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This paper presents a closed-loop location-inventory-routing problem model considering both quality defect returns and nondefect
returns in e-commerce supply chain system. The objective is to minimize the total cost produced in both forward and reverse
logistics networks. We propose a combined optimization algorithm named hybrid ant colony optimization algorithm (HACO) to
address this model that is an NP-hard problem. Our experimental results show that the proposed HACO is considerably efficient

and effective in solving this model.

1. Introduction

According to eMarketer, worldwide business-to-consumer
(B2C) e-commerce sales reached $1.471 trillion in 2014,
increasing by nearly 20% over 2013 [1]. Customers have grown
accustomed to return unwanted products back to the store for
any reasons. It is reported that the proportion of customer
returns online range from 18% to 74% of original orders
under e-commerce environment [2, 3]; thus enterprises take
various measures to prevent the appearance of quality defects.
However, quality defect is inevitable. So, it is necessary for us
to take into account both quality defect returns and nondefect
returns; we call it mixed quality defect returns (MQDR),
when considering the closed-loop supply chain as a support
system in e-commerce environment.

As a classic discrete dynamics problem, the customer
service level is determined by three important decisions:
facility location decision, inventory decision, and trans-
portation decision [4]. Obviously, facility location, inventory
control, and transportation optimization are highly related.
For example, delivery in small lots and high frequency leads
to reducing the in-inventory cost but increases the additional
transportation cost. In addition, facility location decision

needs to consider inventory decision and distribution deci-
sion. Perl and Sirisoponsilp [5] discuss the interdependence
between the three key elements. Ballou and Masters [6]
provide a schematic representation of the interrelationships
among facility location, inventory control, and transportation
optimization.

In the literature, many papers studied the integration
and coordination of any two of the above three decisions:
location-inventory problem (LIP), location-routing problem
(LRP), and inventory-routing problem (IRP). For reviews on
LIP, readers can refer to Erlebacher and Meller [7], Daskin
et al. [8, 9], and Liao et al. [10]. For LRP, please refer to
Balakrishnan et al. [11], Min et al. [12], and Nagy and Salhi
[13]. Refer to Chan et al. [14], Kleywegt et al. [15], and
Adelman [16] for IRP.

There are few researches about the integration optimiza-
tion of location-inventory-routing problem (LIRP). Some
researchers attempt to carry out research on LIRP [17].
Liu and Lee [18] firstly studied this interesting problem;
they proposed a two-phase heuristic method to solve the
multidepot location-routing problem (MDLRP) considering
inventory optimization. In order to avoid the local optimal
solution, Liu and Lin [19] designed a global optimizing



heuristic method to find the solutions for LIRP. Shen and Qi
[20] presented an algorithm based on Lagrangian relaxation
to minimize the inventory and routing costs in strategic
location models. They focused on the layout phase and used
continuous approximation to get the approximate optimal
routing cost, but the vehicle routing was not optimized in
their models. Javid and Azad [21] presented a novel LIRP
model and proposed heuristic method containing two stages:
constructive stage and improvement stage. Ahmadi-Javid
and Seddighi [22] presented a mixed-integer programming
model and a three-phase heuristic to solve the LIRP with
multisource distribution logistics network. Guerrero et al.
[23] researched the LIRP with deterministic demand and
provided the hybrid algorithm to solve the problem. Zhang
et al. [24] proposed a hybrid metaheuristic solution to LIRP
considering multiple depots and geographically dispersed
customers. Nekooghadirli et al. [25] presented a novel biob-
jective model of LIRP model considering a multiperiod and
multiproduct system. Based on Lagrangian relaxation and a
column generation technique, Guerrero et al. [26] developed
a relax-and-price heuristic to solve ILRP; they proposed
two dependent constraint sets with an exponential nature:
Lagrangian relaxation and a column generation technique.

However, little research has been conducted on the LIRP
considering returns. Li et al. [27] presented the HGSAA
algorithm to solve a LIRP model considering returns under e-
supply chain environment. To be more consistent with reality,
Liu et al. [28] introduced a stochastic demand into LIRP
considering returns in e-commerce and proposed a PPGASA
algorithm as the solving approach.

The above two researches mainly focus on the returns
without quality defect but did not consider the MQDR. In this
paper, we propose a model of closed-loop LIRP with MQDR.
To the best of our knowledge, it is the first time to introduce
the MQDR into LIRP in e-commerce. An effective hybrid
algorithm named hybrid ant colony optimization (HACO) is
provided to solve this model. Results of numerical instances
indicate that HACO outperforms ant colony optimization
(ACO) on optimal solution, iterations, and computing sta-
bility.

