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Two-dimensional three-component plasma system consisting of nonextensive electrons, positrons, and relativistic thermal ions is
considered. The well-known Kadomtsev-Petviashvili-Burgers and Kadomtsev-Petviashvili equations are derived to study the basic
characteristics of small but finite amplitude ion acoustic waves of the plasmas by using the reductive perturbation method. The
influences of positron concentration, electron-positron and ion-electron temperature ratios, strength of electron and positrons
nonextensivity, and relativistic streaming factor on the propagation of ion acoustic waves in the plasmas are investigated. It is
revealed that the electrostatic compressive and rarefactive ion acoustic waves are obtained for superthermal electrons and positrons,
but only compressive ion acoustic waves are found and the potential profiles become steeper in case of subthermal positrons and
electrons.

1. Introduction

Rigorous theoretical and numerical studies on electron-
positron-ion (epi) relativistic plasmas are conducted by
several researchers [1–19] due to their potential applications
and significance in understanding different types of collective
processes in astrophysical aswell as space [20–36] and labora-
tory [37–43] plasmas.The experimental observations are also
carried out bymany experimentalists [37–43] under different
plasma conditions in order to uncover the physical processes
involved. On the other hand, one-dimensional nonlinear
dynamics of the epi relativistic plasmas are studied by a
number of researchers [1–19].Malik [14] has studied the effect
of electron inertia onKadomtsev-Petviashvili (KP) solitons in
relativistic plasmas. Malik [15] has also studied the ion acous-
tic (IA) solitons in a weakly relativistic magnetized warm
plasma. Singh et al. [18, 19] have investigated the effect of
electron inertia on one-dimensional evolution of solitons and
small amplitude of solitons in two-fluid weakly relativistic
plasmas through usual Korteweg–de Vries (KdV) equation.
Very recently, Hafez and Talukder [11] have studied the

weakly relativistic influence on the IA solitary waves in one-
dimensional case by considering nonextensive electrons and
isothermal positrons. Hafez et al. [12] have also investigated
the one-dimensional weakly relativistic effects on the elec-
trostatic IA positive as well as negative solitons composing
nonextensive electrons and positrons. Only a few works [44,
45] are devoted to studying the two-dimensional nonlinear
dynamics of ion acoustic (IA) waves in such plasmas. Han et
al. [44] have investigated the existence of IA solitary waves
and their interaction in two-dimensional thermal plasmas
considering weakly relativistic hot ions and isothermal elec-
trons by solving twoKdV equations for small but finite ampli-
tude solitary waves. They found that only compressive soli-
tons for isothermal electrons and the phase shifts of the col-
liding solitary waves strongly depend on the colliding angle.
Masood and Rizvi [45] have studied the two-dimensional
electrostatic shock waves in epi relativistic unmagnetized
plasmas consisting of relativistic thermal ions and Boltzmann
distributed electrons and positrons by solving Kadomtsev-
Petviashvili-Burgers (KPB) equation. They have shown that
the ratio of ion to electron temperature, kinematic viscosity,
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positron concentration, and the relativistic ion streaming
velocity significantly modify the structure of the IA shock
waves. However, the effects of superthermal and subthermal
electrons as well as positrons can no longer be disregarded in
case of two-dimensional relativistic plasmas. It was observed
inmany space and laboratory plasmas that the distribution of
charge particles does not follow the usual Boltzmann-Gibbs
statistics which is a well-organized tool for investigating the
system when the memories and microscopic interactions are
short ranged. Renyi [46] and accordingly Tsallis [47] have
noticed the generalization of Boltzmann–Gibbs–Shannon
(BGS) entropy for statistical equilibrium having long-range
interactions, long-time memories, and dissipation. The rule
of composition for the two independent systems 𝑋 and 𝑌
can be represented [48] as 𝑆𝑞(𝑋 + 𝑌) = 𝑆𝑞(𝑋) + 𝑆𝑞(𝑌) +

(1 − 𝑞)𝑆𝑞(𝑋)𝑆𝑞(𝑌), 𝑞 ̸= 1, where the parameters denote the
degree of correlation of the system under consideration. One
can be used for 𝑆𝑞 ≥ 0 and for all cases −1 < 𝑞 < 1,
𝑞 = 1, and 𝑞 > 1 correspond to superthermality, isother-
mality, and subthermality, respectively. El-Tantawy et al. [49]
have revealed that both the supersonic and subsonic elec-
trostatic waves may exist in the nonextensive plasmas. To
find the influence of charge particles nonextensitivity, the
one-dimensional 𝑞-distribution function for 𝛼 species can
be defined [50] as 𝑓𝛼(V) = 𝐶𝑞𝛼{1 − (𝑞 − 1)(𝑚𝛼V

2
/2𝑇𝛼 +

𝑒𝛼𝜙/𝑇𝛼)}
1/(𝑞−1), where 𝐶𝑞𝛼 is the normalization constant and

𝑞 is the strength of nonextensivity. The nonextensive density
of electron and positrons can be obtained by integrating𝑓𝛼(V)
over the velocity space as 𝑛𝑒 = 𝑛𝑒𝑜[1 + (𝑞− 1)𝑒𝜙/𝑇𝑒]

(𝑞+1)/2(𝑞−1)

and 𝑛𝑝 = 𝑛𝑝𝑜[1+ (𝑞−1)𝑒𝜙/𝑇𝑝]
(𝑞+1)/2(𝑞−1), respectively.There-

fore, the study of nonextensive relativistic plasmahas received
a great deal of interest from the plasma physics researchers
due to its wide relevance in astrophysical and cosmological
scenarios like protoneutron stars [23], stellar polytropes [24],
hadronic matter and quark-gluon plasma [25], the laser-
plasma interaction [31], positron plasma wakefield acceler-
ator [33], the inner region of accretion disc in the vicinity
of black holes [34], and so on.

