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The output performance of the manufacturing system has a direct impact on the mechanical product quality. For guaranteeing
product quality and production cost, many firms try to research the crucial issues on reliability of the manufacturing system with
small sample data, to evaluate whether the manufacturing system is capable or not. The existing reliability methods depend on
a known probability distribution or vast test data. However, the population performances of complex systems become uncertain
as processing time; namely, their probability distributions are unknown, if the existing methods are still taken into account; it
is ineffective. This paper proposes a novel evaluation method based on poor information to settle the problems of reliability of
the running state of a manufacturing system under the condition of small sample sizes with a known or unknown probability
distribution. Via grey bootstrap method, maximum entropy principle, and Poisson process, the experimental investigation on
reliability evaluation for the running state of the manufacturing system shows that, under the best confidence level 𝑃 = 0.95, if
the reliability degree of achieving running quality is 𝑟 > 0.65, the intersection area between the inspection data and the intrinsic
data is 𝐴(𝑇) > 0.3 and the variation probability of the inspection data is 𝑃

𝐵
(𝑇) ≤ 0.7, and the running state of the manufacturing

system is reliable; otherwise, it is not reliable. And the sensitivity analysis regarding the size of the samples can show that the size of
the samples has no effect on the evaluation results obtained by the evaluation method. The evaluation method proposed provides
the scientific decision and suggestion for judging the running state of the manufacturing system reasonably, which is efficient,
profitable, and organized.

1. Introduction

Mechanical manufacturing process is an important link in
the quality forming process of mechanical products. The
good running state of the manufacturing system is a key
aspect of the industrial production since it contributes to
ensuring themanufacturing process to be reliable and further
guarantees the quality of the products. Therefore, for a long
time, the evaluation for the running state of the mechanical
manufacturing system has been the important subject of
much research that has been devoted to the theory and
practice of the mechanical manufacturing, and many effort
achievements have been performed on reliability investiga-
tions of the manufacturing system in recent years.

For example, considering the impact of various factors on
the reliability of mechanical products, Schuh et al. [1] inves-
tigated achieving product design reliability and then taking
measures to control to ensure the reliability of mechanical

products; Zhou [2] analyzed comprehensively the process
reliability of machinery manufacturing from the aspects of
design, manufacturing, andmanagement, to ensure the relia-
bility ofmechanical products; based onWeibull analysis tech-
nology, Ma et al. [3] studied a reliability assessment method
of how to assess the product reliability in the manufacturing
process and identify the manufacturing bottle neck which
should be focused attentively by the reliability engineer in
manufacturing process; as the reliability design and analysis
are proposed in the course of process design to solve the
process defects, Zhang et al. [4] reported the structure of
top technology and the basic idea about the process of how
to realize the inhered reliability; by Monte Carlo simulation,
Samadani et al. [5] put forward a systematic framework for
realistic reliability assessment of an electrohydraulic servo
system, in order to select to the best manufacturing process
for each servo valve component; based on the analytic
network process, Dai et al. [6] performed reliability modeling
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and verification of manufacturing processes using a novel
modeling method that draws upon a knowledge network of
process scenarios; based on the reliability theory and the
forming limit diagram, Li et al. [7] proposed a new method
to assess the probability of failure of the tube hydroforming
process; avoiding the traditional research method relying
on the experiment, Li et al. [8] researched a rationality
analytical method of the reliability on the mechanism sys-
tem wear simulation under the small-scale sample; using
nonlinear programming approach, Komal [9] conducted on
fuzzy reliability analysis of plastic-pipemanufacturing system
to achieve some suggestions in maintenance planning; Lin
and Chang [10] proposed a predecessor-set technique for
reliability evaluation of a stochastic manufacturing system
with multiple production lines in parallel; and based on
the recommended maximum value of the incapability index,
Lin [11] implemented process reliability assessment with
a Bayesian approach that can judge whether the process
satisfies the preset quality reliability requirement.

Poor information means incomplete information, which
indicates the characteristic information presented in the
subject investigated is incomplete and insufficient and even
the lack of a priori knowledge, such as, in the system analysis,
a known probability distribution with only a small sample,
an unknown probability distribution with few data only, and
trends without any prior information. Poor information the-
ory mainly includes the grey system theory, Bayesian theory,
the fuzzy set theory, the bootstrap method, the maximum
entropy method, and the chaos theory.

Viewing the existing research on poor information, the
research and application of the problems involving poor
information have drawn much attention and made remark-
able progresses. For instance, based on poor information,
Wang et al. [12] proposed a dynamic bootstrap grey method
to estimate multisensor measurement results with small
data samples and an unknown data distribution, having a
lower relative estimation error of the measurement results
compared to the grey bootstrapmethod and theMonte Carlo
method; considering unknown probability distribution and
very small sample data, He et al. [13] undertook performance
analysis for material and structure using fuzzy normmethod
in uncertainty metric with poor information; on account
of data rich but information poor, Ferraro [14] considered
adopting procedures for efficient data sharing as a low-cost
way to shorten development cycles; Xia [15] proposed the
grey bootstrap method in the information poor theory for
the reliability analysis of zero-failure data under the condition
of a known or unknown probability distribution of lifetime;
based on the grey theory, Zhang et al. [16] introduced the
reliability assessment method to analyze the mechanism
motion.

Poisson process is a kind of the most basic independent
increment processes with cumulative number of random
events, belonging to a relatively simple stochastic process
owning continuous time and discrete state. It plays an impor-
tant role in the theory and application of stochastic processes.
At present, Poisson process has been widely applied in
the fields of physics, geology, biology, medicine, astronomy,
automation system, service system, the reliability theory,

and so forth [17–21]. In terms of reliability theory, Şenol
[17] proposed the Poisson process approach to determine
the occurrence degree for failure mode and effect reliability
analysis methodology. Huang and Chen [18] recommended a
time-dependent reliability model of deteriorating structures
that considers both aging effects and random shocks based on
stochastic Poisson processes and Bayesian inference which is
a reasonable method for evaluating the reliability of deteri-
orating structures containing model uncertainties. Iervolino
et al. [20] formulated such a model with reference to simple
elastic-perfectly-plastic single degree of freedom systems, to
assess reliability of structures to earthquake clusters.

Specific to the evaluation of the running state of the man-
ufacturing system, poor information situations presented in
the workpiece quality inspection process and in the manu-
facturing system adjustment process need to be concerned
urgently.

There are many factors that interfere with the manufac-
turing process, which may lead to reducing the reliability
of the manufacturing system. In order to ensure the high
reliability of the running state of themanufacturing system, it
is necessary to do the workpiece quality inspection regularly.
Once the running state of the manufacturing system turns
into or begins growing unreliable, it must terminate the
manufacturing process and themanufacturing system should
be conducted on adjustment or maintenance.

Workpiece quality detection is usually accomplished by
sampling a few workpieces. It is performed to estimate the
true value and confidence interval of the quality data by
sampling workpieces, which can be used to timely assess that
the running state of the manufacturing system is reliable or
not.

Adjustment of the manufacturing system is usually done
via trial cut several workpieces. It is to estimate the true
value and confidence interval of the quality data by trial cut
workpieces, so as to predict that the future running state of
the manufacturing system is reliable or not.

In the manufacturing process that is either workpiece
quality detection or adjustment of manufacturing system,
the workpieces under investigation are very few and usually
are only 4∼10, and the quality data obtained belongs to the
category of a small sample data. In addition, in the existing
research, in order to realize to estimate the true value and
confidence interval, the quality data are usually assumed as
a set of data obeying the normal distribution. However, in
practical production, the probability distribution function of
mass quality data, such as roundness, parallelism, perpen-
dicularity, concentricity, run-out, burns, and crack, conforms
to the nonnormal distribution or unknown distribution.
Therefore, it is difficult to solve this problem of reliability
evaluation of the running state of manufacturing system
using the existing achievements.

The reliability evaluation for the running state of the
manufacturing system can be analyzed based on the out-
put workpiece quality data in the manufacturing process.
However, the workpiece quality data are a dynamic random
process with unknown probability distribution, along with
the trend of known or unknown disturbance, which belongs
to a poor information system with uncertainty. At present,
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in the application of poor information theory, the bootstrap
method [22, 23] and the grey prediction model [24] in the
grey system theory are two popular methods to evaluate the
system reliability.The bootstrapmethod is good at simulating
the unknown distribution, but the evaluation error may be
infinite [25]. And the grey prediction model has a good
forecast function, which can make up for the defect of the
bootstrap method. For this end, synthesizing the advantages
of the bootstrap method and the grey prediction model, this
paper puts forward the grey bootstrap method to analyze the
running state of the manufacturing system, which lays the
foundation for reliability evaluation for the running state of
the manufacturing system.

The maximum entropy principle [26] is proposed as an
inference in 1957 by Jaynes. According to the maximum
entropy principle, the reasonable state that should conform
to the constraints and the maximum entropy value can
be applied to infer the system state, which is the only
impartial choice in the case of only poor information. And
the probability of appearing the probability distribution with
the maximum entropy is the largest in the maximum entropy
principle [26–28]. Because of only small workpiece quality
data with unknown probability distribution for the running
state of the manufacturing system, there is no sufficient
reason to choose other analytic function, and the maximum
entropy principle should be preferred to determine the prob-
ability distribution function and the characteristic parameter
of the running state of the manufacturing system.

This paper recommends a new evaluation method based
on poor information to solve the problem of reliability
evaluation of the running state of manufacturing system
under the condition of small sample size and unknown
probability distribution. Using the grey bootstrap method,
the maximum entropy principle, and Poisson process, it aims
to realize reliability evaluation for the running state of man-
ufacturing system with no variation and variation. Via the
computer simulations and actual cases, the evaluation results
of reliability of the running state ofmanufacturing system can
be obtained. And the research method proposed in the paper
provides scientific decisions and recommendations on how
to decide properly on the running state of the manufacturing
system, which can ensure product quality to be stable and
reliable and realize the low manufacturing costs.

2. Mathematical Model

2.1. Collection of Small Sample Data. Suppose that the work-
piece quality data is a random variable 𝑥 in the adjustment
process of the manufacturing system. Via a measurement
system, the raw intrinsic data, namely, small sample data
meeting the quality requirements, are collected to constitute
a raw intrinsic data sequence that is expressed as a vector X,
as follows:

X = (𝑥 (1) , 𝑥 (2) , . . . , 𝑥 (𝑛) , . . . , 𝑥 (𝑁)) ;

𝑛 = 1, 2, . . . , 𝑁,

(1)

where X stands for the raw intrinsic data sequence of the
workpiece quality data; 𝑥(𝑛) stands for the 𝑛th data in X; 𝑛

stands for the sequence number of the raw intrinsic data; 𝑁
stands for the number of the data inX. Here it should be noted
that𝑁 is a small integer and its value range is [4, 10] generally.

The intrinsic data sequence characterizes the data
sequence obtained in the optimal running state of the
manufacturing system, which can satisfy the characteristics
demands of population distribution of the workpiece quality
parameter.

Based on small sample data in the raw intrinsic data
sequence X, the intrinsic generated data of large size can be
generated by the grey bootstrap, which lay the foundation
for establishment of the probability density function to
characterize the running state of the manufacturing system.

