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A rigorous and consistent approach is demonstrated to develop a model of the 4M structure (the four-media structure of a film on
a substrate of finite thickness). The general equations obtained for the reflectance and transmittance spectra of the 4M structure are
simplified by employing a procedure of the so-called device averaging to reduce them to a succinct form convenient for processing
of experimental spectra for the structures with a thick substrate. The newly derived equations are applied to two special cases: (i)
an arbitrary film on highly absorbing substrates and (ii) a slightly absorbing film on transparent substrates. The reflectance and
transmittance spectra represented in the simplified (with the device averaging) form have a practical application for determining
the film thickness and optical constants from experimental spectra by using the known techniques.

1. Introduction

Nowadays, there are diverse modern optical measurement
methods, which are based on electromagnetic theory applied
to interference and absorption phenomena in thin-film lay-
ered structures. Advance in developing new physical princi-
ples of optical measurements has been achieved by extensive
works and intensive efforts of a great number of scientists
and researchers. Theoretical and practical knowledge in thin-
film optics and optical measurements has been accumulated
in numerous scientific publications; well-known books and
reviews may be quoted as an example [1–12]. They describe
optical properties of various films, techniques of measuring
the reflectance and transmittance spectra, and calculations of
the film thickness and optical constants from experimental
spectra.

The present interest in these subjects is caused by the
wide application of thin-film structures in various optical
devices and the fact that the optical methods of measurement
give necessary information about the structural and physical
properties of films that are used in optics and microelec-
tronics [13]. Optical properties of thin films present a vital
issue due to the increase of thin films quality standards in
traditional areas of application [14] and the possibility to

solve some recently discovered technical tasks only in thin-
film performance; first, we refer to biomedical and ecological
applications [15–19].

The problem of determining the film thickness and
dispersion properties of optical constants is usually solved
by analyzing experimental spectra of the reflection and/or
transmission for film-on-substrate structures of interest.
Results of the analysis depend on a choice of physical
model connecting experimentally measured spectra with
geometrical and optical parameters of the structure under
study. In order to obtain some reliable relations for practical
calculations, as applied to processing of the results of
measurements, it is necessary to develop a physically correct
model of the thin-film structure, allowing interference and
absorption in both the film and substrate materials.

Various physical approaches and mathematical models
describing the optical spectra for thin-film structures can
be found in the literature. They usually present identical
results in complicated forms difficult for comparison [1–
12, 20–27]. A wide variety of different formulae available
in the literature, which have been also derived by using
dissimilar designations, essentially complicate the choice of
the application to a given practical problem. In search of
reliable technique for calculations needed for processing the
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Figure 1: Schematic geometry for: (a) the 3M structure with a semiinfinite substrate and (b) the 4M structure with a single film (medium
1) on a substrate of finite thickness d2 (medium 2); media 0 and 3 correspond to the input and output ones.

results of spectral measurements an experimenter has to
waste time on mathematical transformations to compare the
theoretical expressions obtained by different authors.

Although most theoretical approaches generally begin
with studying a system of multiple layers [1, 5, 6, 8, 9],
practical application is found only for the simplest three-
media structure (3M structure) appropriate to a single film
on a semiinfinite substrate. In particular, Heavens [10]
analyzes some special cases of the 3M structure, as applied to
the measurement of optical constants of thin films. The same
author has developed the more general model for the four-
media structure (4M structure) appropriate to a single film
on a substrate of finite thickness in the earlier published book
[5]. This model looks more practical in the application to
optical measurements, as the expressions for the reflectance
and transmittance of the 4M structure in addition to the
finite substrate thickness contain also optical parameters
of both the input and output media adjacent to the film
and substrate. However, the general formulae obtained
by Heavens [5] describing the 4M structure turn out to
be extremely complicated, which restricts their practical
applicability to the processing of experimental spectra.

Section 2 is devoted to a critical analysis of existing
models for the reflectance and transmittance spectra and
formulates the theoretical problem for further investigation.
Section 3 describes the matrix approach to evaluation of the
reflectance and transmittance of multilayer structures. The
general matrix relations derived by involving the Fresnel
reflection coefficients of multiple interfaces are employed
to the special cases of the 3M and 4M structures. In
Section 4 formulae for the reflectance and transmittance
originally expressed in terms of the Fresnel coefficients are
adduced in a physical form containing the optical constants
of media (refractive and absorptive indices) together with
the geometrical parameters of the considered structures.
Mathematical details transforming the relevant formulae to
the physical form are set forth in Appendix A. The general
formulae are simplified by using a procedure of the so-
called device averaging (see Appendix B) to reduce them to a
succinct form convenient for the processing of experimental

spectra for structures with a thick substrate. In Section 5,
the simplified equations are applied to two special cases: (i)
an arbitrary film on highly absorbing substrates and (ii) a
slightly absorbing film on transparent substrates.

2. Formulation of the Problem

We shall restrict our consideration to normal incidence of
light from a transparent input medium of the real refractive
index n0. In the general case, the film under examination
(numbered by 1) has optical losses so that its refractive index
is complex and dispersive: ñ1(λ) = n1(λ) − ik1(λ) with the
real refractive and absorptive indices n1(λ) and k1(λ) being
functions of the light wavelength λ. Depending on applica-
tion of the thin-film structure, its substrate (numbered by 2)
is produced from different materials including transparent
dielectrics as well as absorbing metals or semiconductors.
Thus, in general, the refractive index of substrate also has the
complex form ñ2(λ) = n2(λ)− ik2(λ).

Examination of various experimental situations allows
one to select the two above-mentioned thin-film structures,
which are available for thorough mathematical study. They
are depicted in Figure 1: (a) the three-media structure
(3M structure) appropriate to a film of thickness d1 on a
semiinfinite substrate and (b) the four-media structure (4M
structure) appropriate to a single film of thickness d1 on
a substrate of finite thickness d2. Media 0 and 3 may be
considered respectively an input medium (non absorbing
one with real index n0) and an output medium (absorbing
one with complex index ñ3(λ) = n3(λ) − ik3(λ)). The
reflected flows of light are shown in Figure 1 at some angle
only for pictorial rendition; the case under consideration has
the normal incidence.

The main task of theoretical analysis is a derivation of
mathematical expressions for the spectra of reflectance R(λ)
and transmittance T(λ), which can be applied to models
of the 3M and 4M structures. In our opinion, the final
expressions for R(λ) and T(λ) within the framework of
any mathematical model should, first, correctly describe
physical phenomena occurring under action of light (wave



International Journal of Optics 3

interference and energy absorption) and, second, have a
sufficiently succinct form to be convenient for both the
physical interpretation and numerical computation. From
succinctness standpoint, an expression for the transmittance
spectrum given by Swanepoel [24, 25] is more successful,
unlike many others of cumbersome forms [5, 9, 10, 12].
However, Swanepoel’s approach casts some doubts upon its
mathematical justification, as shown below.

In Swanepoel’s notation [24], the transmittance spec-
trum of a slightly absorbing film (k2

1 � n2
1) on a transparent

substrate (k2 = 0) has the following form:

T(λ) = Ax

B − Cx cos ϕ +Dx2
, (1)

where x = exp(−αd1), α = 4πk1/λ, ϕ = 4πn1d1/λ, while
A, B, C, and D are the coefficients depending on optical
constants of media taken into account by the model under
consideration. In publications, there are different expressions
for these coefficients; in particular, authors in [21, 23] apply
them in the following form (with notation of nm, m = 0, 1, 2,
according to Figure 1(a))

A = 16n0n
2
1n2, C = −2

(

n2
0 − n2

1

)(

n2
1 − n2

2

)

,

B = (n0 + n1)2(n1 + n2)2, D = (n0 − n1)2(n1 − n2)2.
(2)

When using (1)-(2), one implicitly means that a sub-
strate is semiinfinite, which conforms to the 3M structure
(Figure 1(a)), and then a receiver of transmitted light should
be placed inside the substrate. In fact, such is not the
case and the light receiver must be outside a substrate. So,
the model of semiinfinite substrate does not work in real
situations. Consequently, (1)-(2) yield some higher values
of the transmittance because they disregard an additional
reflection from another interface of a real substrate (for a
glass one the error is around 4% [4]). For this reason, in
order to take into account the above-stated fact, Swanepoel
[24, 25], followed by other authors [26–31], has applied
(1) for the transmittance of a single film on a transparent
substrate and suggested that the coefficients A and C should
be left in the unchanged form (2), while B and D are written
as follows:

A = 16n0n
2
1n2, C = −2

(

n2
0 − n2

1

)(

n2
1 − n2

2

)

,

B = (n0 + n1)3(n1 + n2
2

)

, D = −(n0 − n1)3(n1 − n2
2

)

.
(3)

A distinguishing feature of expressions (3) as compared
with (2) consists of appearance of the third power of the first
parentheses and asymmetry in powers of items inside the
second parentheses for the coefficients B and D. Both facts
are very doubtful but have no mathematical substantiation
by Swanepoel [24]. In effect, (1) and (3), as applied to the 3M
structure in [24], implicitly correspond to the 4M structure
shown in Figure 1(b). However, these formulae do not take
into account the optical constants of an output medium
(numbered by 3), quite apart from lack of the finite substrate

thickness d2 inherent in the 4M structure. The above-stated
reasons cause some doubts on the correctness of Swanepoel’s
approach [24, 25].