Being motivated by the above facts, this work is carried
out to investigate the basic properties of IA waves in a fully
ionized unmagnetized relativistic plasma system consisting
of relativistic hot ions, 𝑞-distributed electrons, and positrons
in a two-dimensional planar geometry. The plasma system
is assumed to be in equilibrium with relativistic thermal
ions streaming in the 𝑥-direction having free electrons and
positrons, which is already justified by many authors [6, 7,
11, 12, 44, 45]. The influences of nonextensivity parameter,
positron concentration, electron-positron temperature ratio,
ion-electron temperature ratio, and relativistic streaming
factor on the nonlinear propagation of IA waves in unmag-
netized epi plasmas are studied.

2. Theoretical Model Equations for
Two-Dimensional Plasmas

Thetwo-dimensional nonlinear propagation of a fully ionized
unmagnetized three-component plasma system consisting of
nonextensive electrons, positrons, and relativistic hot ions

is considered. The charge neutrality equilibrium condition
can be assumed as 𝑛𝑒0 = 𝑛𝑝0 + 𝑛𝑖0, where 𝑛𝑒0, 𝑛𝑝0, and
𝑛𝑖0 represent the unperturbed electrons, positrons, and ions
concentrations, respectively. The concentrations of electrons
and positrons are assumed to obey equilibrium 𝑞-distribution
function. The normalized nonextensive concentrations of
electron and positron can be obtained [50, 51] as

𝑛𝑒 =
1

1 − 𝛼
[1 + (𝑞 − 1) 𝜙]

(𝑞+1)/2(𝑞−1)
, (1)

𝑛𝑝 =
𝛼

1 − 𝛼
[1 − (𝑞 − 1) 𝜎𝜙]

(𝑞+1)/2(𝑞−1)

, (2)

where 𝛼 = 𝑛𝑝0/𝑛𝑒0 and 𝜎 = 𝑇𝑒/𝑇𝑝. It is noted that (1) and (2)
are used, −1 < 𝑞 < 1 for superthermal, 𝑞 > 1 for subthermal,
and 𝑞 → 1 for isothermal electrons and positrons, respec-
tively. Thus, the normalized basic equations governing the
nonlinear dynamics of IA waves, where the phase velocity of
IA waves is assumed to be smaller than the superthermal and
subthermal electrons and positron velocities, can be written
in the following forms:

𝜕𝑛𝑖

𝜕𝑡
+
𝜕 (𝑛𝑖𝑢𝑖)

𝜕𝑥
+
𝜕 (𝑛𝑖V𝑖)
𝜕𝑦

= 0,

𝜕 (𝛾𝑢𝑖)

𝜕𝑡
+ 𝑢𝑖

𝜕 (𝛾𝑢𝑖)

𝜕𝑥
+ V𝑖

𝜕 (𝛾𝑢𝑖)

𝜕𝑦
+
𝜕𝜙

𝜕𝑥
+
𝛿

𝑛𝑖

𝜕𝑝𝑖

𝜕𝑥

− 𝜇(
𝜕
2
𝑢𝑖

𝜕𝑥2
+
𝜕
2
𝑢𝑖

𝜕𝑦2
) = 0,

𝜕V𝑖
𝜕𝑡

+ 𝑢𝑖

𝜕V𝑖
𝜕𝑥

+ V𝑖
𝜕V𝑖
𝜕𝑦

+
𝜕𝜙

𝜕𝑦
+
𝛿

𝑛𝑖

𝜕𝑝𝑖

𝜕𝑦

− 𝜇(
𝜕
2V𝑖
𝜕𝑥2

+
𝜕
2V𝑖
𝜕𝑦2

) = 0,

𝜕𝑝𝑖

𝜕𝑡
+ 𝑢𝑖

𝜕𝑝𝑖

𝜕𝑥
+ V𝑖

𝜕𝑝𝑖

𝜕𝑦
+ 3𝑝𝑖 (

𝜕 (𝛾𝑢𝑖)

𝜕𝑥
+
𝜕V𝑖
𝜕𝑦
) = 0,

𝜕
2
𝜙

𝜕𝑥2
+
𝜕
2
𝜙

𝜕𝑦2
= Ω𝑛𝑒 − (Ω − 1) 𝑛𝑝 − 𝑛𝑖.