2.2. Prediction of the Intrinsic Generated Data. The grey
bootstrap method consists of the bootstrap method and the
grey prediction model.

The bootstrap method can simulate a large number of
bootstrap resampling samples via small sample data under
investigation, and the grey prediction model can predict a
large number of generated data via bootstrap resampling
samples.

According to the bootstrap method, via an equiprobable
sampling with replacement from the raw intrinsic data
sequence X, 𝐵 steps of bootstrap resampling samples can be
conducted in the case of each step of extraction 𝑁 and each
extraction of size 1. Then, 𝐵 simulation samples of size 𝑁
can be obtained and the result is expressed as a vector Θ, as
follows:

Θ = (Θ
1
,Θ
2
, . . . ,Θ

𝑏
, . . . ,Θ

𝐵
) ; 𝑏 = 1, 2, . . . , 𝐵, (2)

where 𝐵 is the number of Θ and 𝐵 is usually a large integer;
namely, 𝐵 ≥ 1000;Θ

𝑏
is the 𝑏th bootstrap resampling sample

and can be written as

Θ
𝑏
= (𝜃
𝑏 (1) , 𝜃𝑏 (2) , . . . , 𝜃𝑏 (𝑛) , . . . , 𝜃𝑏 (𝑁)) , (3)

where 𝜃
𝑏
(𝑛) is the 𝑛th simulation sample in Θ

𝑏
and 𝑁 is the

number of the data inΘ
𝑏
.

According to the grey system theory, suppose that the
first-order accumulated generating operation (1-AGO) of Θ

𝑏

is a vectorΦ
𝑏
, as follows:

Φ
𝑏
= (𝜑
𝑏
(1) , 𝜑

𝑏
(2) , . . . , 𝜑

𝑏
(𝑛) , . . . , 𝜑

𝑏
(𝑁)) (4)

with

𝜑
𝑏 (𝑛) =

𝑛

∑

𝑗=1

𝜃
𝑏
(𝑗) . (5)

Via the grey predictionmodel,Φ
𝑏
can be defined as a grey

differential formula, as follows:

d𝜑
𝑏 (𝑛)

d𝑛
+ 𝑐
𝑏1
𝜑
𝑏 (𝑛) = 𝑐𝑏2, (6)

where 𝑛 is considered as a continuous variable and 𝑐
𝑏1
and 𝑐
𝑏2

are the coefficients to be estimated.
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Suppose that the generated mean vector is

Z
𝑏
= (𝑧
𝑏 (2) , 𝑧𝑏 (3) , . . . , 𝑧𝑏 (𝑛) , . . . , 𝑧𝑏 (𝑁)) ;

𝑛 = 2, 3, . . . , 𝑁

(7)

with

𝑧
𝑏 (𝑛) = (0.5𝜑𝑏 (𝑛) + 0.5𝜑𝑏 (𝑛 − 1)) . (8)

Under the initial condition that 𝜑
𝑏
(1) = 𝜃

𝑏
(1), the least-

squares solution to (6) is

𝜂
𝑏 (𝑁 + 1) = (𝜃𝑏 (1) −

𝑐
𝑏2

𝑐
𝑏1

) exp (−𝑐
𝑏1
𝑁) +

𝑐
𝑏2

𝑐
𝑏1

, (9)

where 𝜂
𝑏
(𝑁 + 1) represents the 𝑏th first-order accumulated

generated data predicted by Θ
𝑏
; and the coefficients 𝑐

𝑏1
and

𝑐
𝑏2
are given by

(𝑐
𝑏1
, 𝑐
𝑏2
)
T
= (DTD)

−1

DT
Θ

T
𝑏
; 𝑛 = 2, 3, . . . , 𝑁 (10)

with

D = (−Z
𝑏
I)T , (11)

where I is a unit vector of dimension𝑁 − 1.
According to the inverse AGO in the grey system theory,

the 𝑏th intrinsic generated data 𝑥
𝑏
can be predicted, as

follows:

𝑥
𝑏
= 𝜂
𝑏 (𝑁 + 1) − 𝜂𝑏 (𝑁) . (12)

A large number of generated data obtained by (12) can
constitute an intrinsic generated data sequence, which is
given by X

𝐺𝐵
, as follows:

X
𝐺𝐵
= (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑏
, . . . , 𝑥

𝐵
) ; 𝑏 = 1, 2, . . . , 𝐵, (13)

where X
𝐺𝐵

indicates the intrinsic generated data sequence
which is from the raw intrinsic data sequence using the grey
bootstrap method.

Based on the intrinsic generated data sequence X
𝐺𝐵

in
(13), the probability density function of characterizing the
running state of the manufacturing system can be simulated
using the maximum entropy principle.

2.3. Establishment for the Probability Density Function of the
Manufacturing System. According to the maximum entropy
principle in information theory, in all the feasible solutions,
it is necessary to solve a problem; namely, the probability
density function that maximizes the information entropy is
the most unbiased estimation of the information source in
the running state of the manufacturing system.

In the information theory, the information entropy𝐻 can
be defined as

𝐻 = −∫
Ω

𝑓 (𝑥) ln𝑓 (𝑥) d𝑥, (14)

where 𝑥 represents a continuous random variable for describ-
ing 𝑥
𝑏
in (13); Ω represents the feasible region for 𝑥; 𝑓(𝑥)

represents the probability density function of the running
state of the manufacturing system.

Let the information entropy maximum, namely,

𝐻 󳨀→ max (15)

satisfy the constraint conditions

∫
Ω

𝑓 (𝑥) d𝑥 = 1,

∫
Ω

𝑥
𝑖
𝑓 (𝑥) d𝑥 = 𝑚𝑖; 𝑖 = 1, 2, . . . ,𝑀,

(16)

where𝑚
𝑖
stands for the 𝑖th order originmoment of 𝑥, 𝑖 stands

for the origin moment order, and 𝑀 stands for the highest
origin moment order.

According to the statistical theory, the estimated value of
the 𝑖th order origin moment is written as

𝑚
𝑖
=
1

𝐵

𝐵

∑

𝑏=1

𝑥
𝑖

𝑏
. (17)

Hence, using the Lagrange multiplier method, the prob-
ability density function which stratifies (14) can be defined
according to (15) and (16), as follows:

𝑓 (𝑥) = exp(𝜆
0
+

𝑀

∑

𝑖=1

𝜆
𝑖
𝑥
𝑖
) (18)

and the Lagrange multiplier 𝜆
0
is given by

𝜆
0
= − ln(∫

Ω

exp(
𝑀

∑

𝑖=1

𝜆
𝑖
𝑥
𝑖
) d𝑥) , (19)

where 𝜆
𝑖
is the 𝑖th Lagrange multiplier and can be solved

according to (20), as follows:

𝑚
𝑖
∫
Ω

exp(
𝑀

∑

𝑖=1

𝜆
𝑖
𝑥
𝑖
) d𝑥 − ∫

Ω

𝑥
𝑖 exp(

𝑀

∑

𝑖=1

𝜆
𝑖
𝑥
𝑖
) d𝑥

= 0; 𝑖 = 1, 2, . . . ,𝑀.

(20)

Equation (18) obtained by the maximum entropy prin-
ciple can accurately characterize the probability density
function 𝑓(𝑥) of the running state of the manufacturing
system.

With the help of the principle of statistics, the true value
estimate and the confidence interval estimate of the running
state of the manufacturing system can be implemented using
(18).

2.4. Estimate of the True Value and the Confidence Interval
of the Manufacturing System. According to the principle of
statistics, the estimated true value is given by

𝑋
0
= ∫
Ω

𝑥𝑓 (𝑥) d𝑥, (21)

where 𝑋
0
is the estimated true value of the running state of

the manufacturing system.
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The estimated true value is a characteristic index to
evaluate the running state of the manufacturing system,
namely, an estimate of the size of the workpiece quality
parameter.

Suppose that the significance level is 𝛼 ∈ [0, 1]; then, the
confidence level 𝑃 is expressed as

𝑃 = (1 − 𝛼) × 100%. (22)

The confidence level 𝑃 represents the accuracy of the
sample statistic values, which is regarded as the probability
that the sample statistic values fall within a certain range of
the parameter value.

Under the confidence level 𝑃, the confidence interval of
the running state of the manufacturing system is given by

[𝑋L, 𝑋U] = [𝑋𝛼/2, 𝑋1−𝛼/2] , (23)

where 𝑋
𝛼/2

is the value of the variable 𝑥 corresponding to
the probability 𝛼/2; 𝑋

1−𝛼/2
is the value of the variable 𝑥

corresponding to the probability 1 − 𝛼/2; 𝑋L is the lower
boundary of the estimated interval;𝑋U is the upper boundary
of the estimated interval.

The confidence interval [𝑋L, 𝑋U] is a characteristic index
to evaluate the running state of the manufacturing system,
namely, an estimate of the value range of the size of the
workpiece quality parameter.

According to (23), the expanded uncertainty𝑈 is defined
as

𝑈 =
1

2
(𝑋U − 𝑋L) . (24)

The expanded uncertainty 𝑈 can be used to evaluate
the uncertainty of the running state of the manufacturing
system. The smaller the expanded uncertainty is, the better
the running state of the manufacturing system is, the higher
the running quality of the manufacturing system is, and the
smaller the fluctuation of the workpiece quality is; otherwise,
the worse the running state of the manufacturing system is,
the lower the running quality of the manufacturing system
is, and the larger the fluctuation of the workpiece quality
is. Accordingly, in the evaluation for the running state of
the manufacturing system, the reliability of the running state
of the manufacturing system is expressed by 2 times the
expanded uncertainty 2𝑈 which can quantitatively describe
the fluctuation range of the workpiece quality data.

In the end, the workpiece quality can be characterized
as the estimated true value 𝑋

0
and the confidence interval

[𝑋L, 𝑋U] under the confidence level 𝑃.

2.5. Reliability Evaluation for the Running State of
the Manufacturing System

2.5.1. Application of Poisson Process. Suppose that the output
workpiece quality data in the manufacturing process falling
out of the fluctuation range of the workpiece quality data
in the reliable running state of the manufacturing system
is defined as the event 𝐴. 𝑁(𝑡) stands for the occurrence
frequency of the event𝐴until a certain time 𝑡.The occurrence

frequency 𝑁(𝑡) of the event 𝐴 is considered as a random
variable, and the stochastic process {𝑁(𝑡), 𝑡 ≥ 0} can be called
the counting process.

In the actual manufacturing process, the number of the
workpiece quality data out of the fluctuation range in the
reliable running state of the manufacturing system is always
greater than or equal to zero, and they are all the integers.
When 𝑡 = 0, the number of the workpiece quality data
out of the fluctuation range in the reliable running state of
the manufacturing system is zero; namely, 𝑁(0) = 0. And
𝑁(𝑡) grows larger and larger with the extension of the time
𝑡; namely, if 𝑡

1
< 𝑡
2
, it is obtained that 𝑁(𝑡

1
) ≤ 𝑁(𝑡

2
), and

𝑁(𝑡
2
) − 𝑁(𝑡

1
) can be equal to the occurrence frequency of

the event 𝐴 in the interval [𝑡
1
, 𝑡
2
].