The remainder of this paper is organized as follows.
Section 2 presents the mathematical model of LIRP with
MQDR. Section 3 proposes the solution approach named
HACO. Section 4 analyses the parameters of HACO and
shows the results of different experiments. Section 5 gives the
conclusion and future research directions.

2. Model Formulation

As we all know, customers’ return in e-commerce is higher
than traditional commerce. Because of personal dissatisfac-
tion, or a mistaken purchase of the wrong product, some
of the returns are without quality defects. These returns can
reenter into the market after a simple repackaging process
without being recovered [29]. While the other returns result
from quality defects, which need to be sent back to the plant
and be recovered.

In order to meet the needs of MQDR, the merchandise
center (MC) is necessary to deliver normal merchandises
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FIGURE 1: Closed-loop supply chain for a single product.

to the demand points (DPs) of downstream and collect
the returned merchandises. MC integrates the functions of
distribution center and recycling center and provides quality
inspection and repackaging services. Meanwhile the returned
merchandises are collected to MCs. Returned merchandises
without quality defects become resalable normal items after
repackaging treatment at MCs. The plant will recover the
returns with quality defects and bring them to the market
again.

The operation mode of the system is shown in Figure 1.
The closed-loop supply chain in this paper consists of one
plant, multiple MCs, multiple DPs, and a single type of
product with continuous inventory policy under the e-com-
merce environment.

The goal of this study is to decide the quantity and
location of MCs and arrange the vehicle routes and determine
the ordering times on each route. To minimize the total cost of
logistics operations, this problem involves the following three
decisions: (1) location decisions: obtain the optimal number
of MCs and their locations; (2) inventory management:
determine the ordering times on each route; (3) routing
optimization: arrange the vehicles to delivery merchandises
and collect returns.

To benefit from the risk of MQDR, we take assumptions
(1)-(8) from Li et al. [27] into consideration: since the single-
product system is researched in this paper, assumption (1)
is necessary; in the capacitated vehicle routing problem,
assumption (2) should be satisfied [30]; assumption (3) elim-
inates the indeterminacy from the different type of vehicle;
assumption (4) means that each DP is well served by the
only vehicle route [31]; assumption (5) ensures that each route
will return to the same MC after traversing; assumption (6)
follows the early published papers considering uncapacitated
MCs [32]; assumption (7) takes MCs as the distribution
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center and recycling center; assumption (8) is a simplification
of the reality [33].

The returned merchandises without quality defect are
processed and repackaged at MCs, while others will be
shipped back to the plant for reprocessing after a predeter-
mined quantity at the MCs. Assume that the demand at each
retailer is known and let R be the set of candidate MCs. Let S
be the set of DPs and let M be the number of DPs. Let V be
set of vehicles from the MCs to DPs. Let U = R U S. Let the
following notation denote the decisions of the firm:

N,,: ordering times of MC, on routing v.

X : =1, if node j is served by MC, on routing v from

l_]T
node i, or 0 otherwise.
Y, : =1, if node i is assigned to MC, on routing v, or 0
otherwise.

Z,: =1, if MC, is selected as an MC location, or 0
otherwise.

Uj: auxiliary variable avoiding the subtour con-

straints in route k.

According to the aforementioned assumptions, the inven-
tory levels depend on both demand and the quantity of
MQDR. So, during each replenishment cycle, the holding cost
of MCs is Ah Y. ey Y rer Zies((d; + q; + w;)/2N,,)Y;,, where
h is annual inventory holding per unit merchandises, d; is
mean (daily) demand for DP;, and g; and wj; are quantity of
merchandises without and with quality defect returned by
DP, per day.

In order to exactly describe the logistic distribution costs.
Let ¢, be the transportation costs per unit product from
plan to MC,. Let [ be the delivering cost per unit distance.
Let s;; be the distance from node i to node j. And let
A be the working days per year. The total transportation
costs from plant to DPs through MCs can be expressed,
respectively, as AY oy Y er Dies &(d; — g; + w;)Y,. and

M ZVEV ZrER ZlES Z]EU ij zXz]r
So the cost of forward distribution is

ZfrZr + Z Zbrer + Z Zeer

reR veV reR veV reR
+Ahz Z Z(d +ql +w1)
veV reR ieS (1)
+AY D Yo (di- g+ w)Yy
veV reR ieS

+MZ ZZZS’J iXijpo

veV reRie§ jeU

where e, denote the fixed cost of dispatching vehicles per
time at MC,, f, denote the fixed (annual) administrative and
construction cost of MC,, and b, denote the ordering cost per
unit product from plant to MC,..

