑖∈𝑁
{ 𝐷𝑖∑𝑘∈𝐾 𝑞𝑖𝑘 − 𝑓󸀠2 (𝑠𝑖, 𝑧∗ (𝑠𝑖))} ,

𝑟𝑐3 (𝑧) = min
𝑧∈𝑍

{ 1∑(𝑖,𝑗)∈𝑟(𝑧) V𝑖𝑗 − 𝑓󸀠󸀠3 (𝑠𝑖, 𝑧∗ (𝑠𝑖))} .
(24)

4.3. The Solutions of This Model. Many practical problems
need to optimize multiple objectives simultaneously. Some-
times these goals often compete with each other or contradict
each other, so the definition of Pareto optimal solution is
introduced.

(1) Pareto Dominance. Considering all objectives, if solution𝑥1 is at least as equal as 𝑥2, and better than 𝑥2 with at least one
objective value, solution 𝑥1 dominates 𝑥2 (denoted as 𝑥1 ≻𝑥2). For minimizing (𝑓1, . . . , 𝑓𝑤), 𝑥1 ≻ 𝑥2 if

(∀𝑤 ∈ {1, 2, . . . ,𝑊} : 𝑓𝑤 (𝑥1) ≤ 𝑓𝑤 (𝑥2))
∧ (∀𝑤󸀠 ∈ {1, 2, . . . ,𝑊} : 𝑓𝑤󸀠 (𝑥1) ≤ 𝑓𝑤󸀠 (𝑥2)) . (25)

(2) Pareto Optimum. A solution 𝑥1 is called Pareto optimal or
nondominated solution if and only if there is no any solution𝑥2 that satisfies 𝑥2 ≻ 𝑥1.
(3) Pareto Front. Furthermore, if 𝑥1 is Pareto optimal (non-
dominated), then 𝑓(𝑥1) = {𝑓1(𝑥1), . . . , 𝑓𝑤(𝑥1)} is said to
be the nondominated vector. The set of all nondominated
vectors is called Pareto front (or nondominated frontier).

The papers [14–17] are the common methods to solve
multiobjective optimization problems. In this paper, genetic
algorithm [17] is applied to solve the uncertain problem with
half-time windows. The specific processes are as follows.

(1) Initial Population. According to the characteristics of the
LRP problem, each chromosome includes three substrings.

𝑋𝑡𝑔 = {{{{{
(𝑥𝑡𝑔11, 𝑥𝑡𝑔12, . . . , 𝑥𝑡𝑔1𝑘)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥𝑡𝑔1

, (𝑥𝑡𝑔21, 𝑥𝑡𝑔22, . . . , 𝑥𝑡𝑔2𝑘)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑥𝑡𝑔2

,

(𝑥𝑡𝑔31, 𝑥𝑡𝑔32, . . . , 𝑥𝑡𝑔3𝑛)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑥𝑡𝑔3

}}}}}
, 𝑔 = 1, 2, . . . ,NP.

(26)

We can calculate three objective function values through
decomposing𝑋𝑡𝑔 [11]. Choose theworst scenario according to
Sections 4.1 and 4.2. Transport time is calculated based on the
distances between the points and the velocities of the vehicle
(Ignoring the distribution time of distribution centers). If the
sum of travel time and service time are greater than 𝑏𝑖, the
transport capacities of path are punished, and the transport
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capacities are updated to 𝑏𝑖 (transport capacity)/(transport
time + service time).

(2) Mutation Operation. Variation vectors can be obtained
through mutating. In order to avoid being trapped in local
optimum, this paper introduces the inversion sequence
variation method for each substring of chromosome [18]. It
randomly chooses two notes within a chromosome and then
reverses their contents. The following two formulas are the
examples. Parent is [5 6|2 3 7 8 9|1 4], and child is [5 6|9 8 7 3
2|1 4] after reversing.
(3) Crossover Operation. Crossover operation is applied to
obtain the trail vector 𝑈𝑡𝑔 after mutation operator. According
to the literature [19], the two points crossover method is used
in𝑢3𝑔, and single point crossovermethod is applied to produce
𝑢1𝑔, 𝑢2𝑔. 𝑢1𝑔, 𝑢2𝑔, and 𝑢3𝑔 which constitute the trail vector 𝑈𝑡𝑔.