Consequently, the problem of reflection and transmis-
sion of light, as applied to the film-on-substrate structures
especially with regard for optical absorption, can correctly
be solved only within the scope of the 4M structure model.
The 3M structure model is of practical interest solely in the
special case that the substrate has high optical losses, which is
typical for semiconductor and metal substrates. In this case,
the sole reflectance spectrum R(λ) is practically accessible
from experimental measurements, unlike the transmittance
spectrum T(λ). As proved later, both the spectra R(λ) and
T(λ) for the 3M structures can be theoretically obtained as a
special case of the general physical situation examined within
the framework of the 4M structure model.

Certain expressions for the spectra R(λ) and T(λ) of the
4M structure were also derived by Heavens and represented
in the following form [5]:

R(λ) = t213 + u2
13

p2
13 + q2

13
, T(λ) = l213 +m2

13

p2
13 + q2

13
. (4)

Here, the items l213, m2
13, p2

13, q2
13, t213, and u2

13 depend on the
optical constants ñm = nm − ikm of media (m = 1, 2, 3),
their thicknesses dm, and the light wavelength λ.

Expressions (4) only look succinct because the items l213,
m2

13, and so forth are very involved and physically tangled,
being composed of a number of other terms by successive
substitution of them one after the other. Such a “step-
by-step” construction of Heavens’ items, unlike the simple
one of Swanepoel’s coefficients (3), practically eliminates
the processing ability of formulae (4), as applied to the
experimental spectra R(λ) and T(λ). Also, this makes it
difficult, if not impossible, to provide insight into influence
of physical parameters of the structure on its optical spectra.
We do not adduce here expressions for l213, m2

13, and so forth,
because of their complexity and refer an interested reader to
the original book [5] or paper [32], which have also given
them.

Formulae (4) describe the physical situation correspond-
ing to interference of waves transmitted and reflected by
three interfaces, as shown in Figure 1(b). These formulae are
applicable to any film-on-substrate structure with arbitrary
properties including a double absorbing film (media 1 and
2) on semiinfinite absorbing substrates (medium 3).

Figure 2 shows spectra R(λ) and T(λ) of film Ta2O5

on a quartz-glass substrate (n0 = n3 = 1, n1 = 2.21,
n2 = 1.472, k1 = k2 = k3 = 0, d1 = 1 μm, and d2 =
500μm) calculated on the basis of Heavens’ formulae (4).
In both spectra, there are oscillations of two types caused by
wave interference in the thin film Ta2O5 (slow oscillations)
and in the thick substrate (fast oscillations in the form of
a “beard”). Space periods of these oscillations differ from
each other by the factor η ≡ n2d2/n1d1, which exceeds
two orders in magnitude for the given instance. However,
when measuring the spectra an experimental result takes the
form of a dashed curve in Figure 2 caused by interference
only in the thin film Ta2O5. This stems from the fact that
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Figure 2: Reflectance (R) and transmittance (T) spectra of the Ta2O5-quartz-glass structure calculated from (4) and shown by gray lines
in the form of a “beard”. Dashed curves on the spectra result from measurements by using a spectrophotometer with operating slit of finite
width.

the operating slit of a spectrophotometer is not infinitely
narrow but has finite width (of a few nanometers). Because
of this, the input irradiation is not monochromatic, and the
fast oscillations caused by interference in the thick substrate
with n2d2 � n1d1 prove to be averaged down to zero, as
is mathematically justified in Appendix B. In other words,
any spectrophotometer with an operating slit of finite width
performs a procedure that will be called the device averaging.
As a result of this procedure, the “beard” produced by
interference oscillations in a thick substrate is liquidated, and
only the thin-film interference curve similar to dashed ones
in Figure 2 is left in experimental spectra.

Our subsequent task consists of deriving the analytical
expressions for R(λ) and T(λ) in such a form that allows us
to carry out the device averaging.

3. General Matrix Theory for Multilayer
Structures

3.1. Desired Form of the Fresnel Reflection Coefficients.
Consider any two adjacent layers of the multilayer structure
under consideration, say, the (m − 1)th and mth absorbing
layers specified by the complex refractive indices

ñm−1 = nm−1 − ikm−1, ñm = nm − ikm, (5)

where m = 1, 2, . . . and ñ0 = n0 since k0 ≡ 0 for a non-
absorbing input medium. Eachmth interface is characterized
by the Fresnel reflection and transmission coefficients rm and
tm = 1 + rm defined as [1–7]

rm = ñm−1 − ñm
ñm−1 + ñm

, tm = 2ñm−1

ñm−1 + ñm
. (6)

Heavens [5] represents the Fresnel reflection coefficient
rm as a sum of its real and imaginary parts

rm = gm + ihm, (7)

where in accordance with (5) and (6), we have

gm =
∣

∣ñm−1
∣

∣
2 − ∣∣ñm

∣

∣
2

(nm−1 + nm)2 + (km−1 + km)2 ,

hm = 2(nm−1km − nmkm−1)

(nm−1 + nm)2 + (km−1 + km)2 ,

(8)

with the squared moduli of the refractive indices (5) being
equal to

∣

∣ñm−1
∣

∣
2 = n2

m−1 + k2
m−1,

∣

∣ñm
∣

∣
2 = n2

m + k2
m. (9)

Unlike Heavens’ approach, for our analysis, it is more
convenient to apply for rm instead of (7) the exponential
form

rm = ρm exp(iθm). (10)

The squared modulus ρ2
m and phase θm of the Fresnel

reflection coefficient (7) or (10) are defined by the following
relations

ρ2
m = g2

m + h2
m =

∣

∣ñm−1 − ñm
∣

∣
2

∣

∣ñm−1 + ñm
∣

∣
2 ≡ N−m

N+m
, (11)

tan θm = hm
gm

= 2(nm−1km − nmkm−1)
∣

∣ñm−1
∣

∣
2 − ∣∣ñm

∣

∣
2 , (12)

where we have introduced the following quantities

N±m ≡
∣

∣ñm−1 ± ñm
∣

∣
2 = (nm−1 ± nm)2 + (km−1 ± km)2

=
(
∣

∣ñm−1
∣

∣
2 +
∣

∣ñm
∣

∣
2
)

± 2(nm−1nm + km−1km).

(13)

In the absence of optical absorption (km−1 = km = 0),
expression (6) for rm gives purely real values (negative or
positive) so that rm < 0 or rm > 0 when, respectively,
nm−1 < nm or nm−1 > nm. Yet, the exponential form (10)



International Journal of Optics 5

does not display explicitly this property. Indeed, from (12),
it follows that in the lossless situation tan θm = 0 and by
definition always ρm > 0. In order for the above-stated
property to be explicitly displayed from relation (10), it is
necessary to require the phase θm to be positively defined.
This requirement is readily realized by considering the phase
angle θm to be a function of the quantity

xm = sm
hm
gm

≡ hm
∣

∣gm
∣

∣

= 2(nm−1km − nmkm−1)
∣

∣

∣

∣

∣ñm−1
∣

∣
2 − ∣∣ñm

∣

∣
2
∣

∣

∣

= 2(nm−1km − nmkm−1)
∣

∣

(

n2
m−1 − n2

m

)

+
(

k2
m−1 − k2

m

)∣

∣

,

(14)

where the sign of gm is inserted as

sm = gm
∣

∣gm
∣

∣

= sgn
{
∣

∣ñm−1
∣

∣
2 − ∣∣ñm

∣

∣
2
}

=
⎧

⎨

⎩

−1 if
∣

∣ñm−1
∣

∣ <
∣

∣ñm
∣

∣,

+1 if
∣

∣ñm−1
∣

∣ >
∣

∣ ñm
∣

∣.

(15)

From formulae (12) and (14) explained by Figure 3 it
follows that

θm = arctan(smxm)

=
⎧

⎨

⎩

arctan(+xm) = 0 + φm for sm = +1

arctan(−xm) = π − φm for sm = −1,

(16)

exp(iθm) = sm exp
(

ismφm
)

, (17)

where the new phase angle φm is defined by the following
relation:

tanφm = xm ≡ hm
∣

∣gm
∣

∣

= 2(nm−1km − nmkm−1)
∣

∣

∣

∣

∣ ñm−1
∣

∣
2 − ∣∣ñm

∣

∣
2
∣

∣

∣

. (18)

Substitution of relation (17) into (10) yields the desired
exponential form of the Fresnel reflection coefficient

rm = ρm exp
(

iφm

)

with ρm = smρm, φm = smφm. (19)

From (18) and (19), it evidently follows that in the
lossless situation, when φm = 0, the Fresnel coefficient rm =
smρm < 0 or > 0 depending on whether nm−1 < nm or
nm−1 > nm, which is what we set out to obtain.

3.2. Matrix Approach to Evaluating the Reflectance and
Transmittance. Let us consider the (m− 1)th and mth layers
which are incorporated into the N-media (including input
and output ones) structure (NM structure) and depicted in
Figure 4. Electromagnetic fields in each of them are formed
by superposition of two plane waves—positive going (of a
complex amplitude marked by superscript +) and negative

xm
(sm = +1)(sm = −1)

−xm

φm

π

π/2

hm
|gm|0

θm

φm

Figure 3: Illustration of the phase angles θm and φm for representing
the Fresnel reflection coefficient in the exponential form rm =
ρm exp(iθm) = smρm exp(ismφm).
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E+
0 E+

1 E+
2 E+

m−1 E+
m E+

N−2 E+
N−1

E−0 E−1 E−2 E−m−1 E−m E−N−2 E−N−1 = 0

O
u

tp
u

t
m

ed
iu

m

In
pu

t
m

ed
iu

m
0 z1 z2 zm−2 zm−1 zm zN−2 z

d1 d2 dm−1 dm dN−2

Figure 4: Schematic geometry of the multilayer structure consisting
of N media (including the input/output ones) with two highlighted
(m−1)th andmth layers having an interface at zm−1 specified by the
Fresnel reflection coefficient rm = smρm exp(ismφm).

going (of a complex amplitude marked by superscript −)
with respect to the axis z directed transversely to interfaces.
As seen from Figure 4, light travels from an input medium
to output one. So, for the mth layer the positive-going wave
of amplitude E+

m corresponds to light transmitted across
its left boundary at zm−1, while the negative-going wave of
amplitude E−m—to light reflected from its right boundary at
zm.