We let k to be the returning cost per unit of merchandise
from DPs to MCs, so the total reverse transportation costs
from DPs back to MCs are

MY Dy (g+w)Y. )

veV reR ie€S

The cost of deal with mixed quality defects is

DIPWWELETIINIYACELERNE)

veV reR ieS veV reR ieS

We adopt a, as the inspecting cost per unit for the
returned product and p, as the repackaging cost of unit
returned merchandise without quality problem at MCs.

In summary, the model is formulated as follows:

minZ = ZfrZ, + Z Zbrer + Z Ze,Nﬁ,

reR veV reR veV reR
d;
+Mlz ZZ( +q1+wz)
veV reR ieS
+AZ Z Zcr (di—q;+w)Y,
veV reR ieS

FMY DY ) sdiX, (4)

veV reRie§ jeU

A Y Yt

veV reR ieS

+Akz ZZ(%wai)Yer

veV reR ie€S

+ AZ Z Zar (g + w;) sY;,

veV reR ieS

It is easy to find that the objective function (4) is convex
in N,,. We can simplify the objective function by solving
N,,. Consequently, the optimization solution of N,, can be
obtained by taking the derivative of the function with respect

to N,,; the result is as follows:

N' = Yies M (d; +g; + w;) Ylvr (5)
2(e, + f,)

The optimization problem (4) given a known N, can now
be written as

min Z = \]Mh Z z Z(fr +e,)(d;+q;+w) Y},

reRveV ieS

+/\Z chr(di_qi-'—wi)Y;

veV reR i€S

AT TS s,

veV reRieU jeU

+AkY Y D (g +w)Yy

veV reR i€S

+AY Y D pavy

veV reR i€S

+/\z Zzar(qi+wi)1/}:+2frzr

veV reR i€S reR

(6)
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s.t. Z Z,>1, reR 7
reR
ZZYI-‘;SZ,, reR (8)
veV ie§
ZdiYiV,Sg, reR, veV )
i€S
Z Y, =1, i€S$ (10)
veV reR
veV reR ieU
Y Xp, - Y Xi, =0, keS, reR veV 12)
ieU jeu

Ulk - U]k + Mxljk <M - 1,

- Yz; + Z (X;/kr + X;:jr) <1

I,jeS, keR (13)

keU
i€S, jreR veV
(14)
Z,={0,1}, reR (15)
Y, ={0,1}, ieS, reR veV (16)

X =101}, i€eU, jeS reR veV. (17)

The objective function (6) is to minimize the total cost;
(7) ensure the selected MC is not empty; (8) ensure each DP
is traversed by a unique vehicle which belongs to a certain
MG; (9) ensure the amount of each delivery from MC on
each route must be within vehicle capacity; (10) ensure that
each route has only one vehicle; (11) ensure each DP must be
followed by exactly one note; (12) ensure every DP node of the
system will be serviced before it gives services to the others;
(13) ensure the subtour is eliminated. Equation (14) ensures
that each DP is assigned to an MC when there exists a route
that starts from the MC passing through the DP. Equations
(15)-(17) ensure the nonnegativity and integrality of decision
variables.

3. Solution Approach

Like the VRP, the closed-loop LIRP is also an NP-hard
problem, since it includes the VRP and is more complex than
VRP. Generally speaking, there does not exist a complete,
efficient, and accurate analytic algorithm to address NP-hard
problems; ant colony optimization (ACO) has been proved
very successful and widely applied to solve the static and
dynamic problems as an EC algorithm [34]. However, ACO
does not distinguish ant behavior results. The pheromone
concentration will distribute in every direction for the iter-
ation. Therefore, this leads to low searching efficiency. The
algorithm may get caught in local optimization if we do not
take preventive measures. On the other hand, ABC provides
an effective institution to find the global optimal solution
from the trapping of local optimal solution [35]. So, in this
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study, we present a hybrid ant colony optimization algorithm
based on the combination of ACO and ABC to solve the above
LIRP model.

3.1. Initialize Solution. Since the natural number is an
efficient coding method for these problems, the sequence
of solutions is composed of candidate MCs (1,2,...,R)
and DPs, which are indicated by (R + 1,...,R + §).
The candidate solution of our proposed model will be
described well by those natural number sequences. As an
example, Figure 1 fully interpreted the perceptions of our
method, which refers to the individual feasible solution:
{1 813539141510 11 6 4 7 16 17 12}.