𝑈𝑡𝑔 = {{{{{
(𝑢𝑡𝑔11, 𝑢𝑡𝑔12, . . . , 𝑢𝑡𝑔1𝑘)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑢𝑡𝑔1

, (𝑢𝑡𝑔21, 𝑢𝑡𝑔22, . . . , 𝑢𝑡𝑔2𝑘)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑢𝑡𝑔2

,

(𝑢𝑡𝑔31, 𝑢𝑡𝑔32, . . . , 𝑢𝑡𝑔3𝑛)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑢𝑡𝑔3

}}}}}
.

(27)

(4) Selection Operation. The weighted method [20] is applied
to sort individuals in population. 𝜆1 is selected randomly on
interval (0.1, 0.3], and 𝜆3 is obtained randomly on interval(0.3, 0.5]. Because the satisfaction rate is less than 1, it is easy
to lose with the total costs and the total path velocities, so
we select 𝜆󸀠 on interval [500, 1000] randomly. Then, we let𝜆2 = 𝜆󸀠 × 𝑁 (𝑁 is the number of disaster points).

(5) Steps of Genetic Algorithm

(S1) Generate initial population 𝑋0 of size NP randomly.
(S2) The variation population is obtained by the variation

process, and trail population is obtained by the
crossover operation.

(S3) Combine the parent population 𝑋𝑡 and trial popula-
tion 𝑈𝑡 together to form population 𝑅𝑡.

(S4) Compute the objective values for each chromosome
in 𝑅𝑡.

(S5) Determine the values of 𝜆1, 𝜆2, and 𝜆3 and compute
the value of 𝐹 = 𝜆1(−𝑓1) + 𝜆2𝑓2 + 𝜆3𝑓3 and sort
individuals based on 𝐹.

(S6) Select the first NP individuals as the next generation
population.

(S7) Stop the procedure if the generation 𝑡 is bigger than
maxgen (maximum of iteration times); else turn to
(S2).

5. Numerical Experiment

Parameter setting is NP = 5 × (𝑚 + 𝑛); mutation probability
is 𝑝𝑚 = 0.7; crossover probability is 𝑝𝑐 = 0.7.
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Figure 1: Obtained by genetic algorithm (3-10).

The combination of the number of candidate distribution
centers 𝑚 and the number of disaster points 𝑛 is

(𝑚, 𝑛) = (3-10) , (3-100) , (3-1000) , (6-100) , (6-1000) ,
(10-100) , (10-1000) . (28)

The coordinates of each point are randomly generated in
the plane, and the distances from point 𝑖 to point 𝑗 equal the
distances from point 𝑗 to point 𝑖. The fixed costs of the
distribution centers (yuan) are randomly generated on inter-
val (0, 3000]. The demands of the disaster points and the
velocities of the available arcs are uncertain, and uncertain
parameters are processed in accordance with the method
of Sections 4.1 and 4.2. The required numbers of large and
medium and small vehicles for different number of disaster
points are shown in Table 1. Let the time when the disaster
happened be the zero time. The last time (hour) for each
demand point to be served is randomly generated on the
interval (0, 100]. Table 2 gives the parameters of the vehicles.
Table 3 shows the results of the calculation, and the approxi-
mate Pareto front is shown in Figure 1 (3-10).

6. Conclusion and Prospect

In this paper, a multiobjective nonlinear location routing
model with half-time windows is proposed. The arrival time
of the reliefs to the demand points cannot be later than
the specified time, so the timeliness of emergency reliefs is
enhanced. The affected points can be visited more than one
time in this article. After the disasters, all kinds of materials
are in short supplies, so it is very important to have adequate
relief supplies. Therefore, the minimization of the total dis-
tribution costs is one of the objectives, and the maximization
of the worst path satisfaction rates is the second objective.
After incidents, the transport network will be influenced. In
order to find a better path, themaximization of path transport
capacities is the third objective in this paper. After disasters
situations are very complex with a high degree of uncertain-
ties, such as demands, transportation time, and path through
velocities. Therefore, this paper assumes that the demands
of the disaster nodes and the transportation velocities of the
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Table 1: Required number of vehicles.

Vehicle type 10 points 100 points 1000 points
Large vehicle 𝑘1 10 100 1000
Medium vehicle 𝑘2 6 60 600
Small vehicle 𝑘3 9 90 900

Table 2: Vehicle parameters.

Vehicle type Vehicle capacity 𝐿𝑘 (cm3) General velocity V𝑘 (km/h) Unit transportation cost 𝑐𝑘 (yuan/km)
Large vehicle 𝑘1 600 × 250 × 175 50 10.0
Medium vehicle 𝑘2 280 × 200 × 145 30 3.1
Small vehicle 𝑘3 231 × 150 × 130 20 1.7

Table 3: Calculation results.