(3)

Here 𝑛𝑖 is the ion concentration normalized by unperturbed
electron concentration (𝑛𝑒0), 𝑢𝑖 and V𝑖, respectively, are the
ion fluid velocities in the direction of 𝑥 and 𝑦 normalized by
𝐶𝑠 = √𝑇𝑒/𝑚𝑖, 𝑝𝑖 is the pressure of ions normalized by (𝑛𝑖𝑇𝑖),
𝜙 is the electrostatic potential normalized by (𝑇𝑒/𝑒), 𝑥 and 𝑦
are space variables normalized by the electron Debye radius
𝜆De = √(𝑇𝑒/4𝜋𝑛𝑒0𝑒

2), and 𝑡 is the time variable normalized

by the period of ion plasma 𝑇 = √4𝜋𝑛𝑒0𝑒
2/𝑚𝑖, respectively,

where 𝛿 = 𝑇𝑖/𝑇𝑒, Ω = 1/(1 − 𝛼), and 𝑚𝑖, 𝜙, 𝑒, 𝑇𝑒, and 𝑇𝑖
are the IA speed, ion mass, electrostatic potential, electronic
charge, and electron and ion temperatures, respectively. The
relativistic effect of ions is considered to be weak and can be
expanded as 𝛾 = 1/√1 − 𝑢2

𝑖
/𝑐2 ≈ 1 + 𝑢

2

𝑖
/2𝑐
2. The dissipation

in such collisionless plasmas occurs due to influence of
ion kinematic viscosity (𝜇𝑖). It is well known that the ion
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kinematic viscosity for collisionless plasmas depends on the
ion temperature, ion gyrofrequency, ion-ion collision time,
and ion mass and widely applies in many astrophysical
issues, especially in the solar wind [52]. The symbol 𝜇 is the
normalized viscosity coefficient normalized by 𝜆De𝐶𝑠.

3. Formation of KPB and KP Equations and
Analytical Solutions

To obtain a nonlinear dynamical equation in investigating the
small but finite amplitude weakly relativistic IA waves in the
plasma system, the stretched variables can be considered [10,
45] as

𝜂 = √𝜖 (𝑥 − 𝜆0𝑡) ,

𝜉 = 𝜖𝑦,

𝜏 =
3
√𝜖𝑡,

𝜇 =
2
√𝜖𝜇0,

0 < 𝜖 < 1,

(4)

where 𝜆0 is the linear phase velocity and 𝜖 is a small
expansion parameter measuring the weakness of dispersion
and nonlinearity. Introducing (4), (3) can be converted as
follows:

𝜖
𝜕𝑛𝑖

𝜕𝜏
− 𝜆0

𝜕𝑛𝑖

𝜕𝜂
+
𝜕

𝜕𝜂
(𝑛𝑖𝑢𝑖) + 𝜖

1/2 𝜕

𝜕𝜉
(𝑛𝑖V𝑖) = 0,

𝜖
𝜕 (𝛾𝑢𝑖)

𝜕𝜏
− 𝜆0

𝜕 (𝛾𝑢𝑖)

𝜕𝜂
+ 𝑢𝑖

𝜕 (𝛾𝑢𝑖)

𝜕𝜂
+ 𝜖
1/2V𝑖

𝜕 (𝛾𝑢𝑖)

𝜕𝜉

+
𝜕𝜙

𝜕𝜂
+
𝛿

𝑛𝑖

𝜕𝑝𝑖

𝜕𝜂
− 𝜇0 (𝜖

𝜕
2
𝑢𝑖

𝜕𝜂2
+ 𝜖
2 𝜕
2
𝑢𝑖

𝜕𝜉2
) = 0,

𝜖
3/2 𝜕V𝑖
𝜕𝜏

− 𝜖
1/2
𝜆0

𝜕V𝑖
𝜕𝜂

+ 𝜖
1/2
𝑢𝑖

𝜕V𝑖
𝜕𝜂

+ 𝜖V𝑖
𝜕V𝑖
𝜕𝜉

+ 𝜖
𝜕𝜙

𝜕𝜉

+ 𝜖
𝛿

𝑛𝑖

𝜕𝑝𝑖

𝜕𝜉
− 𝜇0 (𝜖

3/2 𝜕
2V𝑖
𝜕𝜂2

+ 𝜖
5/2 𝜕
2V𝑖
𝜕𝜉2

) = 0,

𝜖
𝜕𝑝𝑖

𝜕𝜏
− 𝜆0

𝜕𝑝𝑖

𝜕𝜂
+ 𝑢𝑖

𝜕𝑝𝑖

𝜕𝜂
+ 𝜖
1/2V𝑖

𝜕𝑝𝑖

𝜕𝜉

+ 3𝑝𝑖 (
𝜕 (𝛾𝑢𝑖)

𝜕𝜂
+ 𝜖
1/2 𝜕V𝑖
𝜕𝜉
) = 0,

(𝜖
𝜕
2
𝜙

𝜕𝜂2
+ 𝜖
2 𝜕
2
𝜙

𝜕𝜉2
) = Ω [1 + (𝑞 − 1) 𝜙]

(𝑞+1)/2(𝑞−1)

− (Ω − 1) [1 − (𝑞 − 1) 𝜎𝜙]
(𝑞+1)/2(𝑞−1)

− 𝑛𝑖.