In the HACO, the moving strategy of the ant in node i
is depending on the pseudorandom proportional rule. The
rule indicates that the ant has both exploiting and exploration
ability, which means the ant is guided by the pheromone
trails as well as the heuristic information. In this case, the
ant has a higher degree of exploring unknown knowledge.
The connected function of the pheromone values 7;; and the
heuristic values #;; is shown as

a B
k [Tij] [’1;‘]'] 5 j € allow (k)

J X keallow(k) (7] (1]
0 otherwise,

(18)

where 7;; is the density of pheromone remaining on the
edge (i, j), n; is the inverse value of distance between
node i and node j, « and f are user-defined parameters
for corresponding pheromone concentration and heuristic
information, and allow(k) is the remaining nodes to be visited
by ant k.

3.2. The ABC Phase. In order to improve the performance
of global searching of our algorithm, the paper applied the
scout bee searching phase into the ACO. Scout bees are free
bees used for finding a new better solution from the neighbor
known solution. As soon as a scout bee finds a new solution,
she turns into an employed bee. If there is no improvement in
the quality of solution, the bee will abandon that source and
continue to search for another new solution.
The searching function of scout bees is as
%] = Xpax — rand [0, 1] * (xmax - xf) . (19)
To meet the requirements for coding sequence type,
we described two operations to complete scouts searching
process, namely, random array reverse (RAR) and random
swap (RS).

Step 1. Set the initial number of scout bee n and probability
Po-

Step 2. Generate two positions randomly named a and b, for
eacha < b.

Step 3. Get a random probability 0 < p < 1;if p > p, turn to
Step 4; otherwise, turn to Step 5.
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Procedure: ABC

Output: the better sequence
Begin
Take n and p,
whilei < n
p =rand[0, 1]
takea < b
if p> p,

else

Output: the better sequence
End

Input: the initial sequence, the number of scout bee n and p,

Reverse the array between position a and b

Swap the position of a and b

PseupoCODE 1: Pseudocode of an ABC framework.

Step 4. Reverse the array between positions a and b as a new
solution.

Step 5. Swap the position of a and b as a new solution.
Step 6. Calculate the cost of new solution.

Step 7. Keep the best solution to the next iteration and return
to Step 2.

The pseudocodes of ABC are shown in Pseudocode 1.

3.3. Global Pheromone Trail Update. The global pheromone
updating rule is triggered at the end of iteration to reward
tours that are in line with the objective of impedance mini-
mization. This strategy is applied to reinforce the pheromone
density on the sets of edges belonging to the inspect tour and
to increase the likelihood that this tour will also be selected
by other ant agents. The rule of global pheromone updating
is given by

Ti=(1-p)7; + pATZS i,jeT", (20)
where

L
bs — i, j € global best tour
AT = 4 Ly (21)

1] )
0 otherwise.

Lisa constant initial pheromone. L, is the cost of the best
of all the tours produced by all m agents from the beginning
of the iteration. p € (0,1] is the pheromone evaporation
coeflicient. To improve the pheromone trail quality, a part of
the worst result is removed.

3.4. Local Pheromone Trail Update. In addition to the global
pheromone trail updating rule, the selected ants will update
the local pheromone trail in the process of passing an
arc(i, j). It is opposite to the normal pheromone trail updating
rule that increases the pheromone density while ants cross
over arcs. The purpose of using the local pheromone trail

update rule is to prevent stagnation behavior because the arc
becomes less desirable for the following ants. The rule of local
pheromone updating is as follows:

Tij = 1-% T+ &y, (22)

where 7, is a constant at the beginning of pheromone trails
and & is a user-defined coefficient that lowers the pheromone
density of arcs traversed by the intelligent ants.

3.5. Algorithm Flow
Step 1. Get the formulas for solving N,..

Step 2. Set the initial parameters for the model: set of
candidate MCs R, set of DPs S, set of vehicles V, inspecting
cost a,, ordering cost b,, transportation costs c,, daily demand
d;, dispatching vehicles cost e,, fixed (annual) administrative
and construction cost f,, vehicle capacity g, holding cost A,
and returning cost k.

Step 3. Parameter setting for HACO is as follows: ants num-
ber m, evolution terminate iteration M, pheromone concen-
tration impact factor «, heuristic information pheromones
impact factor f3, evaporation rate of the pheromone p,
constant initial pheromone L, and mutation probability array
reverse p.