We shall describe light propagation in the mth absorbing
medium of the complex refractive index ñm = nm − ikm by
using the wave factor exp(iωt ∓ γmz), where the propagation
constant

γm = i
2π
λ
ñm ≡ αm + iβm (20)

consists of the amplitude and phase constants defined as

αm = 2π
λ
km, βm = 2π

λ
nm. (21)

Let us write down the electromagnetic fields inside the two
layers under examination

(i) for the (m− 1)th layer located at zm−2 < z < zm−1

Em−1(z) = E+
m−1e−γm−1(z−zm−2) + E−m−1eγm−1(z−zm−2),

Hm−1(z) = ñm−1E
+
m−1e−γm−1(z−zm−2) − ñm−1E

−
m−1eγm−1(z−zm−2),

(22)
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(ii) for the mth layer located at zm−1 < z < zm

Em(z) = E+
m e−γm(z−zm−1) + E−m eγm(z−zm−1),

Hm(z) = ñmE
+
m e−γm(z−zm−1) − ñmE

−
m eγm(z−zm−1).

(23)

Imposing on the electromagnetic fields (22) and (23) at
interface point z = zm−1 the following matching conditions:

Em−1(zm−1) = Em(zm−1), Hm−1(zm−1) = Hm(zm−1),
(24)

we couple the complex amplitudes in the (m− 1)th and mth
layers by the matrix relation

⎛

⎝

E+
m−1

E−m−1

⎞

⎠ = 1
tm
Cm

⎛

⎝

E+
m

E−m

⎞

⎠, (25)

where tm is the Fresnel transmission coefficient (6) for the
mth interface at z = zm−1. The coupling matrix appearing in
(25)

Cm =
⎛

⎝

eΔm−1 rmeΔm−1

rme−Δm−1 e−Δm−1

⎞

⎠ with Δm−1 = γm−1dm−1 (26)

is identical in form to those obtained previously [5, 9].
To express the input electric fields E±0 in terms of the

output field E+
N−1, it is necessary to successively multiply the

coupling matrices (26) for all layers entering into the NM-
structure depicted in Figure 4. As a result, we obtain from
(25) the following relation:

⎛

⎝

E+
0

E−0

⎞

⎠ = 1
t1t2 · · · tN−1

⎛

⎝

aN bN

cN dN

⎞

⎠

⎛

⎝

E+
N−1

0

⎞

⎠, (27)

where E−N−1 = 0 for a semiinfinite output medium and the
resultant coupling matrix is

⎛

⎝

aN bN

cN dN

⎞

⎠ = C1C2 · · ·CN−1. (28)

The reflectance and transmittance (defined as ratios of
the reflected and transmitted power to the incident power)
immediately follow from (27) as

R ≡
∣

∣ E−0
∣

∣
2

∣

∣ E+
0

∣

∣
2 =

|cN |2
|aN |2

,

T ≡ nN−1

n0

∣

∣ E+
N−1

∣

∣
2

∣

∣ E+
0

∣

∣
2 = nN−1

n0

| t1|2| t2|2 · · · | tN−1|2
|aN |2

.

(29)

Therefore, in order to obtain R and T , it is necessary to
find only two matrix elements for calculating |aN |2 and |cN |2
and also to know the Fresnel transmission coefficients tm of
all interfaces (m = 1, 2, . . . ,N − 1) for which from (19) it
follows that

|tm|2 = |1 + rm|2 = 1 + ρ 2
m + 2 ρm cos φm. (30)

Let us apply (26)–(29) to the special cases appropriate
to the 3M structure (Figure 1(a)) and the 4M structure
(Figure 1(b)).

3.3. Reflectance and Transmittance of the 3M Structure. For
the 3M structure shown in Figure 1(a) the coupling matrix
product equals

C1C2 =
⎛

⎝

1 r1

r1 1

⎞

⎠

⎛

⎝

eΔ1 r2eΔ1

r2e−Δ1 e−Δ1

⎞

⎠

=
⎛

⎝

eΔ1 + r1r2e−Δ1 r1e−Δ1 + r2eΔ1

r1eΔ1 + r2e−Δ1 e−Δ1 + r1r2eΔ1

⎞

⎠ ≡
⎛

⎝

a3 b3

c3 d3

⎞

⎠,

(31)

whereΔ1 ≡ γ1d1 = α1d1+iβ1d1 (see formulae (21) form = 1)
and the Fresnel coefficients r1 and r2 have the exponential
form (19).

The general formulae (29) yield the required expressions
for the reflectance and transmittance of the 3M structure

R = |c3|2
|a3|2

, T = n2

n0

|t1|2|t2|2
|a3|2

. (32)

From elements of the coupling matrix (31) and (30), we have
obtained

|a3|2 =
(

e2α1d1 + ρ2
1ρ

2
2e−2α1d1

)

+ 2ρ1ρ2 cos
[(

2β1d1 − φ1

)

− φ2

]

,
(33)

|c3|2 =
(

ρ2
1e2α1d1 + ρ2

2e−2α1d1

)

+ 2ρ1ρ2 cos
[(

2β1d1 + φ1

)

− φ2

]

,
(34)

|t1|2|t2|2 =
(

1 + ρ2
1 + 2ρ1 cos φ1

)(

1 + ρ2
2 + 2ρ2 cos φ2

)

,

(35)

where ρ1,2 ≡ s1,2ρ1,2 and φ1,2 ≡ s1,2φ1,2.

3.4. Reflectance and Transmittance of the 4M Structure. For
the 4M structure shown in Figure 1(b) the coupling matrix
product has the form

C1C2C3 =
⎛

⎝

a3 b3

c3 d3

⎞

⎠

⎛

⎝

eΔ2 r3eΔ2

r3e−Δ2 e−Δ2

⎞

⎠ ≡
⎛

⎝

a4 b4

c4 d4

⎞

⎠, (36)

with the elements a4 and c4 being equal to

a4 = e(Δ1+Δ2) + r1r2e−(Δ1−Δ2) + r1r3e−(Δ1+Δ2) + r2r3e(Δ1−Δ2),

c4 = r1e(Δ1+Δ2) + r2e−(Δ1−Δ2) + r3e−(Δ1+Δ2) + r1r2r3e(Δ1−Δ2).
(37)

Here, Δ1,2 ≡ γ1,2d1,2 = α1,2d1,2 + iβ1,2d1,2 (see formulae
(21) for m = 1, 2) and the Fresnel coefficients rm are
of exponential form (19), namely, rm = ρm exp(iφm) with
ρm = smρm and φm = smφm (see (11), (15), and (18) for
m = 1, 2, 3).

The general formulae (29) yield the required expressions
for the reflectance and transmittance of the 4M-structure (cf.
expressions (32))

R = |c4|2
|a4|2

, T = n3

n0

|t1|2|t2|2|t3|2
|a4|2

, (38)
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where the product |t1|2|t2|2|t3|2 is written similar to expres-
sion (35).

From (37), after some laborious transformations, we
obtain the desired expressions

|a4|2 =
(

|a3|2 e2α2d2 + ρ 2
3

∣

∣a′3
∣

∣
2 e−2α2d2

)

+ ρ3 fa
(

β2d2
)

,

|c4|2 =
(

|c3|2 e2α2d2 + ρ 2
3

∣

∣c′3
∣

∣
2 e−2α2d2

)

+ ρ3 fc
(

β2d2
)

,

(39)

where the terms |a3|2 and |c3|2 have (33) and (34) inherent
in the 3M structure. Besides, (39) include certain additional
terms

(i) the terms due to the interference and absorption in
layer 1 of optical thickness β1d1

∣

∣a′3
∣

∣
2 =

(

ρ2
1e−2α1d1 + ρ2

2e2α1d1

)

+ 2ρ1ρ2 cos
[(

2β1d1 − φ1

)

+ φ2

]

,

∣

∣c′3
∣

∣
2 =

(

e−2α1d1 + ρ2
1ρ

2
2e2α1d1

)

+ 2ρ1ρ2 cos
[(

2β1d1 + φ1

)

+ φ2

]

,

(40)

(ii) the terms due to the interference and absorption in
layer 2 of optical thickness β2d2

ρ3 fa
(

β2d2
) = 2ρ1ρ3

{

cos
[(

2β1d1 − φ1

)

+
(

2β2d2 − φ3

)]

+ρ2
2 cos

[(

2β1d1−φ1

)

−
(

2β2d2−φ3

)]}

+ 2ρ2ρ3

{

e2α1d1 cos
[(

2β2d2 − φ3

)

− φ2

]

+ρ2
1e−2α1d1 cos

[(

2β2d2−φ3

)

+φ2

]}

,

ρ3 fc
(

β2d2
) = 2ρ1ρ3

{

cos
[(

2β1d1 + φ1

)

+
(

2β2d2 − φ3

)]

+ρ2
2 cos

[(

2β1d1 +φ1

)

−
(

2β2d2−φ3

)]}

+ 2ρ2ρ3

{

e−2α1d1 cos
[(

2β2d2 − φ3

)

+ φ2

]

+ρ2
1e2α1d1 cos

[(

2β2d2−φ3

)

−φ2

]}

.