(5)

Appling the reductive perturbation technique, the perturbed
quantities 𝑛𝑖, 𝑢𝑖, V𝑖, 𝑝𝑖, and 𝜙 taking into account the charge
neutrality equilibrium condition can be expanded [45, 53] as

𝑛𝑖 = 1 + 𝜖𝑛
(1)

𝑖
+ 𝜖
2
𝑛
(2)

𝑖
+ ⋅ ⋅ ⋅ ,

𝑝𝑖 = 1 + 𝜖𝑝
(1)

𝑖
+ 𝜖
2
𝑝
(2)

𝑖
+ ⋅ ⋅ ⋅ ,

𝑢𝑖 = 𝑢𝑖0 + 𝜖𝑢
(1)

𝑖
+ 𝜖
2
𝑢
(2)

𝑖
+ ⋅ ⋅ ⋅ ,

V𝑖 = 𝜖
3/2V(1)
𝑖
+ 𝜖
5/2V(2)
𝑖
+ ⋅ ⋅ ⋅ ,

𝜙 = 𝜖𝜙
(1)
+ 𝜖
2
𝜙
(2)
+ ⋅ ⋅ ⋅ .

(6)

Setting (6) into (5), composed of various powers of 𝜖, the
lowest power in 𝜖 gives

𝑛
(1)

𝑖
=

1

𝛾1 [(𝜆0 − 𝑢𝑖0)
2
− 3𝛿]

𝜙
(1)

= {
(𝑞 + 1) (1 + 𝛼𝜎)

2 (1 − 𝛼)
}𝜙
(1)
,

𝑢
(1)

𝑖
=

(𝜆0 − 𝑢𝑖0)

𝛾1 [(𝜆0 − 𝑢𝑖0)
2
− 3𝛿]

𝜙
(1)
,

𝑝
(1)

𝑖
=

3

[(𝜆0 − 𝑢𝑖0)
2
− 3𝛿]

𝜙
(1)
,

(7)

where 𝛾1 = 1 + 1.5𝛽
2, with 𝛽 = 𝑢𝑖0/𝑐. Simplifying (7), the

phase velocity is obtained as

𝜆0 = 𝑢𝑖0 + {3𝛿 +
2 (1 − 𝛼)

𝛾1 (𝑞 + 1) (1 + 𝛼𝜎)
}

1/2

. (8)

It is seen from (8) that the phase velocity of such waves
strongly depends on the related plasma parameters, but not
on ion kinematic viscosity coefficient. However, collecting
the next higher-order terms of 𝜖 yields a system of nonlinear
partial differential equations (NPDEs) as

𝜕𝑛
(1)

𝑖

𝜕𝜏
− (𝜆0 − 𝑢𝑖0)

𝜕𝑛
(2)

𝑖

𝜕𝜂
+
𝜕𝑢
(2)

𝑖

𝜕𝜂
+
𝜕

𝜕𝜂
(𝑛
(1)

𝑖
𝑢
(1)

𝑖
)

+
𝜕V(1)
𝑖

𝜕𝜉
= 0,

𝛾1

𝜕𝑢
(1)

𝑖

𝜕𝜏
− 𝛾1 (𝜆0 − 𝑢𝑖0)

𝜕𝑢
(2)

𝑖

𝜕𝜂

+ (𝛾1 − 2𝛾2

𝜆0 − 𝑢𝑖0

𝑢𝑖0

)𝑢
(1)

𝑖

𝜕𝑢
(1)

𝑖

𝜕𝜂
+
𝜕𝜙
(2)

𝜕𝜂

− 𝛿𝑛
(1)

𝑖

𝜕𝑝
(1)

𝑖

𝜕𝜂
+ 𝛿

𝜕𝑝
(2)

𝑖

𝜕𝜂
− 𝜇0

𝜕
2
𝑢
(1)

𝑖

𝜕𝜂2
= 0,
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− (𝜆0 − 𝑢𝑖0)
𝜕V(1)
𝑖

𝜕𝜂
+ 𝛿

𝜕𝑝
(1)

𝑖

𝜕𝜉
+
𝜕𝜙
(1)

𝜕𝜉
= 0,

𝜕𝑝
(1)

𝑖

𝜕𝜏
− (𝜆0 − 𝑢𝑖0)

𝜕𝑝
(2)

𝑖

𝜕𝜂
+ 𝑢
(1)

𝑖

𝜕𝑝
(1)

𝑖

𝜕𝜂
+ 3𝛾
1

𝜕𝑢
(2)

𝑖

𝜕𝜂

+ 3𝛾
1
𝑝
(1)

𝑖

𝜕𝑢
(1)

𝑖

𝜕𝜂
+
6𝛾
2

𝑢𝑖0

𝑢
(1)

𝑖

𝜕𝑢
(1)

𝑖

𝜕𝜂
+ 3

𝜕V(1)
𝑖

𝜕𝜉
= 0,

𝜕
2
𝜙
(1)

𝜕𝜂2
= {

(𝑞 + 1) (1 + 𝛼𝜎)

2 (1 − 𝛼)
} 𝜙
(2)

− {

(𝑞 − 3) (𝑞 + 1) (1 − 𝛼𝜎
2
)