Step 4. Using unit matrix 7;, calculate the probability
o B
(7] [15]

ij Y keallow(k) (7] [
0 otherwise.

j € allow (k) (23)

Step 5. Ant solutions generation module: each ant will gener-
ate a feasible solution after traversing the DPs.

Step 6. Best ant solution module: after calculating each ant’s
solution, select the best solution which is known as the
iteration best to compare with the global best. Keep the next
best solution as the next global best.
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Procedure: HACO for LIRP

Begin
Take max ¢
while maxt < M
for 1tom
Foraging Behavior of Ants
7;=(1- )1 + 81,
Calculate individual total cost Tcost(#1)
end
Tcost_best = min(Tcost(m))
for 1to m/2 Neighbor range
Scout bee searching the neighbor range
a = round(rand)
b = round(rand)
makea < b
ifp<0.5

else
exchange(a, b)

end
if Tcost(m/2) < Tcost_best
Tcost_best = Tcost(m/2)

end
end
for1tom
if Tcost(m) > Tcost_ave
forlton
7;=(1-p)r; + pATZS
end
end
end
end
Output: the best solution
End

Input: coordinates of nodes, demands and returns of DPs, MC parameters, vehicle capacity, HACO parameters
Output: the best solution (include routes, MCs locations, order times and order size)

vech = [vech(1:a - 1) vech(b: — 1:a) vech((b + 1):end)];

PSEUDOCODE 2: Pseudocode of the proposed HACO.

Step 7. Scout bee module: random selection probability 0 <
p < L;if p > p,, turn to random array reverse operation.
Otherwise, turn to random swap operation.

Step 8. Pheromone updating module: update the information
pheromones as follows:

(24)
Tij = (1 - E) Tl] + fTO'

Step 9. Termination module: if the parent optimal solution
and offspring optimal solution are equal during continuous
M generations, stop the algorithm. Otherwise, return to Step
3 after M increments.

Step 10. Output.

The pseudocodes of HACO are shown in Pseudocode 2.

4. Computational Experiments and
Results Analysis

In this section, numerical simulations are given to illustrate
the performance of HACO compared with the traditional
ACO. Both algorithms in this paper are compiled by Matlab
R2014a and run on a computer with 8 GB main memory and
3.6 GHZ CPU. All instances come from the LRP database in
University of Aveiro [36].

4.1. Parameters Discussion. Parameter values selection is
crucial to the efficiency of algorithms. An example named
Gaskell 67-22 x 5 from the database, which contains the nodes
coordinate and the DPs demand, is used to determine the
optimal parameter. Gaskell 67 is the instance’s name and 22 x
5 means 5 candidate MCs for 22 DPs. The inventory holding
cost h = 2, the vehicle capacity g = 500, transportation
costs ¢, = 2, returning cost k = 2, working days A = 300,
and the delivering cost per unit distance I = 0.7. The other
parameters of the instance are as follows: a, ~ U(16,20);
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TABLE 1: Results with different 1 (cost: million CNY; iterations: times).
m Cost Iterations
Mean Std. dev. CV. Mean Std. dew. CV.
30 ACO 32.4 0.96 0.0295 168.6 30.64 0.1817
HACO 33.46 112 0.0336 125.72 29.02 0.2308
40 ACO 32.13 0.96 0.03 173.48 32.95 0.1899
HACO 33.37 0.93 0.0277 117.82 15.4 0.1307
50 ACO 32.22 0.74 0.0229 157.19 40.58 0.2581
HACO 32.96 0.96 0.0292 119.26 17.47 0.1465
60 ACO 32.21 0.67 0.0208 158.12 39.39 0.2491
HACO 32.72 0.86 0.0263 121.86 17.37 0.1425
70 ACO 31.96 0.71 0.0223 162.88 32.48 0.1994
HACO 32.77 1.13 0.0344 121.06 23.7 0.1958
a=1,f=5p=0.1L=150,and p, = 0.5.
TABLE 2: Results with different « (cost: million CNY; iterations: times).
o Cost Iterations
Mean Std. dev. CV. Mean Std. dew. CV.
0.25 ACO 31.92 0.54 0.0168 189.3 73.28 0.3871
HACO 31.63 0.79 0.025 189.38 69.64 0.3677
05 ACO 31.85 0.78 0.0246 181.86 57.34 0.3153
HACO 31.52 0.91 0.029 182.24 63.94 0.3509
1 ACO 32.22 0.74 0.0229 157.19 40.58 0.2581
HACO 33.06 1.04 0.0315 123.28 14.02 0.1137
125 ACO 32.13 0.79 0.0247 154.24 30.12 0.1953
HACO 33.11 1.09 0.0331 115.78 11.61 0.1002
15 ACO 32.14 0.9 0.0279 154.96 25.68 0.1658
HACO 32.97 111 0.0335 116.2 10.23 0.0881
m =50,8=5,p=0.1,L =150, and p, = 0.5.
TaBLE 3: Results with different 8 (cost: million CNY; iterations: times).
B Cost Iterations
Mean Std. dev. CV. Mean Std. dev. CV.
3 ACO 31.91 0.91 0.0286 192.78 42.08 0.2183
HACO 33.06 1.19 0.0359 148.8 54.84 0.3686
4 ACO 32.19 0.8 0.0249 170.2 41.89 0.2461
HACO 33.05 1.14 0.0344 126 42.17 0.3347
5 ACO 32.22 0.74 0.0229 157.19 40.58 0.2581
HACO 32.96 0.96 0.0292 119.26 17.47 0.1465
6 ACO 32.1 0.77 0.0241 159.38 31.99 0.2007
HACO 33.12 119 0.0358 119.86 22.4 0.1869
7 ACO 32.42 0.84 0.0258 154.69 23.92 0.1546
HACO 33.25 1.07 0.0322 111.68 8.62 0.0772