For the counting process {𝑁(𝑡), 𝑡 ≥ 0}, the occurrence
frequencies of the event 𝐴 in nonoverlapping time intervals
are independent of each other; namely, if 𝑡

1
< 𝑡
2
≤ 𝑡
3
< 𝑡
4
,

the occurrence frequency𝑁(𝑡
2
) −𝑁(𝑡

1
) of the event 𝐴 in the

interval [𝑡
1
, 𝑡
2
] is independent of the occurrence frequency

𝑁(𝑡
4
) − 𝑁(𝑡

3
) of the event 𝐴 in the interval [𝑡

3
, 𝑡
4
], and

vice versa. And the counting process {𝑁(𝑡), 𝑡 ≥ 0} is only
related to the time difference and has nothing to do with a
certain moment. Thus, the counting process {𝑁(𝑡), 𝑡 ≥ 0} is
an independent increment process smoothly, which can be
described by Poisson process.

2.5.2. The Reliability Analysis Based on Poisson Process.
According to Poisson process, the occurrence frequency of
the event 𝐴 in an interval with length 𝑡 obeys Poisson
distribution with the parameter 𝜆 > 0. The concept of
Poisson process with zero-failure probability is applied in
this section; for this end, the failure distribution function
regarding Poisson process is defined as

𝑃 (𝑙, 𝑡) = 𝑃 {𝑁 (𝑡 + 𝑤) − 𝑁 (𝑤) = 𝑙}

= exp (−𝜆𝑡) (𝜆𝑡)
𝑙

𝑙!
; 𝑙 = 0, 1, 2, . . . , 𝐿; 𝑡 ≥ 0,

(25)

where 𝑃(𝑙, 𝑡) stands for the failure distribution function
regarding Poisson process; 𝑡 stands for the time variable; 𝑙
stands for a discrete random variable recording the number
of event occurrences; 𝐿 stands for the number of event
occurrences; 𝜆 is the frequency of event occurrences and
is regarded as the variation intensity of the subject under
investigation, which can describe variation characteristics of
the running state of the manufacturing system; 𝑤 stands for
a random moment.

For real time evaluation for the reliability of themanufac-
turing system in the normal run of themanufacturing system
after being adjusted, it is essential to continuously inspect
the workpiece quality. Suppose that the raw inspection data
of the workpiece quality are obtained by inspecting a few
workpieces and constitute the raw inspection data sequence,
which is expressed as by X

𝐴
, as follows:

X
𝐴
= (𝑥
𝐴 (1) , 𝑥𝐴 (2) , . . . , 𝑥𝐴 (𝑠) , . . . , 𝑥𝐴 (𝑆)) ;

𝑠 = 1, 2, . . . , 𝑆,

(26)
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whereX
𝐴
is the raw inspection data sequence; 𝑥

𝐴
(𝑠) is the 𝑠th

data in X
𝐴
; 𝑆 is the number of the data in X

𝐴
.

Generally, there are a few data in the raw inspection
data sequence X

𝐴
; in general, 𝑆 = 4∼10, which is difficult to

conduct on count analysis in statistical significance precisely.
To solve the problem, mass inspection data are generated
using the grey bootstrap method mentioned in Section 2.2
and constitute the inspection generated data sequence, which
is given by X

𝐺𝐴
, as follows:

X
𝐺𝐴
= (𝑥
𝐺𝐴 (1) , 𝑥𝐺𝐴 (2) , . . . , 𝑥𝐺𝐴 (𝑎) , . . . , 𝑥𝐺𝐴 (𝐴)) ;

𝑎 = 1, 2, . . . , 𝐴,

(27)

where X
𝐺𝐴

is the inspection generated data sequence; 𝑥
𝐺𝐴
(𝑎)

is the 𝑎th data inX
𝐺𝐴
;𝐴 is the number of the data inX

𝐺𝐴
and

𝐴 is usually a large integer; namely, 𝐴 ≥ 1000.
If many raw inspection data in X

𝐴
can be obtained via

workpiece quality inspection, and it need not use (27), let
X
𝐺𝐴
= X
𝐴
and 𝐴 = 𝑆 directly; namely, X

𝐺𝐴
is considered

as the raw inspection data sequence X
𝐴
. Then the probability

density function of the running state of the manufacturing
system can be obtained using themaximumentropy principle
based on the inspection data sequenceX

𝐺𝐴
. It is worth noting

that if there are many inspection data inX
𝐴
, makeX

𝐺𝐴
= X
𝐴

and 𝐴 = 𝑆; namely, X
𝐺𝐴

is replaced with X
𝐴
at this time. If

there are a few inspection data in X
𝐴
, X
𝐺𝐴

is generated by
X
𝐴
according to the grey bootstrap method which belong to

a large data vector. And X
𝐺𝐴

is not equal to X
𝐴
at this time.

Via using the maximum entropy principle mentioned in
Section 2.3, the probability density function of the inspection
generated data sequence X

𝐺𝐴
can be written as

𝑝 = 𝑝 (𝑥) . (28)

Suppose there are𝑄 data withinX
𝐺𝐴

but outside the con-
fidence interval [𝑋L, 𝑋U] by counting; hence, the variation
intensity 𝜆 under investigation can be computed as

𝜆 =
𝑄

𝐴
× 100%. (29)

According to Poisson process, the variation intensity 𝜆
represents the frequency of event occurrences, and in terms
of the reliability evaluation for the running state of the
manufacturing system, the variation intensity 𝜆 represents
the frequency that the inspection data of the workpiece
quality falls outside the confidence interval [𝑋L, 𝑋U]. It
obviously belongs to the Poisson counting process. In the
counting process, the smaller the variation intensity 𝜆 is, the
more reliable the running state of the manufacturing system
is, and vice versa.

When 𝑙 = 0, the occurrence frequency of the event 𝐴 in
the interval with time length 𝑡 is zero, which can be utilized
to characterize that the running state of the manufacturing
system in this stage is reliable; namely, the manufacturing
system has no failure. With the help of Poisson process with
zero-failure probability (𝑙 = 0), namely, only considering
𝑙 = 0 for (25), (25) can be further studied to become (30),

and the reliability function 𝑅(𝑡) of achieving running quality
of the manufacturing system can be given by

𝑅 (𝑡) = 𝑃 (0, 𝑡) = 𝑃 {𝑁 (𝑡 + 𝑤) − 𝑁 (𝑤) = 0}

= exp (−𝜆𝑡) ; 𝑡 ∈ [0, +∞) ,
(30)

where 𝑅(𝑡) stands for the reliability function of achieving
running quality of the manufacturing system.

In (30), if the time variable is that 𝑡 = 𝑡
0
, the reliability

degree 𝑟 of achieving running quality of the manufacturing
system under the moment 𝑡 = 𝑡

0
can be obtained as

𝑟 = 𝑅 (𝑡
0
) , (31)

where 𝑟 is the reliability degree of achieving running quality
of the manufacturing system under the moment 𝑡 = 𝑡

0
. The

reliability degree 𝑟 can be used to evaluate the possibility
of achieving running quality of the manufacturing system.
Namely, the larger the reliability degree 𝑟 is, the larger the
possibility of achieving running quality of the manufacturing
system is, and vice versa.

2.6. Reliability Evaluation for the Running State Variation
Process of the Manufacturing System. In the actual produc-
tion, with the continuous accumulation of processing time,
the running state of the manufacturing system becomes
unknown; meanwhile the variation process of the manufac-
turing system becomes uncertain. However, on the whole, the
manufacturing system itself follows the variation law from
good to bad in the long-term manufacturing process. To
ensure products meet the quality requirements, the dynamic
analysis of the running state variation process of the manu-
facturing system is a demanding task.

According to Poisson process mentioned in Section 2.5,
suppose that 𝑡 is a continuous time variable and its value
range is 𝑡 ∈ [0, +∞) in (30), and it can be performed to
take the derivative of the reliability function𝑅(𝑡) of achieving
running quality of the manufacturing system, namely, the
derivative of (30). Thus the probability density function
𝑝(0, 𝑡) of the reliability of the running state variation process
of the manufacturing system as the time variable 𝑡 changes
can be written as

𝑝 (0, 𝑡) =
d𝑅 (𝑡)
d𝑡

=
d𝑃 (0, 𝑡)

d𝑡
= −𝜆 exp (−𝜆𝑡) ;

𝑡 ∈ [0, +∞) ,

(32)

where 𝑝(0, 𝑡) is the probability density function of the relia-
bility of the running variation process of the manufacturing
system as 𝑡 ∈ [0, +∞).

The experimental data under investigation are grouped to
analyze the reliability of the running state variation process
of the manufacturing system. The inspection data sequence
X
𝐴
is divided into𝑀 equal portions as the time interval and

𝑀 groups of the inspection data subsequence 𝑋
𝐴𝑚

(𝑚 =

1, 2, . . . ,𝑀) are obtained. Each group of inspection data
subsequence 𝑋

𝐴𝑚
contains 𝑁 inspection data and 𝑁 is the
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number of the raw intrinsic data sequence X. The grouping
result can be given by

X
𝐴
= (𝑋
𝐴1
, 𝑋
𝐴2
, . . . , 𝑋

𝐴𝑚
, . . . , 𝑋

𝐴𝑀
) ;

𝑚 = 1, 2, . . . ,𝑀,

(33)

where𝑋
𝐴𝑚

is the𝑚th inspection data subsequence inX
𝐴
and

𝑀 is the number of groups in X
𝐴
.

The inspection data subsequence𝑋
𝐴𝑚

is defined as

𝑋
𝐴𝑚

= (𝑥
𝐴𝑚 (1) , 𝑥𝐴𝑚 (2) , . . . , 𝑥𝐴𝑚 (𝑘) , . . . , 𝑥𝐴𝑚 (𝑁)) ;

𝑘 = 1, 2, . . . , 𝑁; 𝑆 = 𝑀 ×𝑁,

(34)

where 𝑥
𝐴𝑚
(𝑘) is the 𝑘th data in𝑋

𝐴𝑚
;𝑁 is the number of the

data in𝑋
𝐴𝑚

; 𝑆 is the number of the data in X
𝐴
.

According to the grey bootstrap method and the maxi-
mum entropy principle and Poisson process, namely, (28)–
(32), the inspection data subsequence 𝑋

𝐴𝑚
can be analyzed

to obtain 𝑀 probability density functions with different
variation degree of the running variation process of the
manufacturing system.

On the basis of the raw intrinsic data sequence X,
the inspection data subsequence 𝑋

𝐴𝑚
is performed by

contrastive analysis in contrast to the raw intrinsic data
sequence X, respectively. The probability density functions
are processed by subsection integral to (32), to solve the
intersection area 𝐴(𝑇) of the probability density functions of
the inspection data subsequence 𝑋

𝐴𝑚
and the intrinsic data

sequence X, which is expressed as

𝐴 (𝑇) = ∫

𝑇

0

𝑝 (0, 𝑡) d𝑡 + ∫
+∞

𝑇

𝑝 (0, 𝑡) d𝑡;

𝑡 ∈ [0, +∞) ,

(35)

where 𝑇 is the abscissa value of the intersection point of the
probability density functions of the inspection data sequence
and the intrinsic data sequence.