Examples

Total costs Satisfaction rate (%) Path velocity
Mean value of
approximate
Pareto fronts

Approximate
Pareto solution

Mean value of
approximate
Pareto fronts

Approximate
Pareto solution

Mean value of
approximate
Pareto fronts

Approximate
Pareto solution

3-10 8150.1 5811 55.48 55.44 643.8333 1098
3-100 34625 25263 64.28 62.77 8644.1 8761
3-1000 158190 139560 59.35 59.80 89865 88913
6-100 42807 38976 60.57 64.49 8554 8575
6-1000 129560 116650 54.89 60.01 11145 12270
10-100 43869 48567 58.99 59.62 8097.4 8329
10-1000 137980 118960 58.67 61.13 87660 89437

available path are uncertain, and the robust optimization is
applied to deal with the uncertainty. The genetic algorithm is
applied to solve a number of numerical examples; the results
show that the algorithm is very stable and effective for this
problem. Finally, the method of solving the problem can
also apply simulated annealing algorithm or nondominated
sorting genetic algorithm.

Notations

(1) Parameters

𝑚: The number of candidate distribution centers𝑛: The number of disaster points𝑘: The number of vehicles𝑓𝑗: The fixed costs of distribution center 𝑗, ∀𝑗 ∈ 𝑀
V𝑖𝑗: The velocity of arc(𝑖, 𝑗)𝐷𝑖: The demands of disaster point 𝑖, ∀𝑖 ∈ 𝑁𝑄: The available quantities of reliefs on the transport

network𝑐𝑘: The unit transportation cost of vehicle, ∀𝑘 ∈ 𝐾𝐿𝑘: The load capacities of vehicle 𝑘, ∀𝑘 ∈ 𝐾𝑡𝑖𝑘: The time of vehicle 𝑘 starting service at point 𝑖,∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾𝑏𝑖: The latest service time at point 𝑖, ∀𝑖 ∈ 𝑁.

(2) The Variables

𝑥𝑗: {1, if the distribution center 𝑗 is set up; 0,
otherwise}, ∀𝑗 ∈ 𝑀

𝑦𝑖𝑗𝑘: {1, if the point 𝑖 is in front of point 𝑗 on the path of
the vehicle 𝑘; 0, otherwise}, ∀𝑘 ∈ 𝐾, (𝑖, 𝑗) ∈ 𝐸

𝑧𝑖𝑘: {1, if the point 𝑖 is on the path of the vehicle 𝑘; 0,
otherwise}

𝑞𝑖𝑘: The relief supply quantities transported by the vehicle𝑘 to point 𝑖, ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾
𝑉𝐹𝑖𝑘: {1, if the last demand point serviced by vehicle 𝑘 is

point 𝑖; 0, otherwise}, ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾.
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[12] Ç. Koç, T. Bektaş, O. Jabali, and G. Laporte, “The fleet size and
mix location-routing problemwith timewindows: formulations
and a heuristic algorithm,” European Journal of Operational
Research, vol. 248, no. 1, pp. 33–51, 2016.

[13] M. Dror, G. Laporte, and P. Trudeau, “Vehicle routing with split
deliveries,”Discrete AppliedMathematics, vol. 50, no. 3, pp. 239–
254, 1994.

[14] R. P. Beausoleil, “‘MOSS’ multiobjective scatter search applied
to non-linear multiple criteria optimization,” European Journal
of Operational Research, vol. 169, no. 2, pp. 426–449, 2006.

[15] S. Chanta, M. E. Mayorga, and L. A. McLay, “Improving emer-
gency service in rural areas: a bi-objective covering location
model for EMS systems,”Annals of Operations Research, vol. 221,
no. 1, pp. 133–159, 2014.

[16] E. Zitzler and L. Thiele, “Multiobjective evolutionary algo-
rithms: a comparative case study and the strength Pareto
approach,” IEEETransactions onEvolutionaryComputation, vol.
3, no. 4, pp. 257–271, 1999.

[17] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans-
actions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197,
2002.

[18] O. Abdoun, C. Tajani, and J. Abouchabaka, “Analyzing the per-
formance of mutation operators to solve the traveling salesman
problem,” International Journal of Emerging Sciences, vol. 2, no.
1, pp. 61–77, 2012.

[19] K. A. De Jong, An analysis of the behavior of a class of genetic
adaptive systems [Ph.D. thesis], Department of Computer and
Communication Science, University of Michigan, Ann Arbor,
Mich, USA, 1975.

[20] S. Boyd and L. Vandenberghe,Convex Optimization, 1st edition,
2013.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