8 (1 − 𝛼)
} {𝜙
(1)
}
2

− 𝑛
(2)

𝑖
,

(9)

where 𝛾2 = 1.5𝛽
2. Eliminating 𝑛(2)

𝑖
,𝑢(2)
𝑖
,𝑝(2)
𝑖
, and𝜙(2) from the

above system of NPDEs, we obtain the following nonlinear
evolution equation (NLEE):

𝜕

𝜕𝜂
(
𝜕𝜙
(1)

𝜕𝜏
+ 𝐴𝜙
(1) 𝜕𝜙
(1)

𝜕𝜂
+ 𝐵

𝜕
3
𝜙
(1)

𝜕𝜂3
− 𝐶

𝜕
2
𝜙
(1)

𝜕𝜂2
)

+ 𝐷
𝜕
2
𝜙
(1)

𝜕𝜉2
= 0.

(10)

The above equation is the two-dimensional famous KPB
equation, which is very useful to investigate the nonlinear
propagation of weakly relativistic IA shock structures in the
plasma system considered. The nonlinearity (𝐴), dispersion
(𝐵), dissipation (𝐶), and weakly transverse dispersion (𝐷)
coefficients of (10) are obtained in the following forms:

𝐴 = (𝛾1 (𝜆0 − 𝑢𝑖0) − 2𝛾2

(𝜆0 − 𝑢𝑖0)
2

𝑢𝑖0

+
6𝛿𝛾2

𝑢𝑖0

)
1

2Κ𝛾
2

1

+

(𝑞 − 3) (1 − 𝛼𝜎
2
)Κ

4 (1 + 𝛼𝜎) (𝜆0 − 𝑢𝑖0)
+

9𝛿

2Κ (𝜆0 − 𝑢𝑖0)

+
1

𝛾1 (𝜆0 − 𝑢𝑖0)
,

𝐵 =
𝛾1Κ
2

2 (𝜆0 − 𝑢𝑖0)
,

𝐶 =
𝜇0

2𝛾1

,

𝐷 =
𝛾1Κ + 3𝛿

2 (𝜆0 − 𝑢𝑖0)
,

(11)

where Κ = [(𝜆0 − 𝑢𝑖0)
2
− 3𝛿].

To obtain the analytical solution to the NLEE of (10),
the stretched variables 𝜂, 𝜉, and 𝜏 may be combined as
𝜙
(1)
(𝜂, 𝜉, 𝜏) = 𝜙

(1)
(𝜒), 𝜒 = 𝜂 + 𝜉 −𝑉𝜏, where𝑉 is the constant

speed of the reference frame normalized by𝐶𝑠 and setting the
appropriate boundary conditions 𝜙(1) → 0, 𝑑𝜙(1)/𝑑𝜒 → 0,

𝑑
2
𝜙
(1)
/𝑑𝜒
2
→ 0, and 𝑑3𝜙(1)/𝑑𝜒3 → 0 as 𝜒 → ±∞ for

localized perturbations. Equation (10) can be converted to the
following form:

𝑑

𝜕𝜒
(−𝑉

𝑑𝜙
(1)

𝜕𝜒
+ 𝐴𝜙
(1) 𝑑𝜙
(1)

𝑑𝜒
+ 𝐵

𝑑
3
𝜙
(1)

𝑑𝜒3
− 𝐶

𝑑
2
𝜙
(1)

𝑑𝜒2
)

+ 𝐷
𝑑
2
𝜙
(1)

𝑑𝜒2
= 0.

(12)

Integrating (12) once with respect to 𝜒 and using boundary
conditions for localized perturbations, one obtains

− 𝑉
𝑑𝜙
(1)

𝜕𝜒
+ 𝐴𝜙
(1) 𝑑𝜙
(1)

𝑑𝜒
+ 𝐵

𝑑
3
𝜙
(1)

𝑑𝜒3
− 𝐶

𝑑
2
𝜙
(1)

𝑑𝜒2

+ 𝐷
𝑑𝜙
(1)

𝑑𝜒
= 0.

(13)

Applying the Bernoulli equation method [54], the traveling
wave solutions to (13) can be written as

𝜙
(1)
(𝜒) = 𝑎0 + 𝑎1𝐺 (𝜒) + 𝑎2𝐺

2
(𝜒) , (14)

where 𝐺(𝜒) = (Δ/2){1 + tanh((Δ/2)𝜒)} is a solution to
the Bernoulli equation 𝑑𝐺(𝜒)/𝑑𝜒 = Δ𝐺(𝜒) − 𝐺

2
(𝜒). The

symbols 𝑎0, 𝑎1, 𝑎2, and Δ are constants to be evaluated later.
Substituting (14) along with the derivatives of 𝜙(1)(𝜒) into
(13) and collecting all the terms with the same degree of
𝐺
𝑗
(𝜒) (𝑗 = 1, 2, . . .), one can obtain a system of algebraic

equations for 𝑎0, 𝑎1, 𝑎2, Δ, and 𝑉 as follows:

𝐺
1
(𝜉) : − 𝑉𝑎1Δ + 𝐷𝑎1Δ − 𝐶𝑎1Δ

2
+ 𝐴𝑎0𝑎1Δ

+ 𝐵𝑎1Δ
3
= 0,

𝐺
2
(𝜉) : − 2𝑉𝑎2Δ − 𝐴𝑎0𝑎1 + 2𝐴𝑎0𝑎2Δ + 𝑉𝑎1

− 7𝐵𝑎1Δ
2
− 𝐷𝑎1 + 2𝐷𝑎2Δ − 4𝐶𝑎2Δ

2
+ 𝐴𝑎
2

1
Δ

+ 8𝐵𝑎2Δ
3
+ 3𝐶𝑎1Δ = 0,

𝐺
3
(𝜉) : 3𝐴𝑎1𝑎2Δ + 12𝐵𝑎1Δ − 38𝐵𝑎2Δ

2
− 2𝐴𝑎0𝑎2

+ 10𝐶𝑎2Δ − 𝐴𝑎
2

1
− 2𝐷𝑎2 − 2𝐶𝑎1 + 2𝑉𝑎2 = 0,

𝐺
4
(𝜉) : − 6𝐵𝑎1 + 2𝐴𝑎

2

2
Δ + 54𝐵𝑎2Δ − 3𝐴𝑎1𝑎2

− 6𝐶𝑎2 = 0,

𝐺
5
(𝜉) : − 24𝐵𝑎2 − 2𝐴𝑎

2

2
= 0.

(15)
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Evaluating the system of algebraic equations (15), the param-
eters 𝑎0, 𝑎1, 𝑎2, and Δ can be obtained as

Δ =
𝐶

5𝐵
,

𝑎0 =
25𝑉𝐵 + 6𝐶

2
− 25𝐷𝐵

25𝐴𝐵
,

𝑎1 = 0,

𝑎2 = −
12𝐵

𝐴
.

(16)

Using (14) and (16), the KPB (10) has the following soliton
solution:

𝜙
(1)
(𝜒) = {

𝑉 − 𝐷

𝐴
−
6𝐶
2

25𝐴𝐵
tanh( 𝐶

10𝐵
𝜒)}

+
3𝐶
2

25𝐴𝐵
sech2 ( 𝐶

10𝐵
𝜒) ,

(17)

where 𝜒 = 𝜂 + 𝜉 − 𝑉𝜏. It is seen that the height of the
shock structure depends on the nonlinear coefficient (𝐴),
dispersion coefficient (𝐵), dissipative coefficient (𝐶), and
speed of the reference frame (𝑉), but the steepness of the
shock structure depends only on 𝐶 and 𝐵. To identify the
formation of stable shock, linearizing and integrating (13),
one obtains

𝐵
𝑑
2
𝜙
(1)

𝑑𝜒2
− 𝐶

𝑑𝜙
(1)

𝑑𝜒
− (𝑉 − 𝐷) 𝜙

(1)
= 0. (18)

The above equation is a higher-order homogeneous linear
ordinary differential equation with constant coefficients. It is
well known that the solutions of (18) are proportional to 𝑒𝑚𝜒,
where𝑚 = (𝐶±√𝐶2 − 4𝐵(𝑉 − 𝐷))/2𝐵. It is remarkable to be
noted that there will be a shock formation if𝐶2−4𝐵(𝑉−𝐷) ≥
0; otherwise there will be oscillatory solitons. Substituting
𝑉 = 6𝐶

2
/25𝐵+𝐷 [55] into the stability condition yields𝐶 ≥ 0.

The shock structures may be formed only for 𝐶 > 0. If 𝐶 = 0,
(10) can be reduced as

𝜕

𝜕𝜂
(
𝜕𝜙
(1)

𝜕𝜏
+ 𝐴𝜙
(1) 𝜕𝜙
(1)

𝜕𝜂
+ 𝐵

𝜕
3
𝜙
(1)

𝜕𝜂3
) + 𝐷

𝜕
2
𝜙
(1)

𝜕𝜉2
= 0. (19)

This is the well-known two-dimensional KP equation, which
is responsible for solitary wave or hump-shaped structures
in plasmas. Therefore the solution of KPB equation can be
written as

𝜙
(1)
(𝜒) = 𝜙0 {[1 − tanh(

𝜒

𝑊0

)] +
1

2
sech2 (

𝜒

𝑊0

)} , (20)

where 𝜙0 = 6𝐶
2
/25𝐴𝐵 is the amplitude of the shock

structures and𝑊0 = 10𝐵/𝐶 is the width of shock waves with
𝜒 = 𝜂 + 𝜉 − (6𝐶

2
/25𝐵 + 𝐷)𝜏.

Again, solving the algebraic equations (15) by setting 𝐶 =
0, one can determine the values of the parameters 𝑎0, 𝑎1, 𝑎2,
and Δ as

Δ = Δ,

𝑎0 =
𝑉 − 𝐷 − 𝐵Δ

2

𝐴
,

𝑎1 =
12𝐵Δ

𝐴
,

𝑎2 = −
12𝐵

𝐴
.