Define the variation probability 𝑃
𝐵
(𝑇) of the inspection

data sequence relative to the intrinsic data sequence as

𝑃
𝐵 (𝑇) = 1 − 𝐴 (𝑇) , (36)

where𝑃
𝐵
(𝑇) is the variation probability of the inspection data

sequence.
The variation probability 𝑃

𝐵
(𝑇) can be used to evaluate

the reliability of the running state variation process of the
manufacturing system. Via comparing the inspection data
sequence with the intrinsic data sequence, it can be obtained
that the larger the intersection area 𝐴(𝑇) of the probability
density functions of inspection data sequence and the intrin-
sic data sequence is, the smaller the variation probability
𝑃
𝐵
(𝑇) of the inspection data sequence is, and the smaller the

variation intensity 𝜆 of the running variation process of the
manufacturing system is; namely, the larger the possibility of
achieving running quality of themanufacturing system is, the
more reliable the running state of the manufacturing system
is, and vice versa.
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Figure 1: The intrinsic generated data sequence X
𝐺𝐵

(Case 1).

3. Case Studies and Discussions

There are a total of five cases studies involving two types
of the evaluation issues on the running process of the
manufacturing system. The former three cases are cases
of evaluations for the running state of the manufacturing
system, and the latter two cases are cases of evaluations for the
running state variation process of the manufacturing system.
It is worthmentioning that the problems of prior information
with known or unknown probability distributions and trends
are taken into account in the case studies.

3.1. Cases of Evaluation for the Running State of
the Manufacturing System

Case 1. This is a simulation case of evaluation for the running
state of the manufacturing system which obeys a normal
distribution. Based on the simulation data with respect to a
processing quality parameter 𝑄

1
, there is an evaluation for

the running state of the manufacturing system with a normal
distribution in the case.

Suppose that the mathematical expectation 𝐸 = 0mm
and the standard deviation 𝑠 = 0.01mm are the known
parameters, and 10 (𝑁 = 10) simulation datasets obeying
the normal distribution are generated by Monte Carlo
simulation method and are assumed as the measured data
with respect to a processing quality parameter 𝑄

1
in an

adjusted manufacturing system with a good state running.
Then 10 simulation data can constitute a raw intrinsic
data sequence X = (−0.00418, 0.00493, −0.00271, 0.0029,
−0.00824, 0.01387, −0.01377, 0.00184, −0.00231, 0.0198).
Processing the raw intrinsic data sequence X, 20000
(𝐵 = 20000) generated datasets are obtained using the
grey bootstrap method, which can constitute an intrinsic
generated data sequence X

𝐺𝐵
, as shown in Figure 1. Then,

processing the intrinsic generated data sequence X
𝐺𝐵
, the

probability density function 𝑓(𝑥) of the running state of
the manufacturing system is obtained using the maximum
entropy principle, as shown in Figure 2. Let the confidence
level be 𝑃, let the confidence interval be [𝑋L, 𝑋U], and let
the expanded uncertainty be 𝑈 of the running state of the
manufacturing system.

Suppose that the mathematical expectation 𝐸 = 0mm
and the standard deviation 𝑠 = 0.01mm are the known
parameters, and 20000 (𝑆 = 20000) simulation datasets
obeying the normal distribution are generated by Monte
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Figure 2: The probability density function 𝑓(𝑥) (Case 1).
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Figure 3: The inspection data sequence X
𝐴
(Case 1).

Carlo simulation method and are assumed as the measured
data which is obtained by inspecting the processing quality
parameter 𝑄

1
in the normal manufacturing process, namely,

the inspection data sequence X
𝐴
, as shown in Figure 3.

Let X
𝐺𝐴
= X
𝐴
and 𝐴 = 𝑆, and the variation intensity 𝜆

of the running state of the manufacturing system is obtained
by counting process. Using Poisson process with zero-failure
probability, the reliability function 𝑅(𝑡) of achieving running
quality of the manufacturing system is obtained. Then let
𝑡 = 1; the reliability degree 𝑟 of achieving running quality
of the manufacturing system under the moment 𝑡 = 1 is
obtained. For the convenience of research, it shows that the
relationship between 2 times the expanded uncertainty 2𝑈
and the reliability degree 𝑟 is given as shown in Figure 4.

In Figure 4, 𝑟 ∈ [0.3679, 0.9921] and 2𝑈 ∈ [0 𝜇m,
56.82 𝜇m]. On the whole, there is the nonlinear relationship
between 2𝑈 and 𝑟. The nonlinear relationship can be divided
into 3 regions with I, II, and III, corresponding to 3 approxi-
mate straight lines with different slopes, respectively.

In I region, 𝑟 ∈ [0.3679, 0.7315] and 2𝑈 ∈ [0 𝜇m,
19.28 𝜇m]. It is obvious that the expanded uncertainty and
the reliability degree are both small and the linear relationship
between 2𝑈 and 𝑟 is characterized by the small slope. It shows
that the possibility of achieving high quality running state for
the manufacturing system is small in I region.

In III region, 𝑟 ∈ [0.9233, 0.9921] and 2𝑈 ∈ [35.88 𝜇m,
56.82 𝜇m]. It can be seen that the expanded uncertainty and
the reliability degree are both large and the linear relationship
between 2𝑈 and 𝑟 is characterized by the large slope. It shows
that the possibility of achieving low quality running state for
the manufacturing system is large in III region.
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Figure 4: The relationship between 2𝑈 and 𝑟 (Case 1).
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Figure 5: The intrinsic generated data sequence X
𝐺𝐵

(Case 2).

In II region, 𝑟 ∈ [0.7315, 0.9233] and 2𝑈 ∈ [19.28 𝜇m,
35.88 𝜇m]. Obviously, the expanded uncertainty 2𝑈 and the
reliability degree 𝑟 and the slope of the linear relationship
between 2𝑈 and 𝑟 are all moderate in comparison with
the above two regions. It shows that the running quality of
achieving the running state is in line with the possibility
of achieving the quality of the running state, and both are
moderate in II region.

Case 2. This is a simulation case of evaluation for the running
state of the manufacturing system which obeys a Rayleigh
distribution. Based on the simulation data with respect to a
processing quality parameter 𝑄

2
, there is an evaluation for

the running state of the manufacturing system of a Rayleigh
distribution in the case.

Suppose that the mathematical expectation 𝐸 =

0.0215mm and the standard deviation 𝑠 = 0.01mm are the
known parameters, and 10 (𝑁 = 10) simulation datasets
obeying the Rayleigh distribution are generated by Monte
Carlo simulation method and are assumed as the measured
data with respect to a processing quality parameter 𝑄

2
in an

adjusted manufacturing system with a good state running.
Then 10 simulation datasets can constitute a raw intrinsic
data sequence X = (0.01664, 0.01412, 0.02564, 0.01899,
0.02301, 0.01957, 0.01747, 0.02203, 0.03343, 0.02131). Proc-
essing the intrinsic data sequence X, 20000 (𝐵 = 20000)
generated datasets are obtained using the grey bootstrap
method, which can constitute an intrinsic generated data
sequence X

𝐺𝐵
, as shown in Figure 5. Thus, processing the

intrinsic generated data sequenceX
𝐺𝐵
, the probability density

function 𝑓(𝑥) of the running state of the manufacturing
system is obtained using the maximum entropy principle,
as shown in Figure 6. Let the confidence level be 𝑃, let
the confidence interval be [𝑋L, 𝑋U], and let the expanded
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Figure 6: The probability density function 𝑓(𝑥) (Case 2).
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Figure 7: The inspection data sequence X
𝐴
(Case 2).

uncertainty be 𝑈 for the running state of the manufacturing
system.

Suppose that the mathematical expectation 𝐸 =

0.0215mm and the standard deviation 𝑠 = 0.01mm are
the known parameters, and 20000 (𝑆 = 20000) simulation
datasets obeying the Rayleigh distribution are generated
by Monte Carlo simulation method and are assumed as
the measured data, which is obtained by inspecting the
processing quality parameter 𝑄

2
in the normal manufac-

turing process, namely, the inspection data sequence X
𝐴
, as

shown in Figure 7.
Let X

𝐺𝐴
= X
𝐴
and 𝐴 = 𝑆, and the variation intensity 𝜆

of the running state of the manufacturing system is obtained
by counting process. Using Poisson process with zero-failure
probability, the reliability function 𝑅(𝑡) of achieving running

quality of the manufacturing system is obtained. Then let
𝑡 = 1; the reliability degree 𝑟 of achieving running quality
of the manufacturing system under the moment 𝑡 = 1 is
obtained. For the convenience of research, it shows that the
relationship between 2 times the expanded uncertainty 2𝑈
and the reliability value 𝑟 is given as shown in Figure 8.

In Figure 8, 𝑟 ∈ [0.3679, 0.9817] and 2𝑈 ∈ [0 𝜇m,
34.09 𝜇m]. On the whole, there is the nonlinear relationship
between 2𝑈 and 𝑟. The nonlinear relationship can be divided
into 3 regions with I, II, and III, corresponding to 3 approxi-
mate straight lines with different slopes, respectively.

In I region, 𝑟 ∈ [0.3679, 0.7072] and 2𝑈 ∈

[0 𝜇m, 14.47 𝜇m]. It is obvious that the expanded uncertainty
and the reliability degree are both small and the linear
relationship between 2𝑈 and 𝑟 is characterized by the small
slope. It shows that the possibility of achieving high quality
running state for the manufacturing system is small in I
region.

In III region, 𝑟 ∈ [0.8490, 0.9817] and 2𝑈 ∈ [22.43 𝜇m,
34.09 𝜇m]. It is easy to see that the expanded uncertainty and
the reliability value are both large and the linear relationship
between 2𝑈 and 𝑟 is characterized by the large slope. It shows
that the possibility of achieving low quality running state for
the manufacturing system is large in III region.

In II region, 𝑟 ∈ [0.7072, 0.8490] and 2𝑈 ∈ [14.47 𝜇m,
22.43 𝜇m]. Obviously, the expanded uncertainty 2𝑈 and the
reliability degree 𝑟 and the slope of the linear relationship
between 2𝑈 and 𝑟 are all moderate in comparison with
the above two regions. It shows that the running quality of
achieving the running state is in line with the possibility
of achieving the quality of the running state, and both are
moderate in II region.

Case 3. This is an actual case of evaluation for the running
state of the manufacturing system with unknown probability
distribution. A rolling bearing inner raceway grinding
machine is involved to grind the inner raceway of the
tapered rolling bearing with 30204 in the case. By grinding
and measurement after regulation of the machine, the 30
measured datasets of the inner raceway roundness of the
bearing, in 𝜇m, are collected and the result is as follows:

1.08 0.90 1.06 1.28 0.88 1.87 1.16 1.06 0.97 1.01
0.70 1.15 0.72 1.08 0.67 1.10 0.98 1.15 1.14 1.64
0.73 0.87 1.91 1.95 1.19 0.78 1.51 1.39 1.39 3.28

Based on the above 30 measured datasets of the inner race-
way roundness in regard to a processing quality parameter,
namely, roundness, there is an evaluation for the running
state of the grinding machine in the case.