a=1,m=50,p=0.1,L=150,and py = 0.5.

b, ~ U(16,20); ¢, ~ U(6,10); e, ~ U(21,25); q; ~ U(12,25);
and w; ~ U(2,5).

The parameters of algorithm are initialized as follows:
ant’s number m = 50, evolution terminate iteration M = 100,
pheromone concentration impact factor « = 1, heuristic
information pheromones impact factor 8 = 5, evaporation
rate of the pheromone p = 0.1, constant L = 150, mutation
probability array reverse p, = 0.5.

We run the program 50 times on the same computer. The
performance of ACO and HACO varies with the different
values of the parameters, which are shown in Tables 1-6.
In these tables, the symbol CV. means the coefficient of
variation.

Tables 1-6 represent the parameters’ effect on the objec-
tive function values. The data was normalized through two
dimensions, that is, cost and iterations, and three indicators,
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TABLE 4: Results with different p (cost: million CNY; iterations: number).
Cost Iterations
P Mean Std. dev. CV. Mean Std. dev. CV.
01 ACO 32.22 0.74 0.0229 15719 40.58 0.2581
HACO 32.12 0.93 0.0289 138.4 21.02 0.1518
0.2 ACO 32.38 0.87 0.0269 133.27 20.57 0.1543
HACO 32.7 0.97 0.0296 124.12 13.01 0.1048
03 ACO 32.65 0.94 0.0289 132.8 31.09 0.2341
HACO 32.75 1.45 0.0443 122.1 13.09 0.1072
0.4 ACO 33.03 0.94 0.0284 131.86 28.76 0.2181
HACO 33.31 1.1 0.033 122.98 20.2 0.1643
05 ACO 33.41 0.87 0.0261 157.27 67.72 0.4306
HACO 33.55 1.08 0.0323 116.24 15.44 0.1328
a=1,m=50,=5L=150,and p, = 0.5.
TABLE 5: Results with different L (cost: million CNY; iterations: times).
I Cost Iterations
Mean Std. dev. CV. Mean Std. dew. CV.
50 ACO 31.99 0.72 0.0224 159.72 33.39 0.21
HACO 33.07 1.22 0.0369 123.7 25.96 0.2098
100 ACO 31.9 0.67 0.0209 159.8 30.73 0.19
HACO 32.88 1.09 0.033 121.63 18.91 0.1555
150 ACO 32.22 0.74 0.0229 157.19 40.58 0.2581
HACO 33.02 1.05 0.0319 121.14 23.2 0.1915
200 ACO 32.11 0.8 0.0251 167.66 38.61 0.23
HACO 32.9 112 0.0339 120.8 22.05 0.1825
250 ACO 32.08 0.87 0.0271 164.08 34.16 0.21
HACO 331 1.09 0.033 121.87 28.95 0.2376
a=1,m=50,B=5p=0.1,and p, = 0.5.
TABLE 6: Results with different p, (cost: million CNY; iterations: times).
Cost Iterations
Po Mean Std. dev. CV. Mean Std. dev. CV.
0.3 33.07 1.22 0.0369 123.70 25.96 0.2098
0.4 32.88 1.09 0.0330 121.63 18.91 0.1555
0.5 33.02 1.05 0.0319 121.14 23.20 0.1915
0.6 32.90 1.12 0.0339 120.80 22.05 0.1825
0.7 33.10 1.09 0.0330 121.87 28.95 0.2376

a=1,m=50,B=5p=0.1,and L = 150.

