
Research Article
Nonlocal Transport Processes and the Fractional
Cattaneo-Vernotte Equation

J. F. Gómez Aguilar,1 T. Córdova-Fraga,2 J. Tórres-Jiménez,3 R. F. Escobar-Jiménez,4

V. H. Olivares-Peregrino,4 and G. V. Guerrero-Ramírez4

1CONACYT-Centro Nacional de Investigación y Desarrollo Tecnológico, Tecnológico Nacional de México,
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The Cattaneo-Vernotte equation is a generalization of the heat and particle diffusion equations; this mathematical model combines
waves and diffusion with a finite velocity of propagation. In disordered systems the diffusion can be anomalous. In these kinds of
systems, the mean-square displacement is proportional to a fractional power of time not equal to one. The anomalous diffusion
concept is naturally obtained fromdiffusion equations using the fractional calculus approach. In this paper we present an alternative
representation of the Cattaneo-Vernotte equation using the fractional calculus approach; the spatial-time derivatives of fractional
order are approximated using the Caputo-type derivative in the range (0, 2]. In this alternative representation we introduce the
appropriate fractional dimensional parameters which characterize consistently the existence of the fractional space-time derivatives
into the fractional Cattaneo-Vernotte equation. Finally, consider the Dirichlet conditions, the Fourier method was used to find
the full solution of the fractional Cattaneo-Vernotte equation in analytic way, and Caputo and Riesz fractional derivatives are
considered. The advantage of our representation appears according to the comparison between our model and models presented
in the literature, which are not acceptable physically due to the dimensional incompatibility of the solutions. The classical cases are
recovered when the fractional derivative exponents are equal to 1.

1. Introduction

Fourier’s law satisfies the heat conduction induced by a
small temperature gradient in steady state. In steady state,
the heat transfer through a material is proportional to
the negative gradient of the temperature and to the area.
However, there are some cases in which the Fourier equation
is not adequate to describe the heat conduction process.
More precisely, Fourier law is diffusive and cannot predict the
finite temperature propagation speed in transient situations,

in this context, the Cattaneo-Vernotte equation corrects the
nonphysical property of infinite propagation of the Fourier
and Fickian theory of the diffusion of heat, and this equation
also known as the telegraph equation for the temperature
is a generalization of the heat diffusion (Fourier’s law) and
particle diffusion (Fick’s laws) equations. Processes where
the traditional Fourier heat equation leads to inaccurate
temperature and heat flux profiles are known as non-
Fourier type processes [1]; these processes can be Markovian
or non-Markovian [2]. In the Markovian processes case,
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the mean-square displacement of the diffusing particle is
proportional to time, while, in the disordered systems or
non-Markovian process, the diffusion can be anomalous;
in this case the mean-square displacement is proportional
to a fractional power of time not equal to one; when
anomalous diffusion occurs, the probability density for a
diffusing particle is not the usual Gaussian distribution.
The mechanism of diffusion is Brownian motion, and this
motion is the simplest continuous-time stochastic process.
Continuous-time random walks can be coupled with Brow-
nian motion and fractional calculus (FC) to provide an
improved estimator in the modeling of anomalous diffusion.
A random walk is a mathematical formalization of a path
that consists of a succession of random steps [3]. A Lévy
flight, also referred to as Lévy motion, is a random walk
in which the step-lengths have a heavy-tailed probability
distribution. When a random walk is defined as a walk
in a space of dimension greater than one, the steps are
defined in terms of a probability distribution, and steps move
with isotropic random directions [4], and continuous-time
random walk schemes are considered in the derivation of
time-fractional differential equations. Recently, the subject
of FC has attracted interest of researches; this mathematical
concept involves nonlocal operators which can be applied in
physical systems yielding new information about its behavior,
fractional derivatives with respect to coordinates describe
power-law nonlocal properties of the distributed system,
and there are several papers about the recent history of
the FC; see [5–7]. Several approaches have been used for
investigating anomalous diffusion, Langevin equations [8, 9],
random walks [10, 11], or fractional derivatives, based on FC
several works connected to anomalous diffusion processes
which may be found in [12–30]. Using phenomenological
arguments, Compte andMetzler [31] generalize theCattaneo-
Vernotte equation by introducing fractional derivatives with
a continuous-time random walk scheme. The authors of the
works presented in [32–34] studied the generalizedCattaneo-
Vernotte equation with fractional space-time derivatives, and
the order of the spatial and temporal fractional derivatives
are 𝛽, 𝛾 ∈ (0; 2]. Lewandowska and Kosztołowicz in [35]
investigate the subdiffusive impedance phenomena of a
spatially limited sample for large pulsation of electric field.
Tarasov in [36] based on the Liouville equation obtained
the fractional analogues of the classical kinetic and transport
equations. Qi and Jiang in [37] derived the exact solution of
the Cattaneo-Vernotte equation by joint Laplace and Fourier
transforms. Other applications of FC to Cattaneo-Vernotte
equation are given in [38–41].

The aim of this work is to contribute to the development
of a new version of fractional fundamental Cattaneo-Vernotte
equation applying the idea proposed in the work [42]; the
order considered is (0, 2] for the fractional equation in space-
time domain; this representation preserves the dimensional-
ity of the equation for any value taken by the exponent of the
fractional derivative.

The paper is structured as follows: in Section 2 we explain
the basic concepts of the fractional calculus; in Section 3 we
present the fractional Cattaneo-Vernotte equation and give
conclusions in Section 4.

2. Basic Definitions of Fractional Calculus

The most commonly used definitions in FC are Riemann-
Liouville (RL), Grünwald-Letnikov (GL), Caputo fractional
derivative (CFD), and Riesz fractional derivative (𝑅) [43–46].

The RL definition of the fractional derivative for (𝜑 > 0)

is

RL
𝑎
𝐷
𝜑

𝑡
𝑓 (𝑡) =

1

Γ (𝑚 − 𝜑)

𝑑𝑚

𝑑𝑡𝑚
∫
𝑡

𝑎

𝑓 (𝜂)

(𝑡 − 𝜂)
𝜑−𝑚+1

𝑑𝜂,

𝑚 − 1 < 𝜑 < 𝑚.

(1)

For function 𝑓(𝑡) the CFD is given by

𝐶

𝑎
𝐷
𝜑

𝑡
𝑓 (𝑡) =

1

Γ (𝑛 − 𝜑)
∫
𝑡

𝑎

𝑓
(𝑛)

(𝜂)

(−𝜂 + 𝑡)
𝜑−𝑛+1

𝑑𝜂,

𝑛 − 1 < 𝜑 ≤ 𝑛,

(2)

where 𝑑𝜑/𝑑𝑡𝜑 = 𝐶
𝑎
𝐷
𝜑

𝑡
is a CFD with respect to 𝑡, 𝜑 ∈ 𝑅 is the

order of the fractional derivative, 𝑛 = 1, 2, . . . ∈ 𝑁, and Γ(⋅)

represents Euler’s gamma function.
In the present paper, we would use the CFD definition,

since the former is more popular in real applications. For
the CFD definition we need to specify additional conditions
in order to produce a unique solution, these additional
conditions are expressed in terms of integer-order derivatives
[46], and this definition is used mainly for the problem
with memories. In the case of the RL definition there exist
physically unacceptable initial conditions [47].