The former 5 datasets of the above 30 measured datasets
are selected as the elements of the raw intrinsic data sequence
X (𝑁 = 5) and the latter 25 datasets of the above 30measured
datasets are selected as the elements of the inspection data
sequence X

𝐴
(𝑆 = 25). The intrinsic generated data sequence

X
𝐺𝐵

is obtained by the grey bootstrapmethod (𝐵 = 20000), as
shown in Figure 9. And the probability density function𝑓(𝑥)
of the running state of the manufacturing system is obtained
using the maximum entropy principle, as shown in Figure 10.

Let X
𝐺𝐴
= X
𝐴
and 𝐴 = 𝑆, and the inspection data

sequenceX
𝐴
is as shown in Figure 11.The variation intensity𝜆

of the running state of the manufacturing system is obtained
by counting process. Using Poisson process with zero-failure
probability, the reliability function 𝑅(𝑡) of achieving running
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Figure 8: The relationship between 2𝑈 and 𝑟 (Case 2).
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Figure 9: The intrinsic generated data sequence X
𝐺𝐵

(Case 3).
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Figure 10: The probability density function 𝑓(𝑥) (Case 3).

quality of the manufacturing system is obtained. Then let 𝑡 =
1; the reliability degree 𝑟 of achieving running quality of the
manufacturing system under the moment 𝑡 = 1 is obtained.
For the convenience of research, the relationship between 2
times the expanded uncertainty 2𝑈 and the reliability value 𝑟
is as shown in Figure 12.

In Figure 12, 𝑟 ∈ [0.3679, 0.8465] and 2𝑈 ∈ [0 𝜇m, 1 𝜇m].
On the whole, there is the nonlinear relationship between
2𝑈 and 𝑟. The nonlinear relationship can be divided into 3
regions with I, II, and III, corresponding to 3 approximate
straight lines with different slopes, respectively.

In I region, 𝑟 ∈ [0.3679, 0.7408] and 2𝑈 ∈ [0 𝜇m,
0.65 𝜇m]. It is obvious that the expanded uncertainty and the
reliability degree are both small and the linear relationship
between 2𝑈 and 𝑟 is characterized by the small slope. It shows
that the possibility of achieving high quality running state for
the manufacturing system is small in I region.

In III region, 𝑟 ∈ [0.8187, 0.8465] and 2𝑈 ∈ [0.87 𝜇m,
1 𝜇m]. It can be seen that the expanded uncertainty and the
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Figure 11: The inspection data sequence X
𝐴
(Case 3).
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Figure 12: The relationship between 2𝑈 and 𝑟 (Case 3).

reliability degree are both large and the linear relationship
between 2𝑈 and 𝑟 is characterized by the large slope. It shows
that the possibility of achieving low quality running state for
the manufacturing system is large in III region.

In II region, 𝑟 ∈ [0.7408, 0.8187] and 2𝑈 ∈ [0.65 𝜇m,
0.87 𝜇m]. It is easy to see that the expanded uncertainty 2𝑈,
the reliability degree 𝑟, and the slope of the linear relationship
between 2𝑈 and 𝑟 are all moderate in comparison with
the above two regions. It shows that the running quality of
achieving the running state is in line with the possibility
of achieving the quality of the running state, and both are
moderate in II region.

3.2. Discussions on the Cases of Evaluation for the Running
State of the Manufacturing System. According to the evalu-
ation results of the above 3 cases with respect to the running
state of themanufacturing system, the comparative analysis of
the above 3 cases is performed via the discussion and analysis
of Figures 4, 8, and 12, to realize the comprehensive evaluation
of the running state of the manufacturing system.

Cases 1 and 2 are the simulation experiments obeying a
normal distribution and a Rayleigh distribution, respectively.
The evaluation results of two simulation cases are compared
and discussed to gain valuable knowledge of reliability eval-
uation for the running state of the manufacturing system.

Via comparing Figures 4 and 8, the following conclusions
can be drawn.

On the whole, both can present the nonlinear linear
relationship between 2𝑈 and 𝑟.

In I region, it is easy to see that both of the linear
relationships between 2𝑈 and 𝑟 are characterized by the small
slope; namely, the variation trends of the approximate straight
lines are pretty smooth.
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In III region, both of the linear relationships between
2𝑈 and 𝑟 are characterized by the large slope; namely the
variation trends of the approximate straight lines are relatively
steep.

In II region, both of the linear relationships between
2𝑈 and 𝑟 are characterized by the moderate slope; namely
the variation trends of the approximate straight lines are
moderate.

That is, there are the roughly similar characteristic laws
of 2𝑈 and 𝑟 in Cases 1 and 2 as a whole. It shows that the
running quality of achieving the running state is in line with
the possibility of achieving the quality of the running state,
and both are moderate in II region.

Case 3 is an actual case of evaluation for the running
state of the manufacturing system with unknown probability
distribution. Bymeans of Cases 1 and 2, the evaluation results
of the actual case and the simulation cases are compared
and discussed. Via comparing Figure 12 to Figures 4 and 8,
there are mass influence factors of the manufacturing system
in practical processing in Figure 12, leading to decreasing
slightly the maximum of the reliability degree 𝑟; namely,
𝑟 ∈ [0.3679, 0.8465]. Hence the value range of the reliability
degree 𝑟 in Figure 12 becomes slightly smaller than 𝑟 ∈
[0.3679, 0.9921] in Figure 4 and 𝑟 ∈ [0.3679, 0.9921] in
Figure 8. Additionally, it can be seen that the characteristic
law of 2𝑈 and 𝑟 in Figure 12 is roughly in conformity with
Figures 4 and 8. It shows that the running quality of achieving

the running state of the manufacturing system is in line with
the possibility of achieving the quality of the running state,
and both are moderate in II region.

The simulation cases and the actual case show that the
research method of the reliability evaluation for the running
state of themanufacturing system is feasible, and the research
results are of theoretical value and practical significance.

3.3. Cases of Evaluation for the Running State Variation
Process of the Manufacturing System. With the increase of
the processing time, the running state of the manufacturing
system may emerge as random variation, which is regarded
as the running state variation process of the manufacturing
system. Because the variation trend is uncertain and the
variation time is unknown, the reliability evaluation for the
running state variation process of the manufacturing system
is a demanding task, to ensure that the quality meets the
requirements.

Case 4. This is a practical case of evaluation for the running
state variation process of the manufacturing system with
unknown probability distribution. A rolling bearing roller
diameter grinding machine is involved to grind the roller
diameter of the tapered rolling bearing with 30204 in the
case. The 30 raw datasets of the average diameter deviation
of the roller are collected in turn according to the processing
sequence, in 𝜇m, and the result is as follows:

0.0118 0.0116 0.0102 0.0108 0.0106 0.0114 0.0057 0.0108 0.0100 0.0114
0.0114 0.0118 0.0115 0.0112 0.0112 0.0114 0.0130 0.0114 0.0114 0.0122
0.0121 0.0121 0.0115 0.0116 0.0109 0.0124 0.0117 0.0123 0.0114 0.0131

And it is easy to see the internal characteristic law of 30 raw
datasets in Figure 13.

On the basis of the 30 raw datasets in Figure 13, this case is
of real time evaluation for the running state variation process
of the manufacturing system.

The former 6 raw datasets in Figure 13 are selected as
the elements of the raw intrinsic data sequence X (𝑁 = 6).
Based on the raw intrinsic data sequence X, 30000 generated
datasets are obtained using the grey bootstrap method and
can constitute an intrinsic generated data sequence X

𝐺𝐵
(𝐵 =

30000), as shown in Figure 14. Based on the intrinsic gener-
ated data sequenceX

𝐺𝐵
, the probability density function𝑓(𝑥)

of the running state of the manufacturing system is obtained
using the maximum entropy principle, as shown in Figure 15.

Let the confidence level 𝑃 = 95%, the confidence interval
is obtained that [𝑋L, 𝑋U] = [0.0099 𝜇m, 0.0121 𝜇m], and 2
times the expanded uncertainty 2𝑈 is obtained that 2𝑈 =
0.0031 𝜇m of the running state of the manufacturing system.

In order to evaluate the running state variation process
of the manufacturing system in real time, the latter 24 raw
datasets in Figure 13 are selected as the elements of the
inspection data sequenceX

𝐴
(𝑆 = 24), which are divided into

4 groups as the time interval to obtain the inspection data
subsequence 𝑋

𝐴𝑚
(𝑀 = 4) in the 4 time intervals in proper

order, respectively, namely, 𝑋
𝐴1
∼𝑋
𝐴4
. Each inspection data

subsequence 𝑋
𝐴𝑚

contains 6 raw data (𝑆 = 6). In view of
𝑆 = 6, the inspection generated data sequences𝑋

𝐺𝐴𝑚
(𝑀 = 4)

can be obtained by the grey bootstrap method, respectively,
namely,𝑋

𝐺𝐴1
∼𝑋
𝐺𝐴4

(𝐴 = 30000).
Based on the maximum entropy principle and Poisson

process, by counting and calculating, the variation intensity 𝜆
of the running state of the manufacturing system is obtained
by counting process, as shown in Table 1. Then the reliability
function 𝑅(𝑡) of the running state of the manufacturing
system is obtained using Poisson process with zero-failure
probability.The reliability degree 𝑟 (𝑡 = 1) of the running state
of the manufacturing systemis obtained according to (31), as
shown in Table 1.

For further evaluating the running state variation process
of the manufacturing system in real time, the inspection
generated data sequences 𝑋

𝐺𝐴𝑚
is analyzed. Via taking the

derivative of the reliability function 𝑅(𝑡) of the running state
of the manufacturing system, namely, the derivative of (30),
and making that the continuous time variable 𝑡 ∈ [0, +∞),
the probability density function 𝑝(0, 𝑡) of the reliability of
the running variation process of the manufacturing system
as 𝑡 ∈ [0, +∞), namely, (32), can be obtained.The probability
density functions of the intrinsic data sequence X and the
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Figure 13: The 30 raw datasets of the roller average diameter
deviation (Case 4).
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Figure 14: The intrinsic generated data sequence X
𝐺𝐵

(Case 4).

Table 1: The variation intensity 𝜆 and the reliability degree 𝑟 (Case
4).

Number Inspection data
sequence

Variation
intensity 𝜆

Reliability
degree 𝑟

1 𝑋
𝐴1

0.36287 0.695679
2 𝑋

𝐴2
0.26563 0.7667

3 𝑋
𝐴3

0.2536 0.7760
4 𝑋

𝐴4
0.4184 0.6581

inspection data sequences 𝑋
𝐴1
∼ 𝑋
𝐴4

are chosen to draw
the graph as Figure 16, which can clearly reflect the running
variation process of the manufacturing system. In Figure 16,
the probability density function of the intrinsic data sequence
X is described as the curve 𝐴0, and the probability density
functions of the inspection data sequences 𝑋

𝐴1
∼ 𝑋
𝐴4

are
described as the curves 𝐴1 ∼ 𝐴4, respectively.