(41)

From a comparison of (33)-(34) and (40), it follows
that both terms (|a3|2, |c3|2) and (|a′3|2, |c′3|2) are produced
by the interference and absorption phenomena only inside
layer 1. Both of them, being inserted in the 4M composition
(|a4|2, |c4|2), as seen from (39), prove to be multiplied by
the factors exp(±2α2d2) due to optical losses in layer 2.
The interference oscillations in this layer (together with an
additional contribution from interference and absorption
in layer 1) are solely taken into account by the functions
ρ3 fa(β2d2) and ρ3 fc(β2d2) given in the form of (41).

It is very important to note that both the additional terms
(|a′3|2, |c′3|2) and ( fa, fc) contribute to expressions (39) for

the 4M structure being multiplied by ρ3 ≡ |r3| ∝ |ñ2 − ñ3|.
Therefore, their contributions to (38) for R and T disappear
and, as a result of this, they are converted into (32) for the
3M structure when

ñ3 = ñ2, d2 = 0. (42)

Both requirements (42) are needed for the conversion
4M → 3M, as applied to the transmittance T , while the
reflectance conversion is immediately fulfilled if ñ3 = ñ2, that
is, if only medium 3 does not differ from medium 2.

Hence, our further transformations will deal with the 4M
structure, as a general one, to reduce the reflectance R and
transmittance T given by (38)–(41) to the so-called physical
form. Such a form has to contain instead of the Fresnel
coefficients the physical constants of media (refractive and
absorptive indices) as well as the geometrical parameters of a
structure under consideration.

4. Physical Form of Expressions for the
Reflectance and Transmittance

4.1. General Expressions. Appendix A is devoted to express-
ing the quantities |a4|2 and |c4|2 obtained above in the
form of (39)–(41) in terms of the physical and geometrical
parameters of the 4M structure. The final result is given
by relations (A.39)-(A.40) and so their substitution into
(38) yields the desired expressions for the reflectance and
transmittance

R = L− +M cos
(

2β1d1 − ϕ−
)

+ F−
(

β2d2
)

L+ +M cos
(

2β1d1 − ϕ+
)

+ F+
(

β2d2
) ,

T = 16n0
∣

∣ñ1
∣

∣
2∣
∣ñ2

∣

∣
2
n3

L+ +M cos
(

2β1d1 − ϕ+
)

+ F+
(

β2d2
) ,

(43)

where all the subscripts + and − are in line with double signs
appearing in the proper coefficients given below.

In (43), we have introduced the following new quantities:

(i) the amplitude M and phase angles ϕ± of the inter-
ference oscillations in layer 1 of the optical thickness
β1d1 (see (A.14)–(A.16) and (A.18)-(A.19))

M = s1s2S12

√

(

A cos φ2

)2
+
(

B sin φ2

)2
, (44)

ϕ± = ψ ± φ1 with tan ψ =
(

B

A

)

tanφ2, (45)

A =
(
∣

∣ñ2
∣

∣
2 +
∣

∣ñ3
∣

∣
2
)

cosh 2α2d2

+2(n2n3 + k2k3) sinh 2α2d2,
(46)

B =
(
∣

∣ñ2
∣

∣
2 +
∣

∣ñ3
∣

∣
2
)

sinh 2α2d2

+2(n2n3 + k2k3) cosh 2α2d2,
(47)

S12 =
{[

(n0 − n1)2 + k2
1

][

(n0 + n1)2 + k2
1

]

×
[

(n1 − n2)2 +(k1 − k2)2
]

×
[

(n1 + n2)2 +(k1 + k2)2
]}1/2

,

(48)
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(ii) the losses parameters L± due to optical absorption (see
(A.26)-(A.27))

L± = a± cosh 2α1d1 + b± sinh 2α1d1, (49)

a± =
(

n2
0 +
∣

∣ñ1
∣

∣
2
)(
∣

∣ñ1
∣

∣
2 +
∣

∣ñ2
∣

∣
2
)

A

± 4n0n1(n1n2 + k1k2)B,
(50)

b± = 2
[(

n2
0 +
∣

∣ñ1
∣

∣
2
)

(n1n2 + k1k2)B

±n0n1

(
∣

∣ñ1
∣

∣
2 +
∣

∣ñ2
∣

∣
2
)

A
]

,
(51)

(iii) the functions F±(β2d2) taking into account the inter-
ference oscillations in layer 2 of the optical thickness
β2d2 (together with an additional contribution from
the interference and absorption in layer 1) (see
(A.32)-(A.33) and (A.36)–(A.38))

F±
(

β2d2
) = N± cos

[(

2β2d2 − φ3

)

− ψ±
]

+P cos
(

2β1d1 ∓ φ1

)

cos
(

2β2d2 − φ3

)

−Q sin
(

2β1d1 ∓ φ1

)

sin
(

2β2d2 − φ3

)

,

(52)

N± = s2s3S23

√

(

A± cos φ2

)2
+
(

B± sin φ2

)2
, (53)

tan ψ± =
(

B±
A±

)

tan φ2, (54)

A± =
(

n2
0 +
∣

∣ñ1
∣

∣
2
)

cosh 2α1d1 ± 2n0n1 sinh 2α1d1, (55)

B± =
(

n2
0 +
∣

∣ñ1
∣

∣
2
)

sinh 2α1d1 ± 2n0n1 cosh 2α1d1, (56)

P =
(
∣

∣ñ1
∣

∣
2 +
∣

∣ñ2
∣

∣
2
)

s1s3S13, Q = 2(n1n2 +k1k2)s1s3S13,

(57)

S13 =
{[

(n0 − n1)2 + k2
0

][

(n0 + n1)2 + k2
0

]

×
[

(n2 − n3)2 + (k2 − k3)2
]

×
[

(n2 + n3)2 + (k2 + k3)2
]}1/2

,

(58)

S23 =
{[

(n1 − n2)2 + (k1 − k2)2
][

(n1 + n2)2 + (k1 + k2)2
]

×
[

(n2 − n3)2 + (k2 − k3)2
]

×
[

(n2 + n3)2 + (k2 + k3)2
]}1/2

.

(59)

The first term in (52) for F±(β2d2) is a contribution
caused by single interference oscillations in layer 2 having the
amplitudes N± and phase angles ψ±, which is similar to the
interference term of layer 1 with the amplitude M and phase
angles ϕ±. The last two terms in (52) involving products
of trigonometric functions with the amplitudes P and Q

reflect a contribution from the double (intermodulation)
interference due to mutual oscillations in both layers 1 and 2.

4.2. Particular Expressions Taking Account of the Device Aver-
aging. It is the functions F±(β2d2) that take into account the
fast oscillations generated by interference in a thick substrate
(when n2d2 � n1d1) and result in appearing a “beard”
on the optical spectra similar to that shown in Figure 2. As
discussed above, any spectrophotometer with a operating
slit of finite width cannot register these fast oscillations. In
other words, such a spectrophotometer performs the so-
called device averaging whose mathematical justification is
given in Appendix B. As follows from (B.11) and (B.12), the
device averaging allows us to assume F±(β2d2) ∼ 0 in (43)
for the spectra R(λ) and T(λ).

Thus, when taking into account the device averaging,
(43) for the 4M structure take the simplest and succinct form

R = L− +M cos
(

2β1d1 − ϕ−
)

L+ +M cos
(

2β1d1 − ϕ+
) , (60)

T = 16n0
∣

∣ñ1
∣

∣
2∣
∣ñ2

∣

∣
2
n3

L+ +M cos
(

2β1d1 − ϕ+
) , (61)

with all the quantities (44)–(51) being left unchanged.
Accordingly, by means of these quantities the spectra

R(λ) and T(λ) now take into account the optical constants
(n2, k2) of a thick substrate and its finite thickness (d2 � d1)
but fully disregard interference effects in the substrate.

The analogous simplified form of R and T , as applied
to the special case of the 3M structure, follows immediately
from (43). Indeed, if (42) of the conversion 4M → 3M are
fulfilled, (58) and (59) provide S13 = S23 = 0 (because of
n3 = n2 and k3 = k2) so that F±(β2d2) = 0 because of
N± = P = Q = 0. Besides, in this case from (46) and (47)
it follows that

A = B = 2
∣

∣ñ2
∣

∣
2, (62)

which ensures two consequences: (i) the phase angles ϕ± =
φ2 ± φ1 since tan ψ = tan φ2 when A = B (see (45)), (ii) the
quantities M and L± get a common multiplier equal to (62)
(see (44) and (49)–(51)), which is cancelled after substituting
into the numerator and denominator of (43) for R and T .