The Laplace transform of Caputo’s derivative (2) has the
form [48]

𝐿 [
𝐶

0
𝐷
𝜑

𝑡
𝑓 (𝑡)] = 𝑠

𝜑

𝐹 (𝑠) −

𝑛−1

∑
𝑘=0

𝑠
𝜑−𝑘−1

𝑓
(𝑘)

(0) , (3)

where 𝐹(𝑠) is the Laplace transform of the function 𝑓(𝑡) and
𝑛 = [R(𝜑)] + 1. From this expression we have two particular
cases:

𝐿 [
𝐶

0
𝐷
𝜑

𝑡
𝑓 (𝑡)] = 𝑠

𝜑

𝐹 (𝑠) − 𝑠
𝜑−1

𝑓 (0) 0 < 𝜑 ≤ 1, (4)

𝐿 [
𝐶

0
𝐷
𝜑

𝑡
𝑓 (𝑡)] = 𝑠

𝜑

𝐹 (𝑠) − 𝑠
𝜑−1

𝑓 (0) − 𝑠
𝜑−2

𝑓


(0)

1 < 𝜑 ≤ 2.

(5)

The Mittag-Leffler function has gained extensive interest
among physicists due its vast potential of applications in the
solution of fractional differential equations [48]:

𝐸
𝛼,𝜃

(𝑡) =

∞

∑
𝑚=0

𝑡𝑚

Γ (𝛼𝑚 + 𝜃)
, (𝛼 > 0) , (𝜃 > 0) ; (6)

when 𝛼 = 1 and 𝜃 = 1, from (6) we obtain the exponential
function.

erfc(𝛼) denotes the complementary error function [48]
and it is defined as

erfc (𝛼) = 2

√𝜋
∫
𝛼

0

exp (−𝑡
2

) 𝑑𝑡. (7)
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Some common Mittag-Leffler functions are described in
[48]:

𝐸
1/2,1

(±𝛼) = exp (𝛼
2

) [1 ± erfc (𝛼)] , (8)

𝐸
1,1

(±𝛼) = exp (±𝛼) , (9)

𝐸
2,1

(−𝛼
2

) = cos (𝛼) , (10)

𝐸
3,1

(𝛼) =
1

2
[exp (𝛼

1/3

)

+ 2 exp(−(
1

2
) 𝛼
1/3

) cos(
√3

2
𝛼
1/3

)] ,

(11)

𝐸
4,1

(𝛼) =
1

2
(cos (𝛼1/4) + cosh (𝛼

1/4

)) . (12)

The Mittag-Leffler function 𝐸
𝑠/2,𝑟

is defined by Miller in
[49]:

𝐸
𝑠/2,𝑟

(𝑧) =
𝑧
2𝜅(1−𝑟)

𝑠

𝑠−1

∑
𝑗=0

𝛼
1−(𝑠/2+𝑟)

𝑗
(exp (𝛼

𝑗
𝑧
2𝜅

))

⋅ (𝛼
𝑠/2

𝑗
+ erfc (𝛼1/2

𝑗
𝑧
𝜅

))

− 𝑧
−2𝑛

2𝑛−1

∑
𝑘=0

𝑧𝑘

Γ (𝑠𝑘/2 + 𝜇)
,

(13)

where 𝜅 = 1/𝑠, 𝑟 = 𝑛𝑠 + 𝜇, 𝑛 = 0, 1, 2, 3, . . ., 𝜇 = 1, 2, 3, . . ..
For the calculation of generalized Mittag-Leffler functions at
arbitrary precision, see [50, 51].

The Riesz fractional derivative for (𝜑 > 0) is [43–46]

𝑅

𝐷
𝜑

𝑥
𝑓 (𝑥) = −

1

2 cos (𝜋𝜑/2)

⋅ [
1

Γ (𝑛 − 𝜑)
(

𝜕

𝜕𝑥
)

𝑛

∫
−

∞
𝑥

𝑓 (𝜒, 𝑡) 𝑑𝜒

(𝑥 − 𝜒)
𝜑+1−𝑛

+
(−1)
𝑛

Γ (𝑛 − 𝜑)
(

𝜕

𝜕𝑥
)

𝑛

∫
∞

𝑥

𝑓 (𝜒, 𝑡) 𝑑𝜒

(𝜒 − 𝑥)
𝜑+1−𝑛

] ,

𝑛 − 1 < 𝜑 ≤ 𝑛,

(14)

where 𝑑𝜑/𝑑𝑥𝜑 = 𝑅𝐷
𝜑

𝑥
is a Riesz fractional derivative with

respect to 𝑥, 𝜑 ∈ 𝑅 is the order of the fractional derivative,
𝑛 = 1, 2, . . . ∈ 𝑁, and Γ(⋅) represents Euler’s gamma function.

3. Fractional Cattaneo-Vernotte Equation

In previous studies of the fractional Cattaneo-Vernotte equa-
tion the authors did not consider the physical dimensionality
of the solutions. The authors of the work [42] proposed a
systematic way to construct fractional differential equations
for the physical systems. To keep the dimensionality of

the fractional differential equations a new parameter 𝜎 was
introduced in the following way:

𝜕

𝜕𝑥
→

1

𝜎
1−𝜑

𝑥

⋅
𝜕
𝜑

𝜕𝑥𝜑
,

𝑛 − 1 < 𝜑 ≤ 𝑛, 𝑛 ∈ 𝑁 = 1, 2, 3, . . . ,

(15)

𝜕

𝜕𝑡
→

1

𝜎
1−𝜑

𝑡

⋅
𝜕𝜑

𝜕𝑡𝜑
,

𝑛 − 1 < 𝜑 ≤ 𝑛, 𝑛 ∈ 𝑁 = 1, 2, 3, . . . ,

(16)

where 𝜑 is an arbitrary parameter which represents the
order of the derivative, 𝜎

𝑥
has dimension of length, and 𝜎

𝑡

has the dimension of time. These new parameters maintain
the dimensionality of the equation invariant and character-
izes the fractional space or fractional temporal structures
(components that show an intermediate behavior between a
conservative system and dissipative one) [42]; when𝜑 = 1 the
expressions (15) and (16) reduce to the ordinary derivative. In
the following we will apply this idea to generalize the case of
the fractional Cattaneo-Vernotte equation.

In this work, we consider generalized Cattaneo-Vernotte
equation in the 𝑥 direction of the form [32–35]

∇
2

𝑇 −
1

𝐷
�̇� −

𝜏

𝐷
�̈� = 0, (17)

where 𝜏 is a characteristic relaxation time constant (or
the non-Fourier character of the material) and 𝐷 is the
generalized thermal diffusivity; (17) is a hyperbolic diffusion
equation; when the parameter 𝜏 = 0, (17) recovers a parabolic
form; in this limit, one has to replace Cattaneo-Vernotte
equation by Fourier’s heat transfer equation.

Considering the CFD (2) and (15) and (16), the fractional
representation of (17) is

1

𝜎
2(1−𝜑)

𝑥

𝐶

0
𝐷
2𝜑

𝑥
𝑇 (𝑥, 𝑡) −

1

𝐷
⋅

1

𝜎
1−𝜑

𝑡

𝐶

0
𝐷
𝜑

𝑡
𝑇 (𝑥, 𝑡) −

𝜏

𝐷

⋅
1

𝜎
2(1−𝜑)

𝑡

𝐶

0
𝐷
2𝜑

𝑡
𝑇 (𝑥, 𝑡) = 0.

(18)

The order of the derivative considered is 𝜑 ∈ (0, 2] for the
fractional Cattaneo-Vernotte equation in space-time domain.

3.1. Fractional Space Cattaneo-Vernotte Equation. Consider-
ing (18) and assuming that the space derivative is fractional
equation (15) and the time derivative is ordinary, the spatial
fractional equation is

𝐶

0
𝐷
2𝜑

𝑥
𝑇 (𝑥, 𝑡) −

1

𝐷
𝜎
2(1−𝜑)

𝑥
⋅
𝜕𝑇 (𝑥, 𝑡)

𝜕𝑡
−

𝜏

𝐷
𝜎
2(1−𝜑)

𝑥

⋅
𝜕2𝑇 (𝑥, 𝑡)

𝜕𝑡2
= 0.