In Figure 16, it is easy to see an intersection of the proba-
bility density function of the intrinsic data sequence and each
inspection data sequence, namely, 𝑋

𝐴1
∼ 𝑋
𝐴4
, respectively,

and there is only an intersection point of the curve 𝐴0 and
the curves 𝐴1∼𝐴4, respectively. Four intersection points are
clearly observed in Figure 16 and are denoted as 𝑝

1
, 𝑝
2
, 𝑝
3
,

and 𝑝
4
, corresponding to the curves 𝐴1∼𝐴4, respectively.

Let the probability density function of the intrinsic
data sequence be equal to the probability density function
of the inspection data sequence, and the abscissa values
(𝑇
1
, 𝑇
2
, 𝑇
3
, 𝑇
4
) of the intersection points (𝑝

1
, 𝑝
2
, 𝑝
3
, 𝑝
4
) of the

intrinsic data sequence and the inspection data sequences are
obtained according to (32) by solving equations, respectively;
namely, (𝑇

1
, 𝑇
2
, 𝑇
3
, 𝑇
4
) = (6.6334, 8.1341, 8.3794, 6.0307).
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Figure 15: The probability density function 𝑓(𝑥) (Case 4).
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Figure 16: The variation of the reliability of the manufacturing
system (𝑋

𝐴1
∼𝑋
𝐴4
) (Case 4).

Via putting the abscissa values (𝑇
1
, 𝑇
2
, 𝑇
3
, 𝑇
4
) into (35),

the intersection areas 𝐴(𝑇) of the probability density
functions of the inspection data sequences and the intrinsic
data sequence are solved by subsection integral to (32),
respectively; namely, {𝐴(𝑇

1
), 𝐴(𝑇

2
), 𝐴(𝑇

3
), 𝐴(𝑇

4
)} =

{0.3416, 0.4142, 0.4259, 0.3117}, as shown in Figure 17.
Using (36), the variation probability 𝑃

𝐵
(𝑇) of the inspec-

tion data sequence can be computed, respectively; namely,
{𝑃
𝐵
(𝑇
1
), 𝑃
𝐵
(𝑇
2
), 𝑃
𝐵
(𝑇
3
), 𝑃
𝐵
(𝑇
4
)} = {0.6584, 0.5858, 0.5741,

0.6883}, as shown in Figure 18. The calculation results are
shown in Table 2.

In Figure 17, based on the intrinsic data sequence X, it
shows that the intersection area 𝐴(𝑇

1
) of the probability

density functions of 𝑋
𝐴1

and X is slightly smaller than
𝐴(𝑇
2
) of the probability density functions of𝑋

𝐴2
and X, and

𝐴(𝑇
2
) is rather smaller relative to 𝐴(𝑇

3
) of the probability

density functions of 𝑋
𝐴3

and X. The main reason of the
above phenomenon is that 0.0057 is a significant value less
than other data in 𝑋

𝐴1
, as shown in Figure 13. From the

point of view of the overall trend, the intersection area 𝐴(𝑇)
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Table 2: The running state variation process of the manufacturing system (Case 4).

Number Inspection data sequence Abscissa value 𝑇 Intersection area 𝐴(𝑇) Variation probability 𝑃
𝐵
(𝑇)

1 𝑋
𝐴1

6.6334 0.3416 0.6584
2 𝑋

𝐴2
8.1341 0.4142 0.5858

3 𝑋
𝐴3

8.3794 0.4259 0.5741
4 𝑋

𝐴4
6.0307 0.3117 0.6883
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Figure 17:The variation process of the intersection area𝐴(𝑇) (Case
4).
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Figure 18: The variation process of the variation probability 𝑃
𝐵
(𝑇)

(Case 4).

appears as a downtrend as time accumulation. Figure 17 can
reflect the law; namely, the smaller the intersection area𝐴(𝑇)
is, the larger the variation intensity 𝜆 of the running state
variation process of the manufacturing system is and the less
reliable the running state of the manufacturing system is.
What is more, the law conforms that the running quality
of the manufacturing system presents the evolution of the
declining trend as the accumulation of processing time in the
practical manufacturing process.

In Figure 18, based on the intrinsic data sequence X, it
shows that the variation probability 𝑃

𝐵
(𝑇
1
) of the inspection

data sequence 𝑋
𝐴1

is slightly larger than the variation
probability 𝑃

𝐵
(𝑇
2
) of the inspection data sequence 𝑋

𝐴2
, and

𝑃
𝐵
(𝑇
2
) is rather larger relative to the variation probability

𝑃
𝐵
(𝑇
3
) of the inspection data sequence𝑋

𝐴3
. Themain reason

of the above phenomenon is that 0.0057 is a significant value
less than other data in 𝑋

𝐴1
, as shown in Figure 13. From the

point of view of the overall trend, the variation probability
𝑃
𝐵
(𝑇) of the inspection data sequence appears as a rising
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Figure 19: The raw data sequence with a linear trend (Case 5).

trend as time accumulation. Figure 18 can reflect the law;
namely, the larger the variation probability𝑃

𝐵
(𝑇) is, the larger

the variation intensity 𝜆 of the running variation process of
the manufacturing system is and the less reliable the running
state of the manufacturing system is. What is more, the law
conforms to the practical case that the running quality of the
manufacturing system presents the evolution of the declining
trend as the accumulation of processing time in the actual
manufacturing process.

Case 5. This is a simulation case of evaluation for the
running state variation process of the manufacturing system
with unknown probability distribution. The case is further
simulated as a manufacturing system with variation to assess
the running state variation process based on Case 4.

Based on 30 raw datasets in Figure 13 of Case 4, a manu-
facturing systemwith a linear trend and unknown probability
distribution is simulated to evaluate the running state varia-
tion process of a manufacturing system with variation in real
time in Case 5. Then the contrastive analysis of the results in
Cases 4 and 5 is implemented in the latter part in Case 5. The
raw data sequence with a linear trend is simulated as shown
in Figure 19.

For 30 raw datasets in Figure 19 of Case 5, the former
6 raw datasets in Figure 19 are the same as the former 6
raw datasets in Figure 13. Via artificially adding the trace
linear component 𝑦 = 𝑦(𝑠) to the latter 24 raw datasets in
Figure 13, the latter 24 rawdatasets with the linear component
in Figure 19 are obtained to simulate a linear system.The trace
linear component is shown as in Figure 20.

The former 6 raw datasets in Figure 19 are selected as the
elements of the raw intrinsic data sequenceX (𝑁 = 6). Based
on the intrinsic data sequence X, the latter 24 raw datasets
with 𝑦 = 𝑦(𝑠) in Figure 19 are regarded as the inspection
data sequence X

𝐴
of the running state variation process of

the manufacturing system with variation.
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Figure 20: The simulation trace linear component (Case 5).

Table 3: The variation intensity 𝜆 and the reliability degree 𝑟 (Case
5).

Number Inspection data
sequence

Variation
intensity 𝜆

Reliability
degree 𝑟

1 𝑋
𝐴1

0.4914 0.6118
2 𝑋

𝐴2
0.5352 0.5856

3 𝑋
𝐴3

0.9860 0.3731
4 𝑋

𝐴4
0.9341 0.3929

In accordance with Case 4, let the confidence level 𝑃 =
95% and 𝐵 = 30000. According to the grey bootstrap method
and the maximum entropy principle, the confidence interval
is obtained that [𝑋L, 𝑋U] = [0.0099 𝜇m, 0.0121 𝜇m] and 2
times the expanded uncertainty 2𝑈 is obtained that 2𝑈 =
0.0031 𝜇m for the running state of themanufacturing system.

In order to evaluate the running state variation process
of the manufacturing system with variation in real time,
referring to Case 4, the latter 24 datasets in Figure 19 are
selected as the elements of the inspection data sequence X

𝐴
,

which are divided into 4 groups as the time interval to obtain
the inspection data subsequence 𝑋

𝐴𝑚
(𝑀 = 4) in the 4

time intervals in proper order, respectively, namely, 𝑋
𝐴1
∼

𝑋
𝐴4
. Each inspection data subsequence 𝑋

𝐴𝑚
contains 6 raw

datasets (𝑆 = 6). In view of 𝑆 = 6, the inspection generated
data sequences 𝑋

𝐺𝐴𝑚
(𝑀 = 4) can be obtained by the grey

bootstrap method, respectively, namely, 𝑋
𝐺𝐴1
∼ 𝑋
𝐺𝐴4

(𝐴 =
30000).

Based on the maximum entropy principle and Poisson
process, by counting and calculating, the variation intensity 𝜆
of the running state of the manufacturing system is obtained
by counting process, as shown in Table 3. Then the reliability
function 𝑅(𝑡) of the running state of the manufacturing
system is obtained using Poisson process with zero-failure
probability.The reliability degree 𝑟 (𝑡 = 1) of the running state
of the manufacturing systemis obtained according to (31), as
shown in Table 3.

In order to further evaluate the running state variation
process of the manufacturing system in real time, the inspec-
tion generated data sequences 𝑋

𝐺𝐴𝑚
is analyzed. Via taking

the derivative of the reliability function 𝑅(𝑡) of the running
state of the manufacturing system, namely, the derivative
of (30), and making that the continuous time variable 𝑡 ∈
[0, +∞), the probability density function 𝑝(0, 𝑡) of the reli-
ability of the running variation process of the manufacturing

0.0

0.2

0.4

0.6

0.8

1.0

Th
e p

ro
ba

bi
lit

y 
de

ns
ity

 fu
nc

tio
n
p

(0
,t

)

2 4 6 8 10 120

t

A0

AG1

AG2

AG3

AG4

Figure 21: The variation of the reliability of the manufacturing
system (𝑋

𝐴1
∼ 𝑋
𝐴4
) (Case 5).

system as 𝑡 ∈ [0, +∞) can be obtained. The probability
density functions of the intrinsic data sequence X and the
inspection data sequences 𝑋

𝐴1
∼ 𝑋
𝐴4

are chosen to draw
the graph as Figure 21, which can clearly reflect the running
variation process of the manufacturing system. In Figure 21,
the probability density function of the intrinsic data sequence
X is described as the curve 𝐴0, and the probability density
functions of the inspection data sequences 𝑋

𝐴1
∼ 𝑋
𝐴4

are
described as the curves 𝐴𝐺1 ∼ 𝐴𝐺4, respectively.