In such a case, (43) assume the forms specific to the 3M
structure of arbitrary physical and geometrical properties

R = L− +M cos
(

2β1d1 − ϕ−
)

L+ +M cos
(

2β1d1 − ϕ+
) , (63)

T = 8n0
∣

∣ñ1
∣

∣
2
n2

L+ +M cos
(

2β1d1 − ϕ+
) , (64)
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where (cf. (44), (45), (45) and (49)–(51))

M = s1s2S12, ϕ± = φ2 ± φ1, (65)

S12 =
{[

(n0 − n1)2 + k2
1

][

(n0 + n1)2 + k2
1

]

×
[

(n1 − n2)2 + (k1 − k2)2
]

×
[

(n1 + n2)2 + (k1 + k2)2
]}1/2

,

(66)

L± = a± cosh 2α1d1 + b± sinh 2α1d1, (67)

a± =
(

n2
0 +
∣

∣ñ1
∣

∣
2
)(
∣

∣ñ1
∣

∣
2 +
∣

∣ñ2
∣

∣
2
)

± 4n0n1(n1n2 + k1k2),

(68)

b± = 2
[(

n2
0 +
∣

∣ñ1
∣

∣
2
)

(n1n2 + k1k2)±n0n1

(
∣

∣ñ1
∣

∣
2 +
∣

∣ñ2
∣

∣
2
)]

.

(69)

Expressions (63)–(69) are valid for any one of the 3M
structures and give appropriate equations for the different
special cases encountered in the literature [1–12].

The angles φ1 and φ2 appearing in (45) and (65) display a
phase of the Fresnel reflection coefficients (19) for interfaces
1 and 2 (shown in Figure 1(b)) and, in accordance with
formulae (A.2) and (A.3), they are defined in the form

tan φ1 ≡ tan
(

s1φ1
) = s1 tan φ1 = 2n0k1

n2
0 −

∣

∣ñ1
∣

∣
2 ,

tan φ2 ≡ tan
(

s2φ2
) = s2 tan φ2 = 2(n1k2 − n2k1)

∣

∣ñ1
∣

∣
2 − ∣∣ñ2

∣

∣
2 .

(70)

As follows from (70), these angles may be called the losses
angles because in a lossless situation they vanish tan φ1 =
tan φ2 = 0 when k1 = k2 = 0.

It is extremely remarkable that (60)-(61) for the 4M
structures with the device averaging and expressions (63)-
(64) for the arbitrary 3M structures completely coincide in
form and differ only by the appropriate parameters (44)–
(51) for the former and (65)–(69) for the latter, which are
also of the same configuration. Such a coincidence enable the
reflectance and/or transmission spectra to be analyzed below
in the same way, as applied to both types of the film-substrate
structures.

There is a variety of the 3M structures and the 4M
structures but only two of them find the wide application in
optical measurement techniques, namely

(i) an arbitrary film on a highly absorbing (metal)
substrate

(ii) a slightly absorbing film on a transparent (dielectric)
substrate.

Let us consider modifications of the above expressions
for R and T , as applied to the two particular cases.

4.2.1. Arbitrary Films on Highly Absorbing Substrates. are
characterized by the only requirement

α2d2 is so much large that

cosh 2α2d2 
 sinh 2α2d2 
 1
2

e2α2d2 .
(71)

Then, from (46) and (47), it follows that

A = B = 1
2

[

(n2 + n3)2 + (k2 + k3)2
]

e2α2d2 . (72)

The condition (72) works as well as (62) did before; that is,
it ensures the same consequences: (i) the phase angles ϕ± =
φ2 ± φ1 because tan ψ = tan φ2 when A = B (see (45)) and
(ii) the quantities M and L± acquire a common multiplier
equal to (72) (see (44) and (49)–(51)).

Hence, the reflectance R of the 4M structure with a highly
absorbing substrate, provided (71) holds true, is described
by (63) inherent in the 3M structure with (65)–(70) left
unchanged. As for the transmittance T , its expression (61)
proves to be divided by (72) so that values of T practically
vanish because of the factor exp(−2α2d2) → 0. Therefore,
for thin films on a highly absorbing substrates, there is no
point in using formulae for the 4M structure.

4.2.2. Slightly Absorbing Films on Transparent Substrates. are
characterized by the following requirements:

k2
1 � n2

1,
∣

∣ñ1
∣

∣
2 
 n2

1,

k2 = k3 = α2d2 = 0,
∣

∣ñ2
∣

∣
2 = n2

2

∣

∣ñ3
∣

∣
2 = n2

3.
(73)

Then, from (46)-(47) and (48) or (66), it, respectively,
follows that

A = n2
2 + n2

3, B = 2n2n3, (74)

S12=
∣

∣n2
0 − n2

1

∣

∣

∣

∣n2
1 − n2

2

∣

∣, s1s2S12=
(

n2
0 − n2

1

)(

n2
1 − n2

2

)

.
(75)

Requirements (73) modify the losses angles φ1 and φ2 so
that (70) take the following small-losses form

tan φ1 

2n0k1

n2
0 − n2

1
, tan φ2 
 −

2n2k1

n2
1 − n2

2
. (76)

In terms of (74) and (76), (45) assumes the form

tan ψ = B

A
tan φ2 
 −

4n2
2n3k1

(

n2
1 − n2

2

)(

n2
2 + n2

3

) . (77)

Formulae (74)–(77) are used below to obtain some
simplified expressions for the basic quantities M, ϕ± and
L± defining the reflectance and transmission spectra. In
so doing, we allow for the small-losses consequences
(tan φ2)2 � 1 and (tan ψ)2 � 1.

The amplitudeM of interference oscillations follows from
formulae (65) and (44) in the following form:

(i) for the 3M structure

M = s1s2S12 =
(

n2
0 − n2

1

)(

n2
1 − n2

2

)

, (78)

(ii) for the 4M structure

M 
 s1s2S12A =
(

n2
0 − n2

1

)(

n2
1 − n2

2

)(

n2
2 + n2

3

)

. (79)
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The phase angles ϕ± of interference oscillations for the
3M and 4M structures given by (65) and (45) can be
represented in a common form

tan ϕ± = m±
M

k1

n1
, (80)

where

(i) for the 3M structure

m± = 2n1
[−(n2

0 − n2
1

)

n2 ± n0
(

n2
1 − n2

2

)]

, (81)

(ii) for the 4M structure

m± = 2n1
[−(n2

0 − n2
1

)

n2B ± n0
(

n2
1 − n2

2

)

A
]

= 2n1
[−2

(

n2
0 − n2

1

)

n2
2n3 ± n0

(

n2
1 − n2

2

)(

n2
2 + n2

3

)]

.
(82)

The losses parameters L± for the 3M and 4M structures
retain the common form (67) or (49) with the factors a± and
b± of the following form:

(i) for the 3M structure

a± =
(

n2
0 + n2

1

)(

n2
1 + n2

2

)± 4n0n
2
1n2,

b± = 2n1
[(

n2
0 + n2

1

)

n2 ± n0
(

n2
1 + n2

2

)]

,
(83)

(ii) for the 4M structure

a± =
(

n2
0 + n2

1

)(

n2
1 + n2

2

)

A± 4n0n
2
1n2B

= (n2
0 + n2

1

)(

n2
1 + n2

2

)(

n2
2 + n2

3

)± 8n0n
2
1n

2
2n3,

b± = 2n1
[(

n2
0 + n2

1

)

n2B ± n0
(

n2
1 + n2

2

)

A
]

= 2n1
[

2
(

n2
0 + n2

1

)

n2
2n3 ± n0

(

n2
1 + n2

2

)(

n2
2 + n2

3

)]

.

(84)

Let us analyze the reflectance and transmittance spectra
of the 4M structure with the device averaging and the 3M
structure by taking advantage of coinciding with (60)-(61)
for the former and with (63)-(64) for the latter.

5. Analysis of the Reflectance and
Transmittance Spectra

All the relations obtained above are valid for the general case
when eachmth medium incorporated into the film-substrate
structure is absorbing and dispersive, that is, ñm(λ) =
nm(λ) − ikm(λ), m = 1, 2, 3. Such a dependence of the
refractive indices on light wavelength λ naturally manifests
itself in the optical spectra R(λ) and T(λ). However, a leading
contribution into interference oscillations of the spectra is
made by the periodic functions cos(2β1d1−ϕ±) appearing in
(60)-(61) or (63)-(64) because usually the functions ñm(λ)
are slowly varying as compared with the periodic functions.

For this reason, below we take into account only the main
contribution to the dependencies R(λ) and T(λ) from the
cosine functions.

5.1. Reflectance Spectrum. Let us write down the reflectance
spectrum (60) or (63) in the following form:

R(x) = L− +M cos
(

2x − ϕ−
)

L+ +M cos
(

2x − ϕ+
) . (85)

We consider instead of R(λ) the frequency spectrum R(x)
where x ≡ β1d1 = (ω/c)n1d1 is the dimensionless frequency.

Positions of maxima and minima in the spectrum (85)
are found from the condition ∂R(x)/∂x = 0 which gives the
following transcendental equation to find them:

L− sin
(

2β1d1 − ϕ+
)− L+ sin

(

2β1d1 − ϕ−
)=M sin

(

ϕ+ − ϕ−
)

.
(86)

Here, the quantitiesM, ϕ± and L± have different expressions
for either the 4M structure (with the device averaging) or the
3M structure, namely, they are (44)–(48) and (49)–(51) for
the former or (65)-(66) and (67)–(69) for the latter.

An essential simplification of (86) takes place in the
particular case of practical interest when a transparent film
(k1 = 0, α1d1 = (2π/λ)k1d1 = 0) is situated on a highly
absorbing substrate being subject to the requirement (71). As
proved above, for such a physical situation the 3M structure
model is workable even if the substrate is of finite thickness
d2 because values of α2d2 = (2π/λ)k2d2 are sufficiently large.