(19)

Suppose the solution

𝑇 (𝑥, 𝑡) = 𝑇
0
⋅ exp (𝑖𝜔𝑡) 𝑢 (𝑥) ; (20)
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substituting (20) into (19) we obtain

𝑑2𝜑𝑢 (𝑥)

𝑑𝑥2𝜑
+ (

𝜏

𝐷
𝜔
2

− 𝑖
1

𝐷
𝜔)𝜎
2(1−𝜑)

𝑥
𝑢 (𝑥) = 0, (21)

where

𝑘
2

𝑥
= (

𝜏

𝐷
𝜔
2

− 𝑖
1

𝐷
𝜔) , (22)

is the dispersion relation in the 𝑥 direction and

�̃�
2

𝑥
= (

𝜏

𝐷
𝜔
2

− 𝑖
1

𝐷
𝜔)𝜎
2(1−𝜑)

𝑥
= 𝑘
2

𝑥
𝜎
2(1−𝜑)

𝑥
, (23)

is the fractional dispersion relation; from the fractional
dispersion relation (23), we can expect the fractional wave
number �̃� in the 𝑥 direction to have real and imaginary parts,
𝛿
𝑥
and 𝛽

𝑥
, respectively. Let us write

�̃�
𝑥
= 𝛿
𝑥
− 𝑖𝛽
𝑥
; (24)

substituting (24) into (23) we have

(𝛿
𝑥
− 𝑖𝛽
𝑥
)
2

= 𝛿
2

𝑥
− 2𝑖𝛿
𝑥
𝛽
𝑥
− 𝛽
2

𝑥
, (25)

where

𝛿
2

𝑥
− 2𝑖𝛿
𝑥
𝛽
𝑥
− 𝛽
2

𝑥
= (

𝜏

𝐷
𝜔
2

− 𝑖
1

𝐷
𝜔)𝜎
2(1−𝜑)

𝑥
; (26)

solving for 𝛽
𝑥
we obtain

𝛽
𝑥
=

𝜔

𝐷
⋅

1

2𝛿
𝑥

𝜎
2(1−𝜑)

𝑥
, (27)

and for 𝛿
𝑥

𝛿
𝑥
= 𝜔√

𝜏

𝐷
[
1

2
±

1

2
√1 +

1

𝜏2𝜔2
]

1/2

𝜎
1−𝜑

𝑥
; (28)

substituting (28) into (27) we have

𝛽
𝑥
=

1

2𝐷√𝜏/𝐷 [1/2 ± (1/2)√1 + 1/𝜏2𝜔2]
1/2

𝜎
1−𝜑

𝑥
. (29)

Now the fractional wave number is �̃�
𝑥
= 𝛿
𝑥
− 𝑖𝛽
𝑥
, where

𝛿
𝑥
and 𝛽

𝑥
are given by (28) and (29), respectively,

�̃�
𝑥

= 𝜔√
𝜏

𝐷
[
1

2
±

1

2
√1 +

1

𝜏2𝜔2
]

1/2

𝜎
1−𝜑

𝑥

− 𝑖
1

2𝐷√𝜏/𝐷 [1/2 ± (1/2)√1 + 1/𝜏2𝜔2]
1/2

𝜎
1−𝜑

𝑥
;

(30)

equation (30) describes the real and imaginary part of the
fractional wave number in terms of the frequency 𝜔, the
relaxation time 𝜏, and the generalized thermal diffusivity 𝐷,
in presence of fractional space components 𝜎

𝑥
.

Considering (23), (21) gives

𝑑
2𝜑𝑢 (𝑥)

𝑑𝑥2𝜑
+ �̃�
2

𝑥
𝑢 (𝑥) = 0, (31)

the solution of (31) can be obtained applying direct and
inverse Laplace transform [47], and the solution of the above
equation is given by

𝑢 (𝑥) = 𝐸
2𝜑,1

(−�̃�
2

𝑥
𝑥
2𝜑

) , (32)

where 𝐸
2𝜑,1

(−�̃�
2

𝑥
𝑥2𝜑) is the Mittag-Leffler function.

Therefore the general solution of (21) is given by

𝑇 (𝑥, 𝑡) = 𝑇
0
⋅ exp (𝑖𝜔𝑡) ⋅ 𝐸

2𝜑,1
(−�̃�
2

𝑥
𝑥
2𝜑

) . (33)

Next, we will analyze the case when 𝜑 takes different
values.

Case 1. When 𝜑 = 2, we have

�̃�
𝑥
= 𝜔√

𝜏

𝐷
[
1

2
±

1

2
√1 +

1

𝜏2𝜔2
]

1/2

𝜎
−1

𝑥

− 𝑖
1

2𝐷√𝜏/𝐷 [1/2 ± (1/2)√1 + 1/𝜏2𝜔2]
1/2

𝜎
−1

𝑥
,

(34)

and equation (34) represents the fractional wave number in
presence of fractional space components 𝜎

𝑥
.

In this case, (33) is written as follows:

𝑇 (𝑥, 𝑡) = 𝑇
0
⋅ exp (𝑖𝜔𝑡) ⋅ 𝐸

4,1
(−�̃�
2

𝑥
𝑥
4

) , (35)

where 𝐸
4,1

is given by (12) and solution (35) is

𝑇 (𝑥, 𝑡) =
𝑇
0

2
⋅ exp (𝑖𝜔𝑡)

⋅ [cos(−�̃�
1/2

𝑥
𝑥) + cosh (−�̃�

1/2

𝑥
𝑥)] .

(36)

Case 2. When 𝜑 = 3/2, we have

�̃�
𝑥

= 𝜔√
𝜏

𝐷
[
1

2
±

1

2
√1 +

1

𝜏2𝜔2
]

1/2

𝜎
−1/2

𝑥

− 𝑖
1

2𝐷√𝜏/𝐷 [1/2 ± (1/2)√1 + 1/𝜏2𝜔2]
1/2

𝜎
−1/2

𝑥
,

(37)

and equation (37) represents the fractional wave number in
presence of fractional space components 𝜎

𝑥
.

In this case, (33) is written as follows:

𝑇 (𝑥, 𝑡) = 𝑇
0
⋅ exp (𝑖𝜔𝑡) ⋅ 𝐸

3,1
(−�̃�
2

𝑥
𝑥
3

) , (38)
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where 𝐸
3,1

is given by (11) and solution (38) is

𝑇 (𝑥, 𝑡) =
𝑇
0

2
⋅ exp (𝑖𝜔𝑡) ⋅ [

[

exp(−�̃�
2/3

𝑥
𝑥)

+ 2 exp(
�̃�
2/3

𝑥

2
𝑥) ⋅ cos(−

√3

2
�̃�
2/3

𝑥
𝑥)]

]

.

(39)

Case 3. When 𝜑 = 1, we have �̃�
𝑥
= 𝑘
𝑥

𝑘
𝑥
= 𝜔√

𝜏

𝐷
[
1

2
±

1

2
√1 +

1

𝜏2𝜔2
]

1/2

− 𝑖
1

2𝐷√𝜏/𝐷 [1/2 ± (1/2)√1 + 1/𝜏2𝜔2]
1/2

,

(40)

and equation (40) represents the classical wave number 𝑘
𝑥
.