that is, mean, standard deviation, and coeflicient of variation.
Actually, in order to find the minimal cost, we usually take
the parameter values, where the cost is lower and more stable.
From the discussion, we found that HACO reaches the best
performance when m = 60, « = 0.5, 5 = 5, p = 0.1, L = 100,
and p, = 0.4, while ACO reaches the best performance when
m=70,=0.5,5=3,p=0.1,and L = 100.

4.2. Computational Experiment. To get a reliable conclusion,
we run another 50 times on the same computer with the
best parameter values in Gaskell 67-22 x 5. One of the best

solutions of objective function in the 50 experiments of
HACO is 30.2 million CNY. Table 7 shows the solution. MCs
were established at MC1, MC2, and MC5 with five vehicles
distribution routes. Figure 2 shows topological structure of
the closed-loop supply chain.

Figure 3 shows their trend of optimal objective function
values along with iterations. The fluctuation curves of optimal
objective function value are varied by different algorithm,
which are shown in Figures 4(a) and 4(b).

As shown in Figure 3, the cost and iterations of HACO are
lower than ACO; and in Figure 4, the range and mean value of
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TABLE 7: The solution of Gaskell 67-22 x 5.

Mmc Routing Routing Qrder
number times
MCl V1 1-12-13-9—-10—-26—1 17
V2 1-16—>15—-18—>14—1 18
MC2 V3 2523524527 —>525-517 > 2 37
MC5 V4 5-522—-520-21>8—-19—-5 24
V5 5-57—>6—>11->5 18
280
270 + R
260 + J
250 +
240 + 4
= 230 - R
220 ¢ R
210 ¢ R
200 i
19 | 1
180 : : : : : =
200 220 240 260 280 300 320 340
X
o MC
o DP

FIGURE 2: Topological structure of the network.

the minimum cost of HACO are also lower than ACO, which
both imply that HACO is more efficient than ACO in solving
the LIRP.

4.3. Extended Experiments. In this section, a series of
instances are given to show that HACO is more efficient and
stable than classical software and ACO. In order to ensure the
demands of DPs are not more than the vehicle capacity, we
need to enumerate some instances. In this paper, the daily
demands are set as 1/10 of corresponding demands of the
database.

As we know, Lingo is a representative classical optimiza-
tion software tool. Thus we used Lingo 11.0 to solve the
problem by using a small-sized instance named Peal 183-12
x 2 and two medium-sized instance named Gaskell 67-22 x 5
and Gaskell 67-36 x 5; the results are shown in Table 8.

Each instance was run 50 times by HACO and ACO with
their optimized parameters values, respectively; the results
are shown in Tables 9 and 10.

4.4. Result Analysis. According to Table 8, we found that
(1) for the small-sized instance, HACO can obtain better
result than Lingo within less time and (2) for medium-sized
instances, Lingo cannot get the global optimization within 1
hour, while HACO can solve the problem in a short time.
Observe, from Tables 9 and 10, that HACO is more
efficient than ACO for the following reasons. (1) The cost

x107

'
o

Objective function value
N wow
o W o R O o
:
\

50 100 150 200 250

Iterations

(==}

— ACO
— HACO

FIGURE 3: Trends of objective function value.

x107
3~35 T T T T T T T T T

33+
325 ¢
32 ¢
3.15
3.1+
3.05

0 5 10 15 20 25 30 35 40 45 50
—— Min cost
—— Mean

(a) ACO

x107
3.35 : : : : : : : : :

s /\/\ o
R VVVW

32t /\ /\/\ /WW f\/\
N IR
0 5 10 15 20 25 30 35 40 45 50

—— Min cost
—— Mean

(b) HACO

FIGURE 4: The fluctuation curve of optimal objective function value.

of HACO is significantly lower than ACO (p < 0.05); (2)
the difference of the number of iteration between HACO and
ACO is not significant (p > 0.05); (3) HACO is more stable
than ACO as the coefficient of variation (CV.) is lower. To
sum up, our algorithm reduces the cost with the same number
of iterations compared with ACO.