In Figure 21, it is easy to see an intersection of the
probability density function of the intrinsic data sequence
and each inspection data sequence, namely, 𝑋

𝐴1
∼ 𝑋
𝐴4
,

respectively, and there is only an intersection point of the
curve 𝐴0 and the curves 𝐴𝐺1 ∼ 𝐴𝐺4, respectively. And 4
intersection points are clearly observed as shown in Figure 21
and denoted as 𝑝

𝐺1
, 𝑝
𝐺2
, 𝑝
𝐺3
, and 𝑝

𝐺4
, corresponding to the

curves 𝐴𝐺1 ∼ 𝐴𝐺4, respectively.
Let the probability density function of the intrinsic data

sequence be equal to the probability density function of
the inspection data sequence, and the abscissa values
(𝑇
𝐺1
, 𝑇
𝐺2
, 𝑇
𝐺3
, 𝑇
𝐺4
) of the intersection points (𝑝

𝐺1
, 𝑝
𝐺2
, 𝑝
𝐺3
,

𝑝
𝐺4
) of the intrinsic data sequence and the inspection

data sequences are obtained according to (32) by solv-
ing equations, respectively; namely, (𝑇

𝐺1
, 𝑇
𝐺2
, 𝑇
𝐺3
, 𝑇
𝐺4
) =

(5.4064, 5.0985, 3.3078, 3.4398). Via putting the abscissa val-
ues (𝑇

𝐺1
, 𝑇
𝐺2
, 𝑇
𝐺3
, 𝑇
𝐺4
) into (35), the intersection areas

𝐴(𝑇) of the probability density functions of the inspec-
tion data sequences and the intrinsic data sequence are
solved by subsection integral to (32), respectively; namely,
{𝐴(𝑇
𝐺1
), 𝐴(𝑇

𝐺2
), 𝐴(𝑇

𝐺3
), 𝐴(𝑇

𝐺4
)} = {0.2805, 0.2649, 0.1728,

0.1797}, as shown in Figure 22. Using (36), the varia-
tion probability 𝑃

𝐵
(𝑇) of the inspection data sequence

can be computed, respectively; namely, {𝑃
𝐵
(𝑇
𝐺1
), 𝑃
𝐵
(𝑇
𝐺2
),

𝑃
𝐵
(𝑇
𝐺3
), 𝑃
𝐵
(𝑇
𝐺4
)} = {0.7185, 0.7351, 0.8272, 0.8203}, as

shown in Figure 23. The calculation results are shown in
Table 4.
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Table 4: The running state variation process of the manufacturing system (Case 5).

Number Inspection data sequence Abscissa value 𝑇 Intersection area 𝐴(𝑇) Variation probability 𝑃
𝐵
(𝑇)

1 𝑋
𝐴1

5.4064 0.2805 0.7185
2 𝑋

𝐴2
5.0985 0.2649 0.7351

3 𝑋
𝐴3

3.3078 0.1728 0.8272
4 𝑋

𝐴4
3.4398 0.1797 0.8203
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Figure 22: The variation process of the intersection areas 𝐴(𝑇)
(Case 5).
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Figure 23: The variation process of the variation probability 𝑃
𝐵
(𝑇)

(Case 5).

In Figure 22, based on the intrinsic data sequence X, it
shows that the intersection area𝐴(𝑇) appears as a downtrend
as time accumulation from the point of view of the overall
trend, except that the intersection area 𝐴(𝑇

𝐺4
) of the prob-

ability density functions of 𝑋
𝐴4

and X is rather larger than
𝐴(𝑇
𝐺3
) of the probability density functions of𝑋

𝐴3
and X.

Case 5 is on the basis of Case 4 to evaluate the running
state variation process of the manufacturing system with
variation; hence 0.0057 is a significant value less than other
data in 𝑋

𝐴1
of Case 5, which can affect the intersection area

𝐴(𝑇). However, the key factor of affecting the intersection
area is the simulation trace linear component 𝑦 = 𝑦(𝑠) in
Case 5.

The simulated linear system can reflect the running state
of the manufacturing system with variation by artificially
adding the trace linear component 𝑦 = 𝑦(𝑠) to the latter 24
raw datasets in Figure 13. The inspection data sequence X

𝐴

of the running state variation process of the manufacturing
systemwith variation is obtained and analyzed to simulate the

running state variation process of the manufacturing system
with variation. Figure 22 shows that the running state of the
manufacturing system changes from good tomoderate to bad
and it can be reflected that the variation law of reliability of
the manufacturing system changes from high to moderate to
low. Obviously, the decreasing trend is consistent with the
law that the manufacturing system performance gradually
decays as the accumulation of processing time in the practical
manufacturing process.

In Figure 23, on the basis of intrinsic data sequence X,
it shows that the variation probability 𝑃

𝐵
(𝑇) appears as an

increasing tendency as time accumulation as a whole, except
that the variation probability 𝑃

𝐵
(𝑇
4
) of the inspection data

sequence 𝑋
𝐴4

is rather smaller than 𝑃
𝐵
(𝑇
3
) of the inspection

data sequence of𝑋
𝐴3
.

Case 5 is on the basis of Case 4 to evaluate the running
state variation process of the manufacturing system with
variation; hence 0.0057 is a significant value less than other
data in 𝑋

𝐴1
of Case 5, which can affect the variation

probability 𝑃
𝐵
(𝑇). However, the key factor of affecting the

intersection area is the simulation trace linear component
𝑦 = 𝑦(𝑠) in Case 5.

The simulated linear system can reflect the running state
of the manufacturing system with variation by artificially
adding the trace linear component 𝑦 = 𝑦(𝑠) to the latter 24
raw datasets in Figure 13. The inspection data sequence X

𝐴

of the running state variation process of the manufacturing
systemwith variation is obtained and analyzed to simulate the
running state variation process of the manufacturing system
with variation. Figure 23 shows that the running state of the
manufacturing system changes from good tomoderate to bad
and it can be reflected that the variation law of reliability of
the manufacturing system changes from high to moderate to
low. Obviously, the decreasing trend is consistent with the
law that the manufacturing system performance gradually
decays as the accumulation of processing time in the practical
manufacturing process.

4. The Sensitivity Analysis regarding the
Size of the Samples

The sensitivity analysis is an approach to check the stability
of the obtained results using the research method under a
certain conditions. According to the research method pre-
sented in this paper, the variation intensity 𝜆 plays a decisive
role to evaluate the running state of the manufacturing
system in Sections 2.5 and 2.6; namely, the evaluation results
of the running state of the manufacturing system depend
on the variation intensity 𝜆. Therefore, based on the raw
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Figure 24: The 2000 simulation datasets obeying the normal
distribution.

intrinsic data sequence X, the value of the variation intensity
𝜆 can be obtained according to the grey bootstrap method,
the maximum entropy principle, and counting. Then, for
the large research sample and the small research sample,
the reliability degree 𝑟 of achieving running quality, the
intersection area 𝐴(𝑇) of the probability density functions,
and the variation probability 𝑃

𝐵
(𝑇) can be computed with

the aid of the variation intensity 𝜆 and Poisson process, so
as to analyze the sensitivity degree of the research method
proposed regarding the size of the samples, which can testify
that the research method proposed in this paper is suitable
for the research of small sample data.

Suppose that the mathematical expectation 𝐸 = 0mm
and the standard deviation 𝑠 = 0.01mm are the known
parameters, and 2000 simulation datasets obeying the nor-
mal distribution are generated by Monte Carlo simulation
method to analyze the sensitivity of the research method
proposed with regard to the size of the samples, as shown in
Figure 24.

4.1.The Analysis of the Large Sample. The former 200 simula-
tion datasets in Figure 24, namely, the large sample data, are
selected as the elements of the raw intrinsic data sequence
X (𝑁 = 200). Based on the raw intrinsic data sequence X,
20000 generated datasets are obtained using the grey boot-
strap method and can constitute an intrinsic generated data
sequence X

𝐺𝐵
(𝐵 = 20000). Based on the intrinsic generated

data sequence X
𝐺𝐵
, the probability density function 𝑓(𝑥) of

the large sample data is obtained using themaximum entropy
principle. Finally, let the confidence level 𝑃 = 95%, and the
confidence interval of the large sample data is obtained that
[𝑋L, 𝑋U] = [−0.01614mm, 0.0215mm]. And the latter 1800
simulation datasets in Figure 24 are selected as the elements
of the inspection data sequence X

𝐴
(𝑆 = 1800). Due to 𝑆 =

1800, let X
𝐺𝐴
= X
𝐴
and 𝐴 = 𝑆. According to (26), (28), and

(29), it is obtained that there are 57 datasets within X
𝐺𝐴

but
outside the confidence interval [−0.01614mm, 0.0215mm] by
counting. Hence, the variation intensity 𝜆large of the large
sample data is calculated that 𝜆large = 57/1800 = 0.0316667.
The reliability function 𝑅(𝑡) of achieving running quality of
the large research sample is obtained by Poisson process with
zero-failure probability. Then let 𝑡 = 1; the reliability degree
𝑟large of achieving running quality of the large research sample

under themoment 𝑡 = 1 is obtained according to (31); namely,
𝑟large = 0.968829471.

4.2. The Analysis of the Small Sample. The former 8 simula-
tion datasets in Figure 24, namely, the small sample data, are
selected as the elements of the raw intrinsic data sequence
X (𝑁 = 8). Based on the raw intrinsic data sequence X,
20000 generated datasets are obtained using the grey boot-
strap method and can constitute an intrinsic generated data
sequence X

𝐺𝐵
(𝐵 = 20000). Based on the intrinsic generated

data sequence X
𝐺𝐵
, the probability density function 𝑓(𝑥) of

the small sample data is obtained using themaximumentropy
principle. Finally, let the confidence level 𝑃 = 95%; the
confidence interval of the small sample data is obtained that
[𝑋L, 𝑋U] = [−0.01889mm, 0.02003mm]. And the latter 1992
simulation datasets in Figure 24 are selected as the elements
of the inspection data sequence X

𝐴
(𝑆 = 1992). Due to 𝑆 =

1992, let X
𝐺𝐴
= X
𝐴
and 𝐴 = 𝑆. According to (26), (28), and

(29), it is obtained that there are 63 datasets within X
𝐺𝐴

but
outside the confidence interval [−0.01889mm, 0.02003mm]
by counting. Thus, the variation intensity 𝜆small of the small
sample data is computed that 𝜆small = 63/1992 = 0.0316265.
The reliability function 𝑅(𝑡) of achieving running quality of
the small research sample is obtained by Poisson process with
zero-failure probability. Then let 𝑡 = 1; the reliability degree
𝑟small of achieving running quality of the small research
sample under themoment 𝑡 = 1 is obtained according to (31);
namely, 𝑟small = 0.968868381.