From (33) we have

𝑇 (𝑥, 𝑡) = 𝑇
0
⋅ exp (𝑖𝜔𝑡) ⋅ 𝐸

2,1
(−�̃�
2

𝑥
𝑥
2

) , (41)

where

𝑇 (𝑥, 𝑡) = R [𝑇
0
⋅ exp (𝑖𝜔𝑡) ⋅ exp (−𝑖�̃�

𝑥
𝑥)] , (42)

and, in (42), �̃�
𝑥

= 𝑘
𝑥
, R indicates the real part, and 𝑘

𝑥
=

𝛿
𝑥
− 𝑖𝛽
𝑥
is wave number (40); substituting 𝑘

𝑥
in (42) we have

𝑇 (𝑥, 𝑡) = R [𝑇
0
⋅ exp (𝑖 (𝜔𝑡 − 𝛿

𝑥
𝑥)) ⋅ exp (−𝛽

𝑥
𝑥)] . (43)

Equation (43) represents the classical case for the space
Cattaneo-Vernotte equation. The first exponential exp(𝑖(𝜔𝑡 −
𝛿
𝑥
𝑥)) gives the usual plane-wave variation of the thermal

field with position 𝑥 and time 𝑡. The second exponential
exp(−𝛽

𝑥
𝑥) gives and exponential decay in the amplitude of

the thermal wave.

Case 4. When 𝜑 = 1/2, from (33) we have

𝑇 (𝑥, 𝑡) = 𝑇
0
⋅ exp (𝑖𝜔𝑡) ⋅ 𝐸

1,1
(−�̃�
2

𝑥
𝑥) , (44)

where �̃�
𝑥
is

�̃�
𝑥
= 𝜔√

𝜏

𝐷
[
1

2
±

1

2
√1 +

1

𝜏2𝜔2
]

1/2

𝜎
1/2

𝑥

− 𝑖
1

2𝐷√𝜏/𝐷 [1/2 ± (1/2)√1 + 1/𝜏2𝜔2]
1/2

𝜎
1/2

𝑥
,

(45)

and equation (45) represents the fractional wave number in
presence of fractional space components 𝜎

𝑥
.

The solution for (44) is

𝑇 (𝑥, 𝑡) = R [𝑇
0
⋅ exp(𝑖𝜔 (𝑡 +

1

𝐷
𝜎
𝑥
𝑥))

⋅ exp (−
𝜏

𝐷
𝜔
2

𝜎
𝑥
𝑥)] ,

(46)

whereR indicates the real part.

Case 5. When 𝜑 = 1/4, from (33) we have

𝑇 (𝑥, 𝑡) = 𝑇
0
⋅ exp (𝑖𝜔𝑡) ⋅ 𝐸

1/2,1
(−�̃�
2

𝑥
𝑥
1/2

) , (47)

where �̃�
𝑥
is

�̃�
𝑥
= 𝜔√

𝜏

𝐷
[
1

2
±

1

2
√1 +

1

𝜏2𝜔2
]

1/2

𝜎
3/4

𝑥

− 𝑖
1

2𝐷√𝜏/𝐷 [1/2 ± (1/2)√1 + 1/𝜏2𝜔2]
1/2

𝜎
3/4

𝑥
,

(48)

and equation (48) represents the fractional wave number in
presence of fractional space components 𝜎

𝑥
.

In this case, (33) is written as follows:

𝑇 (𝑥, 𝑡) = 𝑇
0
⋅ exp (𝑖𝜔𝑡) ⋅ 𝐸

1/2,1
(−�̃�
2

𝑥
𝑥
1/2

) , (49)

where 𝐸
1/2,1

is given by (8) and solution (49) is

𝑇 (𝑥, 𝑡) = 𝑇
0
⋅ exp (𝑖𝜔𝑡) ⋅ exp (�̃�

4

𝑥)

⋅ [1 − erfc (−�̃�
2

𝑥
1/2

)] .

(50)

erfc(𝛼) denotes the error function defined in (8). Equation
(50) represents the space evolution of the temperature and
the amplitude exhibits an algebraic decay for 𝑥 → ∞.

For this case there exists a physical relation between the
auxiliary parameter 𝜎

𝑥
and the wave number 𝑘

𝑥
given by the

order 𝜑 of the fractional differential equation

𝜑 = 𝑘
𝑥
𝜎
𝑥
=

𝜎
𝑥

𝜆
, 0 < 𝜎

𝑥
≤ 𝜆, (51)

where 𝜆 is the wavelength. We can use this relation in order
to write (33) as

𝑇 (�̃�, 𝑡) = 𝑇
0
⋅ exp (𝑖𝜔𝑡) ⋅ 𝐸

2𝜑
(−𝜑
2(1−𝜑)

�̃�
2𝜑

) , (52)

where �̃� = 𝑥/𝜆 is a dimensionless parameter. Figures 1(a) and
1(b) show the simulation of (52) for 𝜑 values 0.7 < 𝜑 ≤ 1 and
1.7 < 𝜑 ≤ 2, respectively.

Table 1 shows the different solutions of (52). The order of
the fractional differential equation is 𝜑 = 2, 𝜑 = 3/2, 𝜑 = 1,
𝜑 = 1/2, and 𝜑 = 1/4.

3.2. Fractional Time Cattaneo-Vernotte Equation. Consider-
ing (18) and assuming that the time derivative is fractional
equation (16) and the space derivative is ordinary, the tempo-
ral fractional equation is

𝐶

0
𝐷
2𝜑

𝑡
𝑇 (𝑥, 𝑡) +

1

𝜏
⋅ 𝜎
1−𝜑

𝑡

𝐶

0
𝐷
𝜑

𝑡
𝑇 (𝑥, 𝑡)

−
𝐷

𝜏
𝜎
2(1−𝜑)

𝑡

𝜕2𝑇 (𝑥, 𝑡)

𝜕𝑥2
= 0;

(53)
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Figure 1: Simulation of (52) for 0.7 < 𝜑 ≤ 2.

Table 1: Solutions for fractional space Cattaneo-Vernotte equation
(52) for different values of 𝜑; R indicates the real part and erfc(𝛼)
denotes the error function defined in (8).

𝜑 Solution

2 𝑇(𝑥, 𝑡) =
𝑇
0

2
⋅ exp (𝑖𝜔𝑡) ⋅ [cos (−�̃�

1/2

𝑥
𝑥) + cosh (−�̃�

1/2

𝑥
𝑥)]

3/2

𝑇 (𝑥, 𝑡) =
𝑇
0

2
⋅ exp (𝑖𝜔𝑡) ⋅ [

[

exp(−�̃�
2/3

𝑥
𝑥)

+ 2 exp(
�̃�
2/3

𝑥

2
𝑥) ⋅ cos(−

√3

2
�̃�
2/3

𝑥
𝑥)]

]

1 𝑇(𝑥, 𝑡) = R [𝑇
0
⋅ exp (𝑖 (𝜔𝑡 − 𝛿

𝑥
𝑥)) ⋅ exp (−𝛽

𝑥
𝑥)]

1/2 𝑇(𝑥, 𝑡) = R [𝑇
0
⋅ exp(𝑖𝜔 (𝑡 +

1

𝐷
𝜎
𝑥
𝑥)) ⋅ exp(−

𝜏

𝐷
𝜔2𝜎
𝑥
𝑥)]

1/4 𝑇(𝑥, 𝑡) = 𝑇
0
⋅ exp (𝑖𝜔𝑡) ⋅ exp (�̃�

4

𝑥) ⋅ [1 − erfc (−�̃�
2

𝑥1/2)]

suppose the solution

𝑇 (𝑥, 𝑡) = 𝑇
0
exp (𝑖�̃�

𝑥
𝑥) 𝑢 (𝑡) , (54)

where �̃�
𝑥
is the wave number in the 𝑥 direction. Substituting

(54) into (53) we obtain

𝑑
2𝜑𝑢 (𝑡)