In this simplified case, from (70), it follows that the losses
angles of interfaces 1 and 2 are equal to

φ1 = 0, φ2 = arctan
2n1k2

n2
1 −

∣

∣ñ2
∣

∣
2 . (87)

Hence, the phase angles ϕ+ and ϕ− given by (65) as ϕ± =
φ2 ± φ1 become equal to each other owing to (87), namely,

ϕ ≡ ϕ+ = ϕ− = φ2, tan ϕ = 2n1k2

n2
1 −

∣

∣ñ2
∣

∣
2 , (88)

where | tan ϕ| is not small because of noticeable losses in a
highly absorbing substrate.

Then, (85) for the reflectance assumes the simplified
form

R(λ) = L− +M cos
(

2β1d1 − ϕ
)

L+ +M cos
(

2β1d1 − ϕ
) , (89)

where the quantities M and L± generally given by (65)–
(69) are also reduced with taking into account (88) to the
following simplified form:

M = s1s2S12 =
(

n2
0 − n2

1

)

(

n2
1 −

∣

∣ñ2
∣

∣
2
)√

1 + tan2ϕ,

L± = a± =
(

n2
0 + n2

1

)

(

n2
1 +
∣

∣ñ2
∣

∣
2
)

± 4n0n
2
1n2.

(90)

Formulae (88)–(90) have been used to compute the
reflectance spectrum R(λ) for a non-absorbing film (n0 =
1, n1 = 2.3, k1 = 0) of thickness d1 = 1μm deposited
on a titanium substrate (n2 = 1.89, k2 = 2.58). Result of
the computation is shown in Figure 5 by a solid line. For
comparison, here, there is also a dashed line corresponding
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Figure 5: Reflectance spectrum of a transparent film on a metal
substrate (solid line) and on a nonabsorbing substrate (dashed
line).

to the same film on a transparent substrate (n2 = 1.89, k2 =
0).

As seen from Figure 5, the high absorption of a metal
substrate not only influences the amplitude of interference
oscillations but also changes the positions of maxima and
minima in the spectrum R(λ). To find them, it is necessary
to apply an equation resulting from (86) as a particular case
for which ϕ+ = ϕ− and having the utterly simplified form

sin
(

2β1d1 − ϕ
) = 0. (91)

As follows from (91), the absorption of a substrate indeed
shifts the spectrum R(x) along the frequency axis x ≡ β1d1 =
(ω/c)n1d1 by the same value for all the maxima and minima
equal to the losses angle ϕ = φ2.

According to our experimental data, for amorphous
oxide films TiO2 effect of the dispersion function n1(λ)
becomes noticeable for λ < 600 nm. Figure 6(a) contains
the curve n1(λ) which is drawn on the basis of experimental
tabular data taken from [27]. We have approximated this
curve by an expression (proposed in [24])

n1(λ) = a

λb
+ c, (92)

and found its coefficients a = 0.015, b = 4.025, c = 2.2
by the least-squares method. The spectrum R(λ) for such
a dispersive film of thickness d1 = 1μm on a titanium
substrate (n2 = 1.89, k2 = 2.58) is computed by using (88)–
(90) and shown in Figure 6(b) by solid line. A dashed curve
describes the analogous spectrum calculated from the same
formulae for a constant value of n1 = 2.3. From comparison
of the two curves, it follows that an increase in n1(λ) at short
wavelengths leads to a rise in number of oscillations for both
the spectra.

5.2. Transmittance Spectrum. The transmittance spectra (61)
for the 4M structure with the device averaging and (64) for
the 3M structure can be represented in a common form

T(λ) = K

L+ +M cos
(

2β1d1 − ϕ+
) , (93)

where the quantities M, ϕ+ and L+ are the same as those in
the denominator of R(λ) and the numerator K is equal to

(i) for the 3M structure

K = 8n0
∣

∣ñ1
∣

∣
2
n2, (94)

(ii) for the 4M structure

K = 16n0
∣

∣ñ1
∣

∣
2∣
∣ñ2

∣

∣
2
n3. (95)

Position of maxima and minima in the spectrum (93) is
found from the condition ∂T(x)/∂x = 0 (with x = β1d1)
which gives the following equation to find them:

sin
(

2β1d1 − ϕ+
) = 0. (96)

This equations is identical to (91) for R(x) applicable
only to transparent films on a highly absorbing substrate
whereas (96) for T(x) holds valid always independently of
the physical properties and type (3M or 4M) of a structure.
As follows from (96), the position of maxima and minima in
the transmission spectrum is solely controlled by the phase
angle ϕ+ given by (45) or (65).

As noted above, among various thin-film structures,
the most practical interest in the transmittance spectrum
measurements has been displayed for the transparent or
slightly absorbing films on non-absorbing substrates which
satisfy (73). The simplified expressions for M, ϕ+ and
L+ which are applicable to such a kind of the 3M and
4M structures have the form given by (78)–(84). These
expressions were used to compute the spectrum T(λ) of a
slightly absorbing film on a transparent substrate with the
following parameters: n0 = n3 = 1, n1 = 2.21, k1 = 0.01,
n2 = 1.472, k2 = 0 and d1 = 1μm.

The results of calculation are given in Figure 7 as two
curves corresponding to both the 3M structure (solid thick
line) and the 4M structure (dashed line). A comparison of
these curves demonstrates that the 3M structure model with
a semiinfinite substrate of index n2 (see Figure 1(a)) yields
substantially higher values of T(λ) because of neglecting
influence of medium 3 with index n3 and so that of light
reflection from interface 3 (see Figure 1(b)). Besides, there is
a solid thin curve calculated by using the extremely simplified
(1) and (3) of Swanepoel’s approach [24, 25]. These formulae
give also higher values of T(λ) only at points of spectral
minimum, as compared with our formulae derived on the
basis of a rigorous theoretical approach. Such a difference
in minimum points of T(λ) between Swanepoel’s and our
results amounts to 2.5%–3%. This fact refutes a statement
of Swanepoel that his theory provides an accuracy error less
than 1%.

In order to verify applicability of our formulae to
processing of experimental spectra for finding thin-film
parameters, a tantalum oxide film was deposited on the
quartz-glass substrate (n2 = 1.472, k2 = 0, d2 = 500μm)
by using the reactive magnetron sputtering method. The
experimental spectrum T(λ) of such a thin-film structure
measured by a spectrophotometer is shown in Figure 8 as a
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Figure 6: (a) Experimental curve n1(λ) for an oxide film TiO2 [27] and (b) the reflectance spectrum R(λ) calculated for such a film (solid
line) and for a nondispersive film with n1 = 2.3 (dashed line) both deposited on a titanium substrate.
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Figure 7: Transmittance spectrum of a thin dielectric film (d1 =
1μm) with small optical losses (n1 = 2.21, k1 = 0.01) on a
transparent substrate (n2 = 1.472, k2 = 0) computed for the 3M
structure (solid line) and 4M structure (dashed line); a solid thin
curve is calculated from (1) and (3) by using the same numerical
values.

thin-line curve. For processing of this spectrum we have used
the known iteration procedure [20, 21, 27] which allows one
to find values of n1(λi) and k1(λi) at points λi (i = 1, 2, . . .) of
an experimental spectrum.

Unlike the above cited papers, we have applied our newly
derived (93) where its coefficients for the 4M structure with
the device averaging are given in the form of (49), (79),
(80), (82), (84), and (95). The values of n1(λi) and k1(λi)
obtained from the experimental spectrum T(λ) (a thin curve
in Figure 8) have been approximated in the form of (92) with
coefficients found by the least-squares method, namely,

n1(λ) = 0.003
λ4.285

+ 2.045, k1(λ) = 0.00027
λ2.381

+ 0.00050,

(97)
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Figure 8: Experimental transmittance spectrum of an oxide film
Ta2O5 on a quartz-glass substrate (thin line) and the spectrum T(λ)
calculated from (93) for the 4M structure (thick line) by using d1 =
0.824 μm, n1(λ) and k1(λ) in the form of (97) which are obtained
from the experimental spectrum.

where λ is measured in μm. Thickness of the film d1 has been
proved to be equal to 0.824 μm while the phase angle ϕ+ to
be negligibly small because of small optical losses.

The spectrum T(λ), calculated from our formulae by
using d1 = 0.824μm and (97), is depicted by a thick curve
in Figure 8. A close agreement between the experimental and
calculated spectra T(λ) justifies the practical applicability
of our theoretical results to the processing of experimental
optical spectra.

6. Conclusion

In the literature, there are no correct and consistent formulae
relating to the reflectance and/or transmittance optical
spectra for a thin film on a substrate of finite thickness, which
are appropriate to the 4M structure model. A known model
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of the 3M structure developed previously in sufficient detail
corresponds to the semiinfinite substrates and introduces an
accuracy error into processing of measured optical spectra.

The paper has demonstrated a rigorous approach to
development of a model for the 4M-structure. The general
expressions (43)–(59) for the spectra R(λ) and T(λ) are
applicable to all kinds of the film-substrate structures
including the particular case of semiinfinite substrates (see
(63)–(69)). However, the general expressions derived for
the 4M structure make no practical sense in the case
of a sufficiently thick substrate because of appearing fast
interference oscillations in the theoretical spectra. Any
spectrophotometer with an operating slit of finite width
eliminates such oscillations from the experimental spectra
by means of their averaging because of nonmonochromatic
irradiation (the so-called device averaging).