(21)

Using (14) and (21) and setting Δ = (𝑉−𝐷)/𝐵, the stationary
solution to the KP equation can be obtained in the following
form:

𝜙
(1)
= 𝜙amsech

2
(
𝜒

𝑊1

) , (22)

where 𝜒 = 𝜂 + 𝜉 − 𝑉𝜏, 𝜙am = 3(𝑉 − 𝐷)/𝐴 is the amplitude
of solitary waves, and 𝑊1 = √4𝐵/(𝑉 − 𝐷) is the width of
solitary waves. It should be mentioned here that there will be
hump-shaped solitons if 4𝐵 > 𝑉 − 𝐷; otherwise it will yield
oscillatory waves.

4. Results and Discussion

The effects of unperturbed positron-electron density ratio
(𝛼 = 𝑛𝑝0/𝑛𝑒0), electron-positron temperature ratio (𝜎 =

𝑇𝑒/𝑇𝑝), ion-electron temperature ratio (𝛿 = 𝑇𝑖/𝑇𝑒), nor-
malized ion kinematic viscosity coefficient (𝜇0), relativistic
streaming factor (𝛽), and strength of electron and positrons
nonextensivity (𝑞) on the nonlinear propagation of electro-
static IA waves in such relativistic plasmas have been studied
numerically. The following observations are made from this
investigation:

(1) The finite amplitude IA shock structures are obtained
due to the involvement of dissipative term, that is,
ion kinematic viscosity effect, but the finite amplitude
IA solitary waves are obtained in the absence of
the dissipative media. It is provided that the basic
features of relativistic nonextensive plasmas support
finite amplitude IA waves and strongly depend on the
related plasma parameters.

(2) The influence of enhanced relativistic streaming fac-
tor (i.e., for 0 ≤ 𝛽 ≤ 0.4) on the nonlinear propagation
of 𝜙(1) in the moving frame 𝜒(𝜂, 𝜉, 𝜏) for both cases of
thermality is displayed in Figures 1(a) and 1(b). It is
observed that, with the increase of relativistic stream-
ing factor, the magnitude of electrostatic potential of
IA shock waves increases for thermal electrons and
positrons, but the width of the shock waves becomes
steeper in the case of subthermality.

(3) The effect of 𝜇0 for superthermal and subthermal
particles on the spatial electrostatic potential profiles
𝜙
(1) of IA shock waves is shown in Figures 2(a) and
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Figure 1: Weakly relativistic (𝛽 = 𝑢
𝑖0
/𝑐) effects on the spatial potential (𝜙(1)) profiles of IA shock waves in plasmas, taking 𝛼 = 0.1, 𝜎 = 1,

𝛿 = 0.01, and 𝜇
0
= 0.96 for the thermality parameter (a) 𝑞 = 0.6 and (b) 𝑞 = 2.
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Figure 2: Influence of 𝜇
0
on the spatial potential (𝜙(1)) profiles of IA shock waves of the plasma system considered, taking 𝛼 = 0.4, 𝜎 = 1,

𝛿 = 0.01, and 𝛽 = 0.1 for the thermality parameter (a) 𝑞 = 0.6 and (b) 𝑞 = 2.

2(b), respectively. It is seen that the amplitude of
the shock waves monotonically is increased with the
increase of 𝜇0.

(4) The variations of spatial electrostatic potential pro-
files of IA waves with regard to 𝜒 and 𝛿 for both
cases of thermality taking the remaining parameters

constants are presented in Figures 3(a), 3(b), and
3(c). Figures 3(a) and 3(c) show that the amplitudes
of the shock waves decrease for lower temperature
ratio 𝜎 of superthermal and subthermal electrons and
positrons while Figure 3(b) shows that the amplitude
of shock waves increases for high electron to positron
temperature ratio in the case of superthermality.
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Figure 3: Variation of potential of electrostatic shock waves with respect to 𝜒 and 𝛿 taking the fixed values of (a) 𝑞 = 0.6 (superthermality),
𝛼 = 0.1, 𝛽 = 0.1, 𝑢

𝑖0
= 0.9, 𝜎 = 1 (low), and 𝜇

0
= 0.95. (b) The same values of (a) but 𝜎 = 10 (high). (c) 𝑞 = 4 (subthermality), 𝛼 = 0.1,

𝛽 = 0.1, 𝜎 = 10, and 𝜇
0
= 0.95.

(5) The effect of 𝛼 on spatial electrostatic potential 𝜙(1) of
IA shock waves for both cases of thermality keeping
the remaining parameters constants is presented in
Figures 4(a), 4(b), and 4(c). The figures indicate that
the shock amplitudes increase with the increase of
𝛼 (0 < 𝛼 < 1) for superthermal as well as for subther-
mal electrons and positrons but sharply decrease for
superthermal case. It is also found that the rarefactive
shock structures are obtained for small values of𝛼 and
negative values of 𝑞 with the considered values of the
other parameters.

(6) Figures 5(a) and 5(b) represent the influence of 𝜎 on
the spatial electrostatic potential profiles of IA shock
waves for different values of 𝑞 taking the constant
values of the remaining parameters as mentioned in
the figures, respectively. It is observed that, with the
increase of 𝜎, the amplitude of electrostatic shock
waves decreases for superthermality but increases for
subthermality conditions.