𝑑𝑡2𝜑
+

1

𝜏
𝜎
1−𝜑

𝑡

𝑑𝜑𝑢 (𝑡)

𝑑𝑡𝜑
+

𝐷

𝜏
�̃�
2

𝑥
𝜎
2(1−𝜑)

𝑡
𝑢 (𝑡) = 0; (55)

the solution of (55) can be obtained applying direct and
inverse Laplace transform [47]. Taking solution (54) we have

𝑇 (𝑥, 𝑡) = 𝑇
0
⋅ exp (𝑖�̃�

𝑥
𝑥) ⋅ 𝐸

𝜑,1
(−

1

2𝜏
𝜎
1−𝜑

𝑡
𝑡
𝜑

)

⋅ 𝐸
2𝜑,1

(− [
𝐷

𝜏
�̃�
2

𝑥
−

1

4𝜏2
] 𝜎
2(1−𝜑)

𝑡
𝑡
2𝜑

) ,

(56)

and solution (56) represents a temporal nonlocal thermal
equation interpreted as an existence of memory effects
which correspond to intrinsic dissipation characterized
by the exponent of the fractional derivative 𝜑 in the
system.

For underdamped case, we have ((𝐷/𝜏)�̃�
2

𝑥
− 1/4𝜏2) = 0,

𝜔
0
= √𝐷/𝜏�̃�

𝑥
is the undamped natural frequency expressed

in radians per second, and 𝛼 = √1/2𝜏 is the damping factor
expressed inmeters per second. Next, we will analyze the case
when 𝜑 takes different values.

Case 1. When 𝜑 = 2, from (56) we have

𝑇 (𝑥, 𝑡) = 𝑇
0
⋅ exp (𝑖�̃�

𝑥
𝑥) ⋅ 𝐸

2,1
(−

1

2𝜏𝜎
𝑡

𝑡
2

)

⋅ 𝐸
4,1

(− [
𝐷

𝜏
�̃�
2

𝑥
−

1

4𝜏2
] (

1

𝜎2
𝑡

) 𝑡
4

) ,

(57)

where𝐸
2,1

is given by (10) and𝐸
4,1

by (12); in this case solution
(57) is

𝑇 (𝑥, 𝑡) =
𝑇
0

2
⋅ exp (𝑖�̃�

𝑥
𝑥) ⋅ cos(√

1

2𝜎
𝑡
𝜏
𝑡)

⋅ {cos [−(
𝐷

𝜏
�̃�
2

𝑥
−

1

4𝜏2
)(

1

𝜎2
𝑡

)]

1/4

𝑡

+ cosh [−(
𝐷

𝜏
�̃�
2

𝑥
−

1

4𝜏2
)(

1

𝜎2
𝑡

)]

1/4

𝑡} .

(58)
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Case 2. When 𝜑 = 3/2, from (56) we have

𝑇 (𝑥, 𝑡) = 𝑇
0
⋅ exp (𝑖�̃�

𝑥
𝑥) ⋅ 𝐸

3/2,1
(−

1

2𝜏𝜎
1/2

𝑡

𝑡
3/2

)

⋅ 𝐸
3,1

(− [
𝐷

𝜏
�̃�
2

𝑥
−

1

4𝜏2
] (

1

𝜎
𝑡

) 𝑡
3

) ,

(59)

where 𝐸
3/2,1

is given by (13) and 𝐸
3,1

by (11); in this case
solution (59) is

𝑇 (𝑥, 𝑡) =
𝑇
0

2
⋅ exp (𝑖�̃�

𝑥
𝑥)

⋅ [

[

(−𝑡3/2/2𝜏𝜎1/2
𝑡

)
2𝜅(1−𝑟)

3

2

∑
𝑗=0

𝛼
1−(3/2+𝑟)

𝑗

⋅ (exp(𝛼
𝑗
(−

𝑡3/2

2𝜏𝜎
1/2

𝑡

)

2𝜅

))

⋅ (𝛼
3/2

𝑗
+ erfc(𝛼

1/2

𝑗
(−

𝑡3/2

2𝜏𝜎
1/2

𝑡

)

𝜅

))

− (−
𝑡3/2

2𝜏𝜎
1/2

𝑡

)

−2𝑛

⋅

2𝑛−1

∑
𝑘=0

(−𝑡3/2/2𝜏𝜎1/2
𝑡

)
𝑘

Γ (3𝑘/2 + 𝜇)
]

]

⋅
[
[

[

exp(−[
𝐷

𝜏
�̃�
2

𝑥
−

1

4𝜏2
]
2/3

(
1

𝜎
2/3

𝑡

) 𝑡)

+ 2 exp(
[((𝐷/𝜏) �̃�

2

𝑥
− 1/4𝜏2) (1/𝜎

𝑡
)]
2/3

2
𝑡)

⋅ cos(−
√3

2
[(

𝐷

𝜏
�̃�
2

𝑥
−

1

4𝜏2
)(

1

𝜎
𝑡

)]

2/3

𝑡)
]
]

]

,

(60)

where 𝜅 = 1/3, 𝑟 = 3𝑛 + 𝜇, 𝑛 = 0, 1, 2, 3, . . ., 𝜇 = 1, 2, 3, . . ..

Case 3. When 𝜑 = 1, from (56) we have

𝑇 (𝑥, 𝑡) = 𝑇
0
⋅ exp (𝑖�̃�

𝑥
𝑥) ⋅ exp(−

𝑡

2𝜏
)

⋅ cos(√
𝐷

𝜏
�̃�
2

𝑥
−

1

4𝜏2
𝑡) ,

(61)

and (61) represents the classic case and the well-known result;
from (61) we see that there is a relation between𝜑 and𝜎

𝑡
given

by

𝜑 = (
𝐷

𝜏
�̃�
2

𝑥
−

1

4𝜏2
)
1/2

𝜎
𝑡
,

0 < 𝜎
𝑡
≤

1

((𝐷/𝜏) �̃�
2

𝑥
− 1/4𝜇2)

1/2

.
(62)

Then solution (56) for the underdamped case 𝛼 < 𝜔
0

takes the form

𝑇 (𝑥, 𝑡) = 𝑇
0
⋅ exp (𝑖�̃�

𝑥
𝑥)

⋅ 𝐸
𝜑,1

(−
1

2𝜏√(𝐷/𝜏) �̃�
2

𝑥
− 1/4𝜏2

𝜑
1−𝜑

�̃�
𝜑

)

⋅ 𝐸
2𝜑,1

(−𝜑
2(1−𝜑)

𝑡
2𝜑

) ,

(63)

where �̂� = ((𝐷/𝜏)�̃�
2

𝑥
−1/4𝜏2)

1/2

𝑡 is a dimensionless parameter.
Due to the condition 𝛼 < 𝜔

0
we can choose an example

1

2𝜏√(𝐷/𝜏) �̃�
2

𝑥
− 1/4𝜏2

= 3,

0 ≤
1

2𝜏√(𝐷/𝜏) �̃�
2

𝑥
− 1/4𝜏2

< ∞.

(64)

So, solution (56) takes its final form:

𝑇 (𝑥, 𝑡) = 𝑇
0
⋅ exp (𝑖�̃�

𝑥
𝑥) ⋅ 𝐸

𝜑,1
(−3𝜑
1−𝜑

�̂�
𝜑

)

⋅ 𝐸
2𝜑,1

(−𝜑
2(1−𝜑)

�̂�
2𝜑

) .