By improving pheromone updates and bee colony search-
ing, we improve the solution quality of the algorithm and
make it useful as a guide for the ant searching process.
Observed from the results of numerical simulations, HACO
can get better result with a fewer number of iterations. Hence,



10

Discrete Dynamics in Nature and Society

TaBLE 8: Comparisons between HACO and Lingo.

Instance name

Perl 183-12 x 2

Gaskell 67-22 x 5 Gaskell 67-36 x 5

CPU time Cost CPU time Cost CPU time Cost
Lingo 523s 715392 >1 hour \ >1 hour \
HACO 24.5s 709152 44s 32691202 99s 31550446
TAaBLE 9: Optimal objective function values of two algorithms (CNY).
Instance name Algorithm Mean Std. dev. CV. t value Signiﬁc:ance test
p value (sig. I-tailed)
Per] 183-12 x 2 ACO 7113471 6979.11 0.0098 16838 0.048
HACO 7092379 5454.48 0.0077
Gaskell 67-22 x 5 ACO 31929818.3 627210.66 0.0196 L7118 0.045
HACO 31718084.1 609606.04 0.0192
Gaskell 67-36 x 5 ACO 3288921.3 43585.25 0.0133 16602 0.050
HACO 3275052 39868.81 0.0122
Perl 183-55 x 15 ACO 285145.3 3779.15 0.0133 1.8391 0.034
HACO 283831.6 3351.00 0.0118
Christofides 69-75 x 10 ACO 419695.8 4948.15 0.0118 2.5020 0.007
HACO 417298.6 4627.32 0.0111
Per] 183-85 x 7 ACO 486011.0 4503.39 0.0093 1.8080 0.037
HACO 484424.1 4270.44 0.0088
Christofides 69-100 x 10 ACO 4582356 6387.00 0.0139 1.6796 0.048
HACO 456441.6 5317.70 0.0117
TABLE 10: Iterations of two algorithms (times).
Instance name Algorithm Mean Std. dev. CV. t value Signiﬁc?nce t?St
p value (sig. I-tailed)
Per] 183-12 X 2 ACO 193.32 78.70 0.4071 0.6323 0.264
HACO 183.90 70.04 0.3808
Gaskell 67-22 x 5 ACO 134 86.36 04513 0.7831 0.218
HACO 180.70 43.32 0.2397
Gaskell 67-36 x 5 ACO 254.44 76.84 0.3020 0.2012 0.421
HACO 251.84 49.42 0.1962
Perl 183-55 15 ACO AL7 7729 03197 01000 0.460
HACO 240.46 4733 0.1968
Christofides 69-75 x 10 ACO 24524 7910 0.3226 1.2340 0.110
HACO 229.92 62.30 0.2710
Perl 183-85 x 7 ACO 24718 o489 03839 04355 0332
HACO 240.80 65.75 0.2730
Christofides 69-100 x 10 ACO 248.06 o718 0.3918 0.2627 0.397
HACO 244.08 65.48 0.2681

comparing with ACO, HACO is adopted as a better approach

in solving this LIRP with MQDR.

5. Conclusion and Future Research

With the development of e-commerce, customers’ return
keeps a high rate with MQDR, which can be reentered into
markets after being repackaged or recovered. In this research,

we built a closed-loop LIRP model considering both quality
defect returns and nondefect returns; we call it MQDR in
this paper. We perform an extensive computational study and
observe the following interesting results.

(1) Considering MQDR are computationally beneficial
for the formulation presented, the MQDR and closed-
loop pattern with returns are features of the proposed
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problem in e-commerce, which is never considered in
previous work.

(2) Since the evolutionary computation algorithm has
been proved successfully in tackling NP-hard prob-
lem, a hybrid algorithm is proposed by combining
ACO algorithm and ABC algorithm to solve the LIRP.
HACO integrated the scout bee searching phase into
the ACO to improve the global searching ability.

(3) The performance of HACO is evaluated by using the
instances in the LRP database, and HACO outper-
forms ACO on convergence, optimal solution, and
computing stability. This numerical study shows the
efficiency and effectiveness of the solution method.

However, developing other elements for the LIRP will
lead to further research directions. And analyzing the model
under the dynamic demand of customs and a time-varying
demand can be a valuable subject. The design of experiments
and verification by discrete dynamics simulation should be
established. Fruit fly optimization algorithm (FOA) as one of
the best EC algorithms has attracted the attention of various
researchers [37]. It is important to apply these models and
algorithms to the operation and management of enterprises
to improve the decision-making efficiency of e-commerce
logistics system.
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