(7) The initial electrostatic potential profiles of IA soli-
tary waves are displayed in Figures 6(a), 6(b), 6(c),
and 6(d) considering the different values of the
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Figure 4: Variation of electrostatic shock waves with respect to 𝜒 and 𝛼 for (a) 𝑞 = −0.6 (superthermality), (b) 𝑞 = 0.4 (superthermality),
and (c) 𝑞 = 1.6 (subthermality) taking the fixed values of 𝛼 = 0.1, 𝛽 = 0.1, 𝛿 = 0.01, and 𝜇
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Figure 6: Initial potential profiles 𝜙(1) of the IA solitary waves for (a) 𝛼 = 0.1, 𝑞 = 0.6, 𝛽 = 0.1, 𝜎 = 1, 𝛿 = 0.01, and 𝑉 = 0.75; (b) 𝛼 = 0.4
and the remaining parameters as in (a); (c) 𝛿 = 0.1 and the remaining parameters as in (b); and (d) 𝜎 = 10 and the remaining parameters as
in (b).

plasma parameters indicated in the figure caption.
Visual inspection of Figures 6(a)–6(c) indicates that
the amplitude as well as the width of the solitons
decreases not only for superthermal case but also
for subthermal electrons and positrons as 𝛼 and 𝛿
increase for low electron to positron temperature
ratio. The shape of the solitary waves becomes hump,
but the amplitude becomes narrower (Figure 6(d))
for high electron to positron temperature ratio and
superthermal elections and positrons.

(8) Figures 7(a)–7(c) present the variation of spatial
electrostatic potential profiles of IA solitary waves
with respect to 𝛽, whereas Figure 7(d) presents the

variation of electrostatic IA solitary waves for differ-
ent values of 𝜏 considering the other parameters con-
stants. It is observed that the amplitude of the solitary
waves increases for 0 < 𝛽 < 0.4, whereas it decreases
for 0.4 < 𝛽 ≤ 1. It is also observed that the IA
solitary waves behave as pulse-like solitons due to the
variation of time.

On the other hand, the nonlinearity, dispersion, and dissi-
pation coefficients of KPB equation of this manuscript are
equivalent to the nonlinearity, dispersion, and dissipation
coefficients presented by Masood and Rizvi [45] when 𝑞 →
1. Thus the results of this investigation are also in good
agreement with the results provided in [45] for isothermal
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Figure 7: Variation of 𝜙(1) with respect to 𝜒 and 𝛽 for the different values of thermal parameter and electron to positron temperature ratio,
that is, (a) 𝑞 = 0.6, 𝜎 = 1, (b) 𝑞 = 1.6, 𝜎 = 1, and (c) 𝑞 = 0.6, 𝜎 = 10 taking 𝛼 = 0.3, 𝛿 = 0.01, and 𝑉 = 0.75. (d) Variation of 𝜙(1) for 𝜏 = 5 and
𝜏 = 10 considering 𝛼 = 0.1, 𝑞 = 0.6, 𝛽 = 0.1, 𝜎 = 1, 𝛿 = 0.01, and 𝑉 = 0.75.

electrons and positrons on the nonlinear propagation of IA
shock waves in the plasmas considered. Furthermore, we
have also studied the nonlinear propagation of IA solitary
waves using the stationary solution of the two-dimensional
KP equation. It is seen that the compressive and rarefactive
IA shock and solitary waves can be obtained for superthermal
electrons and positrons, while only compressive IAwaves can
be found in case of subthermal electrons and positrons.

5. Conclusion

Two types of NLEEs are derived to study the two-
dimensional nonlinear electrostatic IA structures considering

the unmagnetized epi plasma system consisting of relativistic
ions, nonextensive electrons, and positrons that exist inmany
astrophysical and cosmological environments. The solutions
of the equations are determined in terms of positron con-
centration, electron-positron and ion-electron temperature
ratios, ion kinematic viscosity, strength of electron and
positrons nonextensivity, and weakly relativistic streaming
factor by employing the Bernoulli equation method. The fact
that the phase velocity of IA waves strongly depends on the
related plasma parameters, but not on ion kinematic viscosity
coefficient, is investigated. The amplitudes of the IA shock
waves are monotonically increasing with the increase of
viscosity coefficient for both cases of thermality. The IA
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solitary waves become hump- and pulse-shaped due to
relativistic effect in the absence of the dissipative media,
that is, viscosity coefficient. The compressive and rarefactive
IA shock and solitary waves are obtained for superthermal
electrons and positrons, while only compressive IA waves are
found in case of subthermal electrons and positrons. Finally,
this work may be helpful for understanding the structures of
IA waves for laboratory and astrophysical plasmas.This work
is done for nonlinear shock and solitary propagation in our
plasma model in case of planar geometry which is only valid
for small but finite amplitude ion acoustic structures. But still
there are so many possibilities to make further investigation
on nonlinear analysis of shock waves, solitary waves, vortices,
solitons, double layers, and so forth, with nonextensive elec-
trons, positrons, and relativistic thermal ions using this same
plasma model. These are also the problems of great impor-
tance in plasma physics for better understanding the char-
acteristics of astrophysical compact objects but beyond the
scope of the present work.
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