(65)

Case 4. When 𝜑 = 1/2, from (56) we have

𝑇 (𝑥, 𝑡) = 𝑇
0
⋅ exp (𝑖�̃�

𝑥
𝑥) ⋅ exp(

𝜎
𝑡

4𝜏2
𝑡)

⋅ [1 − erfc(−
𝜎1/2
𝑡

2𝜏
𝑡
1/2

)]

⋅ exp [− (
𝐷

𝜏
�̃�
2

𝑥
−

1

4𝜏2
)𝜎
𝑡
𝑡] ,

(66)

and erfc(𝛼) denotes the error function defined in (8). Equa-
tion (66) represents the time evolution of the temperature and
the amplitude exhibits an algebraic decay for 𝑡 → ∞. Plots for
different values of 𝜑 are shown in Figures 2(a) and 2(b).

Table 2 shows the different solutions of (65). The order
of the fractional differential equation is 𝜑 = 2, 𝜑 = 3/2,
𝜑 = 1, and 𝜑 = 1/2. The change of the order of the
derivative describes the crossover from ballistic transport to
the diffusion behavior.

In the overdamped case, 𝛼 > 𝜔
0
or 𝜂 > 2�̃�

𝑥
√𝜖/𝜇, the

solution of (56) has the form

𝑇 (𝑥, 𝑡) = 𝑇
0
⋅ exp (𝑖�̃�

𝑥
𝑥) ⋅ 𝐸

𝜑,1
(−

𝜎
1−𝜑

𝑡

2𝜏
𝑡
𝜑

)

⋅ 𝐸
𝜑,1

(−[
1

4𝜏2
−

𝐷

𝜏
�̃�
2

𝑥
]
1/2

𝜎
1−𝜑

𝑡
𝑡
𝜑

) .

(67)

Next, we will analyze the case when 𝜑 takes different
values.
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=
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2
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𝛼
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(
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/
2
+
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ex
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−
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/
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2
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1
/
2
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)
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)

⋅
(
𝛼
3
/
2

𝑗
+
er
fc

(
𝛼
1
/
2

𝑗
(
−

𝑡3
/
2

2
𝜏
𝜎
1
/
2

𝑡

)

𝜅

)
)

−
(
−

𝑡3
/
2

2
𝜏
𝜎
1
/
2

𝑡

)

−
2
𝑛

⋅

2
𝑛
−
1

∑ 𝑘=
0

(
−
(
𝑡3
/
2

/2
𝜏
𝜎
1
/
2

𝑡
)
)
𝑘

Γ
(3
𝑘
/2

+
𝜇
)

] ]

⋅
[ [ [

ex
p
(
−
[
𝐷 𝜏

𝑘
2 𝑥
−

1 4
𝜏
2

]
2
/
3

(
1

𝜎
2
/
3

𝑡

)
𝑡)

+
2
ex
p
(

[
(
(𝐷

/𝜏
)
𝑘
2 𝑥
−
1
/4

𝜏
2

)
(1
/𝜎
𝑡
)]
2
/
3

2
𝑡)

⋅
co
s(

−
√
3 2
[
(
𝐷 𝜏

𝑘
2 𝑥
−

1 4
𝜏
2

)
(

1 𝜎
𝑡

)
]

2
/
3

𝑡)
] ] ]

1
𝑇
(𝑥

,𝑡
)
=
𝑇
0
⋅
ex
p
(
𝑖𝑘
𝑥
𝑥
)
⋅
ex
p
(
−

𝑡 2
𝜏
)
⋅
co
s(

√
𝐷 𝜏

𝑘
2 𝑥
−

1 4
𝜏
2

𝑡)

1/2
𝑇
(𝑥

,𝑡
)
=
𝑇
0
⋅
ex
p
(
𝑖𝑘
𝑥
𝑥
)
⋅
ex
p
(

𝜎
𝑡

4
𝜏
2

𝑡)
⋅
[
1
−
er
fc

(
−
𝜎
1
/
2

𝑡 2
𝜏

𝑡1
/
2

)
]
⋅
ex
p
[
−
(
𝐷 𝜏

𝑘
2 𝑥
−

1 4
𝜏
2

)
𝜎
𝑡
𝑡]
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Temporal diffusion of heat
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Figure 2: Simulation of (65) for 0.5 < 𝜑 ≤ 2. The crossover time occurs at �̂� = 1.0 independent of 𝜑, but the crossover time increases with
decreasing 𝜑.

Case 1. When 𝜑 = 2, we have

𝑇 (𝑥, 𝑡) = 𝑇
0
⋅ exp (𝑖�̃�

𝑥
𝑥) ⋅ 𝐸

2,1
(−

𝜎−1
𝑡

2𝜏
𝑡
2

)

⋅ 𝐸
2,1

(−[
1

4𝜏2
−

𝐷

𝜏
�̃�
2

𝑥
]
1/2

𝜎
−1

𝑡
𝑡
2

) ,

(68)

where 𝐸
2,1

is given by (10); in this case solution (69) is

𝑇 (𝑥, 𝑡) = 𝑇
0
⋅ exp (𝑖�̃�

𝑥
𝑥) ⋅ cos(√

1

2𝜏𝜎
𝑡

)

⋅ cos(√(
1

4𝜏2
−

𝐷

𝜏
𝑘2
𝑥
)
1/2

(
1

𝜎
𝑡

)𝑡) .

(69)

Case 2. When 𝜑 = 3/2, we have

𝑇 (𝑥, 𝑡) = 𝑇
0
⋅ exp (𝑖�̃�

𝑥
𝑥) ⋅ 𝐸

3/2,1
(−

1

2𝜏𝜎
−1/2

𝑡

𝑡
3/2

)

⋅ 𝐸
3/2,1

(−[
1

4𝜏2
−

𝐷

𝜏
�̃�
2

𝑥
]
1/2

𝜎
−1/2

𝑡
𝑡
3/2

) ,

(70)

where 𝐸
3/2,1

is given by (13); in this case solution (70) is

𝑇 (𝑥, 𝑡) =
𝑇
0

2
⋅ exp (𝑖�̃�

𝑥
𝑥) ⋅ [

[

(−𝑡3/2/2𝜏𝜎1/2
𝑡

)
2𝜅(1−𝑟)

3

⋅

2

∑
𝑗=0

𝛼
1−(3/2+𝑟)

𝑗
(exp(𝛼

𝑗
(−

𝑡3/2

2𝜏𝜎
1/2

𝑡

)

2𝜅

)) ⋅ (𝛼
3/2

𝑗

+ erfc(𝛼
1/2

𝑗
(−

𝑡3/2

2𝜏𝜎
1/2

𝑡

)

𝜅

)) − (−
𝑡3/2

2𝜏𝜎
1/2

𝑡

)

−2𝑛

⋅

2𝑛−1

∑
𝑘=0

(−𝑡3/2/2𝜏𝜎1/2
𝑡

)
𝑘

Γ (3𝑘/2 + 𝜇)
]

]

⋅

[
[
[
[

[

(−(1/4𝜏
2 − (𝐷/𝜏) �̃�

2

𝑥
)
1/2

𝜎−1/2
𝑡

𝑡3/2)

3

⋅

2

∑
𝑗=0

𝛼
1−(3/2+𝑟)

𝑗

⋅ (exp(𝛼
𝑗
(−(

1

4𝜏2
−

𝐷

𝜏
�̃�
2

𝑥
)𝜎
−1/2

𝑡
𝑡
3/2

))
2𝑘

)

⋅ (𝛼
3/2

𝑗

+ erfc(𝛼
1/2

𝑗
(−(

1

4𝜏2
−

𝐷

𝜏
�̃�
2

𝑥
)𝜎
−1/2

𝑡
𝑡
3/2

)
𝑘

))

− (−(
1

4𝜏2
−

𝐷

𝜏
�̃�
2

𝑥
)
1/2

𝜎
−1/2

𝑡
𝑡
3/2

)

−2𝑛

⋅

2𝑛−1

∑
𝑘=0

(− (1/4𝜏2 − (𝐷/𝜏) �̃�
2

𝑥
)
1/2

𝜎−1/2
𝑡

𝑡3/2)

𝑘

Γ (3𝑘/2 + 𝜇)

]
]
]
]

]

,

(71)

where 𝜅 = 1/3, 𝑟 = 3𝑛 + 𝜇, 𝑛 = 0, 1, 2, 3, . . ., 𝜇 = 1, 2, 3, . . ..
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Temporal diffusion of heat
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Figure 3: Simulation of (76) for 0.5 < 𝜑 ≤ 2. The crossover time occurs at �̂� = 1.0 independent of 𝜑, but the crossover time increases with
decreasing 𝜑.