The crucial point of our theory is an introduction of
the device averaging procedure into (43) in order to exclude
the thick substrate oscillations nonrequired practically from
theoretical spectra. This procedure has produced (60)-(61)
for R(λ) and T(λ) in the simplest and succinct form to be
convenient for processing of the experimental spectra. The
newly derived equations have been analyzed, as applied to
two special cases: (i) an arbitrary film on highly absorbing
substrates and (ii) a slightly absorbing film on transparent
substrates (see (78)–(84)). The results of such an analysis
have displayed a close agreement between the obtained
theoretical relations and experimental measurements.

Thus, the reflectance and transmittance spectra repre-
sented in the simplified (with the device averaging) form
(60)-(61) are practically useful for determining the film
thickness and optical constants from experimental spec-
tra by applying the known techniques [20, 21, 23, 27].
Moreover, the more complex (without the device averaging)
general form (43) may be applied to the 4M-structure (see
Figure 1(b)) with a double film (of comparable values of n1d1

and n2d2) on semiinfinite substrates.

Appendices

A. Derivation of Expressions for |a4|2 and |c4|2

A.1. General Relations. Let us begin with employing (11),
(13), (15), and (18) to explicitly write down parameters of
the Fresnel reflection coefficient (19), that is,

rm = ρmeiφm ≡ smρmeismφm , (A.1)

as applied to three interfaces (m = 1, 2, 3) which exist in the
4M-structure depicted in Figure 1(b), then

(i) for interface 1 with ρ1 = s1ρ1 and φ1 = s1φ1

ρ2
1 = ρ2

1 =
∣

∣n0 − ñ1
∣

∣
2

∣

∣n0 + ñ1
∣

∣
2 ≡

N−1

N+1
,

tan φ1 = 2n0k1
∣

∣

∣n2
0 −

∣

∣ñ1
∣

∣
2
∣

∣

∣

,

N±1 =
(

n2
0 +
∣

∣ñ1
∣

∣
2
)

± 2n0n1,

s1 = sgn
{

n2
0 −

∣

∣ñ1
∣

∣
2
}

,

(A.2)

(ii) for interface 2 with ρ2 = s2ρ2 and φ2 = s2φ2

ρ2
2 = ρ2

2 =
∣

∣ñ1 − ñ2
∣

∣
2

∣

∣ñ1 + ñ2
∣

∣
2 ≡

N−2

N+2
,

tan φ2 = 2(n1k2 − n2k1)
∣

∣

∣

∣

∣ñ1
∣

∣
2 − ∣∣ñ2

∣

∣
2
∣

∣

∣

,

N±2 =
(
∣

∣ñ1
∣

∣
2 +
∣

∣ñ2
∣

∣
2
)

± 2(n1n2 + k1k2),

s2 = sgn
{
∣

∣ñ1
∣

∣
2 − ∣∣ñ2

∣

∣
2
}

,

(A.3)

(iii) for interface 3 with ρ3 = s3ρ3 and φ3 = s3φ3

ρ2
3 = ρ2

3 =
∣

∣ñ2 − ñ3
∣

∣
2

∣

∣ñ2 + ñ3
∣

∣
2 ≡

N−3

N+3
,

tan φ3 = 2(n2k3 − n3k2)
∣

∣

∣

∣

∣ñ2
∣

∣
2 − ∣∣ñ3

∣

∣
2
∣

∣

∣

,

N±3 =
(
∣

∣ñ2
∣

∣
2 +
∣

∣ñ3
∣

∣
2
)

± 2(n2n3 + k2k3),

s3 = sgn
{
∣

∣ñ2
∣

∣
2 − ∣∣ñ3

∣

∣
2
}

.

(A.4)

For subsequent transformations it is necessary to employ
the following quantities made up on the basis of (A.2)–(A.4),
namely,

ρ1ρ2 =
s1s2

N+1N+2
S12 with S12 =

√

N−1N+1N−2N+2, (A.5)

ρ1ρ3 =
s1s3

N+1N+3
S13 with S13 =

√

N−1N+1N−3N+3, (A.6)

ρ2ρ3 =
s2s3

N+2N+3
S23 with S23 =

√

N−2N+2N−3N+3. (A.7)

It is convenient to rewrite (39) for |a4|2 and |c4|2 by using
(33)-(34) and (40) in the following form:

|a4|2 =Aabs + Aint + ρ3 fa
(

β2d2
)

,

|c4|2 = Cabs + Cint + ρ3 fc
(

β2d2
)

,
(A.8)

where the terms ρ3 fa(β2d2) and ρ3 fc(β2d2) have the previous
form (41), while the absorption terms are

Aabs =
(

e2α1d1 + ρ2
1ρ

2
2e−2α1d1

)

e2α2d2

+ ρ2
3

(

ρ2
1e−2α1d1 + ρ2

2e2α1d1

)

e−2α2d2 ,

Cabs =
(

ρ2
1e2α1d1 + ρ2

2e−2α1d1

)

e2α2d2

+ ρ2
3

(

e−2α1d1 + ρ2
1ρ

2
2e2α1d1

)

e−2α2d2 ,

(A.9)
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and the interference terms are

Aint = 2ρ1ρ2

{

e2α2d2 cos
[(

2β1d1 − φ1

)

− φ2

]

+ρ2
3e−2α2d2 cos

[(

2β1d1 − φ1

)

+ φ2

]}

,

Cint = 2ρ1ρ2

{

e2α2d2 cos
[(

2β1d1 + φ1

)

− φ2

]

+ρ2
3e−2α2d2 cos

[(

2β1d1 + φ1

)

+ φ2

]}

.

(A.10)

We now pursue further transformations beginning with
the interference terms (A.10).

A.2. Transformation of Interference Terms. Using (A.4) and
(A.5), we can rewrite (A.10) in the form

Aint = 4
N+1N+2N+3

s1s2S12 f+
(

β1d1
)

,

Cint = 4
N+1N+2N+3

s1s2S12 f−
(

β1d1
)

,

(A.11)

where we have defined the new quantities as functions of
optical thickness β1d1 of layer 1

f±
(

β1d1
) = 1

2

{

N+3e2α2d2 cos
[(

2β1d1 ∓ φ1

)

− φ2

]

+N−3e−2α2d2 cos
[(

2β1d1 ∓ φ1

)

+ φ2

]}

.

(A.12)

After some trigonometrical transformations, (A.12) take the
form

f±
(

β1d1
) =

(

A cos φ2

)

cos
(

2β1d1 ∓ φ1

)

+
(

B sin φ2

)

sin
(

2β1d1 ∓ φ1

)

≡
√

(

A cos φ2

)2
+
(

B sin φ2

)2
cos
(

2β1d1 − ϕ±
)

,

(A.13)

where we have denoted

A ≡ 1
2

(

N+3e2α2d2 + N−3e−2α2d2

)

=
(
∣

∣ñ2
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∣
2 +
∣

∣ñ3
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∣
2
)

cosh 2α2d2

+2(n2n3 + k2k3) sinh 2α2d2,

(A.14)

B ≡ 1
2

(

N+3e2α2d2 −N−3e−2α2d2

)

=
(
∣

∣ñ2
∣

∣
2 +
∣

∣ñ3
∣

∣
2
)

sinh 2α2d2

+2(n2n3 + k2k3) cosh 2α2d2.

(A.15)

The phase angles ϕ± appearing in (A.13) are defined as
follows:

ϕ± = ψ ± φ1 with tan ψ = B

A
tan φ2, (A.16)

where tan φ2 follows from (A.3).
Substitution of (A.13) into (A.11) finally yields the

desired expressions for the interference terms

Aint = 4
N+1N+2N+3

M cos
(

2β1d1 − ϕ+
)

,

Cint = 4
N+1N+2N+3

M cos
(

2β1d1 − ϕ−
)

,

(A.17)

where

M = s1s2S12

√

(

A cos φ2

)2
+
(

B sin φ2

)2
(A.18)

and from (A.2), (A.3), and (A.5), it follows that

S12 ≡
√

N−1N+1N−2N+2

=
{[

(n0 − n1)2 + k2
1

][

(n0 + n1)2 + k2
1

]

×
[

(n1 − n2)2 + (k1 − k2)2
]

×
[

(n1 + n2)2 + (k1 + k2)2
]}1/2

.

(A.19)

A.3. Transformation of Absorption Terms. Using relations
(A.2)–(A.4) we can rewrite (A.9) in the form

Aabs = 4
N+1N+2N+3

L+,

Cabs = 4
N+1N+2N+3

L−,

(A.20)

where we have introduced the new quantities

L± = 1
4
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1
4
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(A.21)

After some transformations, (A.21) take the following form:

L± = 1
2

(

p±N+3e2α2d2 + p∓N−3e−2α2d2
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cosh 2α1d1

+
1
2
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(A.22)

where we have denoted
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∣ñ2
∣

∣
2
)]

.

(A.23)
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From (A.14) and (A.15), it follows that

N+3e2α2d2 = A + B, N−3e−2α2d2 = A− B. (A.24)

Insertion of (A.24) into (A.22) gives

L± = 1
2

[(

p± + p∓
)

A +
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B
]

cosh 2α1d1

+
1
2
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)

B
]

sinh 2α1d1.

(A.25)

The use of (A.23) for p± and q± reduces (A.25) to the
final form

L± = a± cosh 2α1d1 + b± sinh 2α1d1, (A.26)

where
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∣ñ2
∣

∣
2
)

A
]

(A.27)

with the factors A and B introduced by (A.14) and (A.15).
Substitution of (A.26) into (A.20) yields the desired

expressions for the absorption terms Aabs and Cabs.