4.3. The Sensitivity Analysis of Large and Small Samples. In
order to visually judge the sensitivity degree of the research
method proposed with respect to the size of the samples,
it is necessary to solve the intersection area 𝐴(𝑇) of the
probability density functions of the large sample data and the
small sample data, as well as the variation probability 𝑃

𝐵
(𝑇)

of the small sample data relative to the large sample data.
Let the probability density function of the large sample

data be equal to the probability density function of the small
sample data, by means of 𝜆large and 𝜆small, and the evaluation
results are solved according to (32), (35), and (36). Specific
results are as follows: the abscissa value 𝑇 of the intersection
point of the probability density functions of the large sample
data and the small sample data is 𝑇 = 31.598988858; the
intersection area 𝐴(𝑇) of the probability density functions of
the large sample data and the small sample data is 𝐴(𝑇) =
0.9995331437; the variation probability 𝑃

𝐵
(𝑇) of the small

sample data relative to the large sample data is 𝑃
𝐵
(𝑇) =

0.0004668563.
Nowon the basis of the research results of the large sample

data, the comparative analysis of the research results of the
large sample data and the small sample data can be put into
effect to compute the relative error of the research results of
them. In the light of the relative error of the research results
of the large sample data and the small sample data, it is easy to
judge that the sensitivity degree of the research method was
proposed with respect to the large and small samples, which
can realize the sensitivity analysis of the research method
proposed regarding the size of the samples.
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The related results of the comparative analysis are as
follows: with the help of the analysis results of the large
sample data, the variation intensity 𝜆small is only decreased
by 0.1268242% relative to 𝜆large; the reliability degree 𝑟small
is increased by 0.0040162% relative to 𝑟large. What is more,
since the intersection area 𝐴(𝑇) = 0.9995331437 and the
variation probability 𝑃

𝐵
(𝑇) = 0.0004668563, it can be

inferred that the relative error of the intersection area of
the raw intrinsic data sequence with large sample and the
intersection area of the raw intrinsic data sequence with large
sample is only 0.04668563%; and the relative error of the
variation probability of the raw intrinsic data sequence with
large sample and the variation probability of the raw intrinsic
data sequence with large sample is only 0.04668563%. By
the above comparative analysis results, the computed results
obtained by the research method proposed in the paper have
no essential change and have a good robustness.

The sensitivity analysis regarding the size of the samples
shows that the size of the samples has no effect on the evalu-
ation results of the research object. The sensitivity degree of
the researchmethod proposed in this paperwith regard to the
size of the samples is small, which is suffice to show that the
research method proposed can solve the problem with small
sample of the running state of themanufacturing system, and
the evaluation results are trustworthy.

5. Discussions

5.1. Discussions on Evaluation for the Running State. Accord-
ing to the results of the former 3 cases, the possibility of
achieving high quality running state for the manufacturing
system is small in I region. The possibility of achieving low
quality running state for the manufacturing system is larger
in III region. In II region, the running quality of achieving
the running state is in line with the possibility of achieving
the quality of the running state, and both are moderate in II
region. It shows that II region is a region of the good running
state for the manufacturing system.

For the former 3 cases, the relationship between the
confidence level 𝑃 and the reliability degree 𝑟 is drawn as
shown in Figure 25. In Figure 25, it can be seen that three
representative values of the confidence level 𝑃 are chosen
from Figure 25, namely, 0.9, 0.95, and 0.99, respectively,
which can meet the reliability degree 𝑟 ∈ [0.7072, 0.9233]
in II region. Then it is performed to determine the best
value from three representative values with respect to the
confidence level by hypothetical testing, so as to discover the
best choice of the running state of the manufacturing system
in II region. According to the statistics, the significant levels
corresponding to the three confidence levels are 0.1, 0.05,
and 0.01, respectively. According to the significant hypothesis
testing principle, an assumption that II region is the region
to keep the good running state of the manufacturing system
is given and the significant level of the assumption can
reach 0.1∼0.01. It shows that the research results are signif-
icant, which are of theoretical significance and application
value.

It can be found from the relationship of the reliability
degree and the extended uncertainty that if the confidence

Case 1
Case 2
Case 3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
P

0.4

0.6

0.8

1

r

Figure 25: The relationship between the confidence level 𝑃 and the
reliability degree 𝑟.

level 𝑃 = 0.9, the expanded uncertainty is small but the
reliability degree 𝑟 is about 0.75 and 0.75 is small and not
desirable. If 𝑃 increases from 0.9 to 0.95 and the reliability
degree 𝑟 is about 0.8 and its value increases by 6.7%,
meanwhile the extended uncertainty increases by 3.4%∼9.4%.
If 𝑃 increases from 0.9 to 0.99 and the reliability degree 𝑟 is
about 0.85 and its value increases by 13.3%, meanwhile the
extended uncertainty increases by 20% ∼60%. It is easy to see
that the confidence level𝑃 = 0.95 is the best point in II region.
The expanded uncertainty is moderate and the reliability
degree 𝑟 is about 0.8 under the confidence level 𝑃 = 0.95.
Therefore, the confidence level 𝑃 = 0.95 is the best choice of
the running state of the manufacturing system; namely, the
consistency of the running quality of a manufacturing system
and the possibility of achieving the running quality are the
best.

The reliability evaluation for the running quality of the
manufacturing system includes some elements, such as the
confidence level, the confidence interval, 2 times the
expanded uncertainty, and the reliability degree of achieving
running quality with respect to the workpiece quality.

From the above discussion, the best running state of the
manufacturing system in 3 cases can be evaluated, as follows:

(1) For Case 1, the running quality of the manufactur-
ing system with the normal distribution is that the
reliability degree 𝑟 of achieving running quality is
0.8468 under the confidence level 𝑃 = 0.95 and the
confidence interval of the processing quality 𝑄

1
is

[𝑋L, 𝑋U] = [−15.75 𝜇m, 12.78 𝜇m] and 2 times the
expanded uncertainty of the processing quality 𝑄

1
is

2𝑈 = 28.53 𝜇m.
(2) For Case 2, the running quality of the manufacturing

system with the Rayleigh distribution is that the
reliability degree 𝑟 of achieving running quality is
0.7552 under the confidence level 𝑃 = 0.95 and the
confidence interval of the processing quality 𝑄

2
is

[𝑋L, 𝑋U] = [12.23 𝜇m, 28.63 𝜇m] and 2 times the
expanded uncertainty of the processing quality 𝑄

2
is

2𝑈 = 16.4 𝜇m.
(3) For Case 3, the running quality of the rolling bear-

ing inner raceway grinding machine with unknown
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probability distribution is that the reliability degree
𝑟 of achieving running quality is 0.7659 under the
confidence level 𝑃 = 0.95 and the confidence inter-
val of the inner raceway roundness is [𝑋L, 𝑋U] =
[0.65 𝜇m, 1.38 𝜇m] and 2 times the expanded uncer-
tainty of the inner raceway roundness is 2𝑈 =

0.73 𝜇m.

5.2. Discussions on Evaluation for the Running State Variation
Process. Based on the discussion results of the above 3 cases,
Cases 4 and 5 are under the best confidence level 𝑃 =

95%. The confidence interval is obtained that [𝑋L, 𝑋U] =
[0.0099𝜇m, 0.0121𝜇m] and 2 times the expanded uncertainty
2𝑈 is obtained that 2𝑈 = 0.0031 𝜇m for the running state
of the manufacturing system. Based on the above researches,
there are two evaluations of the running state variation
process of the manufacturing system with no variation and
variation.

In order to evaluate the running state variation process
in real time, the reliability evaluation for the running quality
of the manufacturing system includes 3 elements, such
as the reliability degree of achieving running quality, the
intersection area 𝐴(𝑇), and the variation probability 𝑃

𝐵
(𝑇)

of the probability density function of each inspection data
sequence relative to the intrinsic data sequence.

In Case 4, the running quality of the running state
variation process of the manufacturing system is that when
𝑡 = 1, the value range allowed for the reliability degree 𝑟
of achieving running quality is 𝑟 ∈ (0.6581, 0.7760). When
𝑡 ∈ [0, +∞), the value range allowed for the intersection
areais 𝐴(𝑇) ∈ (0.3117, 0.4259), and the value range allowed
for the variation probability is 𝑃

𝐵
(𝑇) ∈ (0.5741, 0.6883).

In Case 5, the running quality of the running state
variation process of the manufacturing system is that when
𝑡 = 1, the value range allowed for the reliability degree 𝑟
of achieving running quality is 𝑟 ∈ (0.3731, 0.6118). When
𝑡 ∈ [0, +∞), the value range allowed for the intersection area
is 𝐴(𝑇) ∈ (0.1728, 0.2805), and the value range allowed for
the variation probability is 𝑃

𝐵
(𝑇) ∈ (0.7185, 0.8272).

By comparing the research results of Cases 4 and 5, based
on Case 4, the reliable running quality of the running state
variation process of the manufacturing system with variation
can be defined as follows: when 𝑡 = 1, the value range allowed
for the reliability degree 𝑟 of achieving running quality is 𝑟 >
0.65, and when 𝑡 ∈ [0, +∞), the value range allowed for the
intersection areais 𝐴(𝑇) > 0.3, and the value range allowed
for the variation probability is 𝑃

𝐵
(𝑇) ≤ 0.7. That is, only if

the 3 elements of the running quality of the manufacturing
system are in the above ranges, the running state variation
process of the manufacturing system is reliable, which can
meet the quality requirements of products.

In Case 5 relative to Case 4, when 𝑡 = 1, the value
range allowed for the reliability degree 𝑟 of achieving running
quality is 𝑟 < 0.65, and when 𝑡 ∈ [0, +∞), the value range
allowed for the intersection area is 𝐴(𝑇) < 0.29, and the
value range allowed for the variation probability is 𝑃

𝐵
(𝑇) >

0.71. At the moment, it means that the variation degree of
the manufacturing system in Case 5 is too large to continue
processing workpieces. It should timely stop manufacturing

production and the manufacturing system should be con-
ducted on inspection, adjustment or maintenance, and so
forth, to ensure the good running state of the manufacturing
system and guarantee the products up to standard.

6. Conclusions

The conclusions of this paper are as follows:
(1) A new evaluationmethod based on poor information

is proposed to evaluate the reliability of the running
state of manufacturing system under the condition of
small sample size with known or unknown probabil-
ity distributions in this paper. In the case of unknown
and known probability distributions, small sample
data obtained by detecting the workpiece quality are
processed using the grey bootstrap theory and the
maximum entropy principle to obtain the variation
intensity of the running state of the manufacturing
system by counting.With the help of Poisson process,
the reliability model is established to realize reliability
evaluation for the running state of the manufacturing
system with no variation and variation. It is aimed
to effectively determine the running quality of the
manufacturing system, so as to ensure the product
quality and reduce manufacturing costs.

(2) The evaluation results of the running state show
that, based on the relationship between 2 times the
expanded uncertainty and the reliability degree, II
region is considered as the best choice of the good
running state of the manufacturing system. Via
hypothesis testing and contrastive analysis of the
results, it is verified that the confidence level 𝑃 = 0.95
is the best point of II region, namely, the best choice of
the running state of the manufacturing system, which
can provide theory basis for reasonable adjustment of
the machine tool.

(3) The evaluation results of the running state variation
process show that, under the best confidence level
𝑃 = 95%, the reliability graphs of the running state of
the manufacturing system can predict the evolution
of the running state of the manufacturing system in
real time. Through the comparison and analysis, the
reliable running quality of the running state variation
process of the manufacturing system with variation
is that the reliability degree 𝑟 of achieving running
quality is 𝑟 > 0.65, the intersection area is𝐴(𝑇) > 0.3,
and the variation probability is𝑃

𝐵
(𝑇) ≤ 0.7.The above

researches are applied to discover the running state
of the manufacturing system bad in time and avoid
heavy economic losses.

(4) The sensitivity analysis regarding the size of the sam-
ples indicates that the size of the research sample does
not affect the evaluation results of the running state
of the manufacturing system by the research method
proposed in the paper.The researchmethod proposed
is feasible to assess the reliability of the running
state of the manufacturing system, which can acquire
favorable evaluation effect.
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