Case 3. When 𝜑 = 1, from (67) we have

𝑇 (𝑥, 𝑡) = 𝑇
0
⋅ exp (𝑖�̃�

𝑥
𝑥)

⋅ exp(−
1

2𝜏
(1 + √1 −

4𝜏�̃�
2

𝑥

𝐷
)𝑡) ,

(72)

and solution (72) represents the classic case.
Taking into account, the relation between 𝜑 and 𝜎

𝑡
is

𝜑 = (
1

4𝜏2
−

𝐷

𝜏
�̃�
2

𝑥
)
1/2

𝜎
𝑡
,

0 < 𝜎
𝑡
≤

1

(1/4𝜏2 − (𝐷/𝜏) �̃�
2

𝑥
)
1/2

.
(73)

Solution (67) takes the form

𝑇 (𝑥, 𝑡) = 𝑇
0
⋅ exp (𝑖�̃�

𝑥
𝑥)

⋅ 𝐸
𝜑,1

(−
1

2𝜏√1/4𝜏2 − (𝐷/𝜏) �̃�
2

𝑥

𝜑
1−𝜑

𝑡
𝜑

)

⋅ 𝐸
𝜑,1

(−𝜑
1−𝜑

𝑡
𝜑

) ,

(74)

where �̂� = (1/4𝜏2−(𝐷/𝜏)�̃�
2

𝑥
)
1/2

𝑡 is a dimensionless parameter.

Due to the condition 𝛼 > 𝜔
0
we can choose an example

1

2𝜏√1/4𝜏2 − (𝐷/𝜏) �̃�
2

𝑥

=
1

2
,

1 <
1

2𝜏√1/4𝜏2 − (𝐷/𝜏) �̃�
2

𝑥

< ∞.

(75)

Then, solution (67) can be written in its final form:

𝑇 (𝑥, 𝑡) = 𝑇
0
⋅ exp (𝑖�̃�

𝑥
𝑥) ⋅ 𝐸

𝜑,1
(−

1

2
𝜑
1−𝜑

�̂�
𝜑

)

⋅ 𝐸
𝜑,1

(−𝜑
1−𝜑

�̂�
𝜑

) .

(76)

Case 4. When 𝜑 = 1/2, from (67) we have

𝑇 (𝑥, 𝑡) = 𝑇
0
⋅ exp (𝑖�̃�

𝑥
𝑥) ⋅ exp(

𝜎
𝑡

4𝜏2
𝑡)

⋅ [1 − erfc(−
𝜎1/2
𝑡

2𝜏
𝑡
1/2

)]

⋅ exp [(
1

4𝜏2
−

𝐷

𝜏
�̃�
2

𝑥
)𝜎
𝑡
𝑡]

⋅ [1 − erfc( 1

4𝜏2
−

𝐷

𝜏
�̃�
2

𝑥
)
1/2

𝜎
1/2

𝑡
𝑡
1/2

] ,

(77)

and erfc(𝛼) denotes the error function defined in (8). Equa-
tion (77) represents the time evolution of the temperature and
the amplitude exhibits an algebraic decay for 𝑡 → ∞. Plots for
different values of 𝜑 are shown in Figures 3(a) and 3(b).
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Table 3 shows the different solutions of (76). The order
of the fractional differential equation is 𝜑 = 2, 𝜑 = 3/2,
𝜑 = 1, and 𝜑 = 1/2. The change of the order of the
derivative describes the crossover from ballistic transport to
the diffusion behavior.

3.3. Fractional Space-Time Cattaneo-Vernotte Equation. Now
considering (18) and assuming that the space and time deriva-
tive are fractional, the order of the time-space fractional
differential equations is 𝜑 ∈ (0, 1]; for this example we
consider, for 𝑡 > 0, 𝑥 = 0 and 𝑥 = 𝐿 with Dirichlet condition
𝑇(0, 𝑡) = 𝑇(𝐿, 𝑡) = 0 and initial conditions 0 < 𝑥 < 𝐿, 𝑡 = 0 :

𝑇(𝑡, 0) = 𝑇
0
> 0, and 0 < 𝑥 < 𝐿, 𝑡 = 0 : (𝜕𝑇/𝜕𝑡)|

𝑡=0
= 0.

Applying the Fourier method of the variable separation,
the full solution of (18) is

𝑇 (𝑥, 𝑡) =
𝑇
0

𝜋𝜏
⋅ 𝐸
𝜑
(−

1

2𝜏
𝜎
1−𝜑

𝑡
𝑡
𝜑

)

⋅

∞

∑
𝑚=1

1

2𝑚 − 1
I [𝐸
𝑖𝜑
(
(2𝑚 − 1) 𝜋

𝐿
𝜎
1−𝜑

𝑥
𝑥
𝜑

)]

⋅ [
−1 + 2𝜏𝑧

2𝑚−1

𝑧
2𝑚−1

⋅ 𝐸
𝜑
(−𝑧
2𝑚−1

𝜎
1−𝜑

𝑡
𝑡
𝜑

)

+
1 + 2𝜏𝑧

2𝑚−1

𝑧
2𝑚−1

⋅ 𝐸
𝜑
(𝑧
2𝑚−1

𝜎
1−𝜑

𝑡
𝑡
𝜑

)] ,

(78)

where I indicates the imaginary part and 𝑧
𝑚

=

√(𝐿2 − 4𝑚𝜋𝜏𝐷)/2𝐿𝜏. In the case when 𝜑 = 1, we have
the classical solution

𝑇 (𝑥, 𝑡) =
𝑇
0

𝜋𝜏
⋅ exp(−

1

2𝜏
𝑡) ⋅

∞

∑
𝑚=1

1

2𝑚 − 1

⋅ sin(
(2𝑚 − 1) 𝜋

𝐿
𝑥) ⋅ [

−1 + 2𝜏𝑧
2𝑚−1

𝑧
2𝑚−1

⋅ exp (−𝑧
2𝑚−1

𝑡) +
1 + 2𝜏𝑧

2𝑚−1

𝑧
2𝑚−1

⋅ exp (𝑧
2𝑚−1

𝑡)] .