A.4. Transformation of the Functions ρ3 fa(β2d2) and
ρ3 fc(β2d2). These functions are defined in (41). Using
(A.2)-(A.3) and (A.6)-(A.7), we can rewrite these equations
in the form

ρ3 fa
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) = 4
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(
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(
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(
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)
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)]

,
(A.28)

where we have introduced the following new quantities as
functions of optical thickness β2d2 of layer 2 (substrate)
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After trigonometrical transformations (A.29), take the form

f±
(

β2d2
) =

(
∣

∣ñ1
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∣ñ2
∣

∣
2
)

cos
(

2β1d1 ∓ φ1

)

× cos
(

2β2d2 − φ3

)

− 2(n1n2 + k1k2)

× sin
(

2β1d1 ∓ φ1

)

sin
(

2β2d2 − φ3

)

,

(A.30)

g±
(

β2d2
) =

(

A± cos φ2

)

cos
(

2β2d2 − φ3

)

+
(

B± sin φ2

)

sin
(

2β2d2 − φ3

)

≡
√

(

A± cos φ2

)2
+
(

B± sin φ2

)2

× cos
[(

2β2d2 − φ3

)

− ψ±
]

,

(A.31)

where we have denoted

A± ≡ 1
2

(

N+1e±2α1d1 + N−1e∓2α1d1

)

=
(

n2
0 +
∣

∣ñ1
∣

∣
2
)

cosh 2α1d1 ± 2n0n1 sinh 2α1d1,

B± ≡ ±1
2

(

N+1e±2α1d1 −N−1e∓2α1d1

)

=
(

n2
0 +
∣

∣ñ1
∣

∣
2
)

sinh 2α1d1 ± 2n0n1 cosh 2α1d1.

(A.32)

The phase angles ψ± appearing in (A.31) are defined as

tan ψ± = B±
A±

tan φ2, (A.33)

where tan φ2 follows from (A.3).
Introducing the following denotation

F±
(

β2d2
) = s1s3S13 f±

(

β2d2
)

+ s2s3S23g±
(

β2d2
)

, (A.34)

we can represent (A.28) in the form

ρ3 fa
(

β2d2
) = 4

N+1N+2N+3
F+
(

β2d2
)

,

ρ3 fc
(

β2d2
) = 4

N+1N+2N+3
F−
(

β2d2
)

.

(A.35)

Insertion of (A.30) and (A.31) in (A.34) convert it into the
following:

F±
(

β2d2
) = N± cos

[(

2β2d2 − φ3

)

− ψ±
]

+ P cos
(

2β1d1 ∓ φ1

)

cos
(

2β2d2 − φ3

)

−Q sin
(

2β1d1 ∓ φ1

)

sin
(

2β2d2 − φ3

)

,

(A.36)

where

N± = s2s3S23

√

(

A± cos φ2

)2
+
(

B± sin φ2

)2
,

P =
(
∣

∣ñ1
∣

∣
2 +
∣

∣ñ2
∣

∣
2
)

s1s3S13, Q = 2(n1n2 +k1k2)s1s3S13,

(A.37)
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and from (A.2)–(A.4), (A.6), and (A.7), it follows that

S13 ≡
√

N−1N+1N−3N+3

=
{[

(n0 − n1)2 + k2
0

][

(n0 + n1)2 + k2
0

]

×
[

(n2 − n3)2 + (k2 − k3)2
]

×
[

(n2 + n3)2 + (k2 + k3)2
]}1/2

,

S23 ≡
√

N−2N+2N−3N+3

=
{[

(n1 − n2)2 + (k1 − k2)2
][

(n1 + n2)2 + (k1 + k2)2
]

×
[

(n2 − n3)2 + (k2 − k3)2
]

×
[

(n2 + n3)2 + (k2 + k3)2
]}1/2

.

(A.38)

Substitution of the above (A.17), (A.20), and (A.35) into
(A.8) finally yields the required expressions

|a4|2 = 4
N+1N+2N+3

[

L+ +M cos
(

2β1d1 − ϕ+
)

+ F+
(

β2d2
)]

,

|c4|2 = 4
N+1N+2N+3

[

L− +M cos
(

2β1d1 − ϕ−
)

+ F−
(

β2d2
)]

,

(A.39)

where the quantities L±, M and F±(β2d2) are, respectively,
given by (A.26), (A.18), (A.36), and their accompanying
constituents.

A knowledge of both |a4|2 and |c4|2 is sufficient to
determine the reflectance R from (38). But for determining
the transmittance T from the same formula, it is necessary
to know not only |a4|2 but also the transmission coefficients
product

|t1|2|t2|2|t3|2 = 4
N+1N+2N+3

16n2
0

∣

∣ñ1
∣

∣
2∣
∣ñ2

∣

∣
2

(A.40)

which is obtained from (6) for coefficients tm, m = 1, 2, 3.

B. Mathematical Justification of the
Device Averaging

The general (43)–(59) have been derived for the case of
monochromatic irradiation at wavelength λ = const. But
experimentally, one deals with nonmonochromatic condi-
tions when (λ0 − Δλ) < λ < (λ0 + Δλ), which is generated by
the spectrophotometer with an operating slit of finite width
∼ Δλ ≪ λ0. In such a case, the device indicates some average
value. Our subsequent task is to prove that the average value
of F±(β2d2) given by (52)–(59) is negligibly small for the 4M
structure with a thick substrate such that

η ≡ β2d2

β1d1
= n2d2

n1d1
� 1. (B.1)

Denoting x = β1d1 ≡ (2π/λ)n1d1, it is easy to see that
X1 ≤ x ≤ X2 where

X1,2 = β0n1d1

(

1∓ Δλ

λ0

)

with β0 = 2π
λ0
. (B.2)

Now, the average value of F±(β2d2) can be defined as

〈

F±
(

β2d2
)〉 = 1

ΔX

∫ X2

X1

F±(x)dx, (B.3)

where

ΔX ≡ X2 − X1 = 2β0n1d1
Δλ

λ0
� 1, (B.4)

and in accordance with (52) and (B.1)

F±(x) = N± cos
[(

2ηx − φ3

)

− ψ±
]

+ P cos
(

2x ∓ φ1

)

cos
(

2ηx − φ3

)

−Q sin
(

2x ∓ φ1

)

sin
(

2ηx − φ3

)

.

(B.5)

Transformations of the trigonometric functions appear-
ing in (B.5) give the following results:

cos
[(

2ηx − φ3

)

− ψ±
]

= cos
(

ψ± + φ3

)

cos 2ηx + sin
(

ψ± + φ3

)

sin 2ηx,
(B.6)

cos
(

2x ∓ φ1

)

cos
(

2ηx − φ3

)

= 1
2

{

cos
[

2
(

η − 1
)

x +
(

±φ1 − φ3

)]

+ cos
[

2
(

η + 1
)

x +
(

∓φ1 − φ3

)]}

≈ cos
(

±φ1

)

cos
(

2ηx − φ3

)

=
(

cos φ1 cos φ3

)

cos 2ηx

+
(

cos φ1 sin φ3

)

sin 2ηx,

(B.7)
sin
(

2x ∓ φ1

)

sin
(

2ηx − φ3

)

= 1
2

{

cos
[

2
(

η − 1
)

x +
(

±φ1 − φ3

)]

− cos
[

2
(

η + 1
)

x +
(

∓φ1 − φ3

)]}

≈ sin
(

∓φ1

)

sin
(

2ηx − φ3

)

= ±
(

sin φ1 sin φ3

)

cos 2ηx

∓
(

sin φ1 cos φ3

)

sin 2ηx.

(B.8)

Approximate equality in (B.7) and (B.8) corresponds to
the condition η� 1 that holds true for thick substrates (see
(B.1)).
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Substitution of (B.6)–(B.8) into (B.5) gives

F±(x) = C± cos 2ηx + S± sin 2ηx, (B.9)

where (see (53)–(59) for N±, P and Q)

C± = N± cos
(

ψ± + φ3

)

+ P cos φ1 cos φ3 ∓Q sin φ1 sin φ3,

S± = N± sin
(

ψ± + φ3

)

+ P cos φ1 sin φ3 ±Q sin φ1 cos φ3.

(B.10)

By integration of (B.9) in accordance with (B.3), we
arrive at the desired result for the averaged value of F±(β2d2):

〈

F±
(

β2d2
)〉 = (C± cos 2β0n2d2 + S± sin 2β0n2d2

)

× sin ηΔX

ηΔX
−→ 0 as ηΔX � 1.

(B.11)

The similar procedure of averaging applied to the terms
M cos(2β1d1 − ϕ±) entering into (43) gives the following
result:
〈

M cos
(

2β1d1 − ϕ±
)〉

=M cos
(

2β0n1d1 − ϕ±
)

× sin ΔX

ΔX
−→M cos

(

4π
λ0

n1d1 − ϕ±
)

as ΔX � 1.

(B.12)

Therefore, from (B.11) and (B.12), it follows that for
the 4M structures with a thick substrate the averaged
contribution to (43) from F±(β2d2) is negligibly small and
can be omitted but the terms M cos(2β1d1 − ϕ±) should be
taken at the center wavelength λ0.

In conclusion, it should be emphasized that the above
mathematical justification is only an approximate estimation
based on the additive averaged contributions to (43) for the
reflectance and transmittance optical spectra.
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