(79)

Now considering (18) with the Riesz space fractional
derivative, the order of the space fractional differential equa-
tions is 𝜑 ∈ (0, 1]; for this example we consider, for 0 < 𝑡 ≤ 𝑇,
0 < 𝑥 < 𝐿, and Dirichlet condition 𝑇(0, 𝑡) = 𝑇(𝐿, 𝑡) = 0 and
initial conditions 𝑇(𝑥, 0) = ℎ(𝑥),

𝜕2𝑇 (𝑥, 𝑡)

𝜕𝑡2
+

1

𝜏
𝜎
1−𝜑

𝑡

𝜕𝑇 (𝑥, 𝑡)

𝜕𝑡
= −

𝐷

𝜏
�̃�
2

𝑥
𝜎
2(1−𝜑)

𝑡

⋅ [
1

2 cos (𝜋𝜑/2)

⋅ [
1

Γ (𝑛 − 𝜑)
(

𝜕

𝜕𝑥
)

𝑛

∫
−

∞
𝑥

𝑓 (𝜒, 𝑡) 𝑑𝜒

(𝑥 − 𝜒)
𝜑+1−𝑛

+
(−1)
𝑛

Γ (𝑛 − 𝜑)
(

𝜕

𝜕𝑥
)

𝑛

∫
∞

𝑥

𝑓 (𝜒, 𝑡) 𝑑𝜒

(𝜒 − 𝑥)
𝜑+1−𝑛

]] ,

(80)

and the solution is given by

𝑇 (𝑥, 𝑡) =

∞

∑
𝑛=1

𝐴
𝑛
(𝑡) sin(

𝑛𝜋𝑥

𝐿
) , (81)

which satisfies the boundary condition; substituting this
condition into (81) we obtain

∞

∑
𝑛=1

[
𝑑2𝐴
𝑛

𝑑𝑡2
+

1

𝜏
𝜎
1−𝜑

𝑡

𝑑

𝑑𝑡
𝐴
𝑛

+ [
𝐷

𝜏
�̃�
2

𝑥
𝜎
2(1−𝜑)

𝑡
(𝜆
𝑛
)
𝜑/2

]𝐴
𝑛
] sin(

𝑛𝜋𝑥

𝐿
) = 0,

(82)

and the problem for 𝐴
𝑛
becomes

𝑑2𝐴
𝑛

𝑑𝑡2
+

1

𝜏
𝜎
1−𝜑

𝑡

𝑑

𝑑𝑡
𝐴
𝑛
+ [

𝐷

𝜏
�̃�
2

𝑥
𝜎
2(1−𝜑)

𝑡
(𝜆
𝑛
)
𝜑/2

]𝐴
𝑛
= 0 (83)

which has the general solution

𝑇 (𝑥, 𝑡) = 𝐴
𝑛
(0)

⋅ exp(−
1

2𝜏
(1 + √1 −

4𝜏�̃�
2

𝑥

𝐷
)𝑡)

⋅ exp(
𝐷

𝜏
�̃�
2

𝑥
𝜎
2(1−𝜑)

𝑡
(𝜆
𝑛
)
𝜑/2

𝑡) ;

(84)

to obtain 𝐴
𝑛
(0), we use the initial condition

𝑇 (𝑥, 𝑡) =

∞

∑
𝑛=1

𝑇
𝑛
(0) sin(

𝑛𝜋𝑥

𝐿
) = 𝑔 (𝑥) , (85)

from which we deduce that

𝑇
𝑛
(0) =

2

𝐿
∫
𝐿

0

(𝑔𝜒) sin(
𝑛𝜋𝜒

𝐿
)𝑑𝜒 = 𝐵

𝑛
. (86)

Hence, the solution is given by

𝑇 (𝑥, 𝑡)

=

∞

∑
𝑛=1

𝐵
𝑛
sin(

𝑛𝜋𝑥

𝐿
)

⋅ exp((−
1

2𝜏
𝜎
1−𝜑

𝑡
− (−

1

4𝜏2
−

𝐷

𝜏
�̃�
2

𝑥
)
1/2

𝜎
1−𝜑

𝑡
) 𝑡)

⋅ exp (−
𝐷

𝜏
�̃�
2

𝑥
𝜎
2(1−𝜑)

𝑡
(𝜆
𝑛
)
𝜑/2

𝑡) ,

(87)

where 𝜆
𝑛
= 𝑛2𝜋2/𝐿2.

4. Conclusions

In this paper we introduced an alternative representation
of the fractional Cattaneo-Vernotte equation. In particular,
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=
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⋅
ex
p
(
𝑖𝑘
𝑥
𝑥
)
⋅
co
s(

√
1

2
𝜏
𝜎
𝑡

)
⋅
co
s(

√
(

1 4
𝜏
2

−
𝐷 𝜏

𝑘
2 𝑥
)
1
/
2

(
1 𝜎
𝑡

)
𝑡)

3/
2

𝑇
(𝑥

,𝑡
)
=

𝑇
0 2
⋅e
xp

(
𝑖𝑘
𝑥
𝑥
)
⋅[ [

(
−
(
𝑡3
/
2

/2
𝜏
𝜎
1
/
2

𝑡
)
)
2
𝜅
(
1
−
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)

3

2 ∑ 𝑗=
0

𝛼
1
−
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3
/
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+
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)

𝑗
⋅
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ex
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(
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𝑗
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−

𝑡3
/
2

2
𝜏
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1
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2

𝑡

)
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𝜅

)
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(
𝛼
3
/
2

𝑗
+
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a one-dimensional model was considered in detail. We
showed that the fractional Cattaneo-Vernotte equation inher-
its some crucial characteristics; in particular, the parameters
𝜎
𝑥
and 𝜎

𝑡
need to be introduced in order to characterize

the behavior of the physical system, which is located into
an intermediate state between a conservative and dissipative
system presenting anomalous relaxations. This combination
of stored and dissipated energy is conveniently based on
the representation of linear thermoviscoelasticity theory.
Usually this dissipation is known as internal friction. Some
special cases are also discussed. Our results indicate that
the fractional order 𝜑 has an important influence on the
temperature. Considering the Dirichlet conditions, in the
range 0 < 𝜑 ≤ 1 for the spatial case, we observe the
non-Markovian Lévy flights and, in the temporal case for
the range 0 < 𝜑 < 1, the subdiffusion phenomena. In
the spatial case when 𝜑 = 3/2 and 𝜑 = 2, the diffusion
exhibits an increment in the amplitude and the behavior
presents anomalous dispersion (the diffusion increases with
increasing order of 𝜑), in the range 1 < 𝜑 ≤ 2 we observe the
Markovian Lévy flights. Finally, in the temporal case, when
𝜑 = 3/2 and 𝜑 < 2, the diffusion exhibits an increment in the
amplitude and presents the superdiffusion, and the case𝜑 = 2

represents the ballistic diffusion. A crossover from a power-
law behavior for short times to an exponential decay for long
times has been found.Whenmemory effects are incorporated
using fractional time derivatives, the crossover dynamics
is richer. The alternative model and results in this paper
provide a new theoretical perspective of the non-Fourier heat
conduction. Furthermore, since the solutions are given in
terms of the multivariate Mittag-Leffler functions depending
only on a small number of parameters, the universality
concept (when the class of behavior does not depend on the
details of the physical system) can be considered through this
methodology since the analytic solutions presented only need
a few parameters to describe their behavior; in all cases the
solutions preserve the physical units of the system studied.

Among problems for further research we mention the
problem of thermal convection of non-Fourier fluids and
the non-Newtonian effects in thermal convection (some
situations exist where the non-Fourier and non-Newtonian
effects are simultaneously present such as rarefied gases
with high Knudsen numbers [52–54]; in this case it is
important to describe the interaction between the thermal
relaxation and viscous (stress) relaxation); another problem
is the two- and three-dimensional fractional wave equations
considering fractional variational calculus (see [54] and the
references therein) with different initial or/and boundary
conditions; of course, it would be interesting to consider the
fractional thermal wave equations with fractional derivatives
defined in different ways. Furthermore, the methodology
proposed in this work can be applied in the critical phe-
nomena theory, self-similarity, scale-invariance, propagation
of energy in dissipative systems, theory of viscoelastic fluids
and solids, relaxing gas dynamics, irreversible thermody-
namics, theory of thermal stresses, thermoelasticity, cos-
mological models, finance modeling, theory of diffusion in
crystalline solids, and the description of anomalous complex
processes.
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