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Abstract Interpreting the cosmological constant � as a
thermodynamic pressure and its conjugate quantity as a ther-
modynamic volume, we study the Maxwell equal-area law
of higher dimensional Gauss–Bonnet–AdS black holes in
extended phase space. These black hole solutions critically
behave like van der Waals systems. It has been realized that
below the critical temperature Tc the stable equilibrium is vio-
lated. We show through calculations that the critical behav-
iors for the uncharged black holes only appear in d = 5. For
the charged case, we analyze solutions in d = 5 and d = 6
separately and find that, up to some constraints, the critical
behaviors only appear in the spherical topology. Using the
Maxwell construction, we also find the isobar line for which
the liquid–gas-like phases coexist.

1 Introduction

Recently, the study of thermodynamical properties of the
black holes using techniques explored in statistical physics
and fluids has received special interest [1–3]. These
researches have brought about new understanding of the fun-
damental physics associated with the critical behaviors of
several black holes in various dimensions using either numer-
ical or analytic methods [1,4–9]. In particular, AdS black
holes in arbitrary dimensions have been extensively investi-
gated in many works [9–22]. More precisely, the state equa-
tions P = P(T, v) have been established by considering the
cosmological constant as the thermodynamic pressure and its
conjugate as the thermodynamic volume. In fact, this issue
has opened a new way to study the behavior of the RN-AdS
black hole systems using the physics of van der Waals flu-
ids. Indeed, it has been shown that the corresponding P–V
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criticality can be linked to the liquid–gas systems of statisti-
cal physics. Moreover, it has been realized that the criticality
depends on many parameters including the dimension of the
spacetime [10–17,23,24].

More recently, a special interest has been devoted to the
study of Maxwell’s equal-area law for some black hole solu-
tions. More precisely, the state equations of various AdS
black hole in P–v diagrams have been worked out showing
the existence of undesirable negative pressure. They appear
also thermodynamic unstable regions associated with the
condition ∂ P

∂v
> 0. In this way, the corresponding system can

be contracted and expanded automatically [18–20,25–27]. In
van der Waals systems, such problems have been overcome
by using the Maxwell equal-area approach.

The aim of this work is to contribute to these researches by
studying higher dimensional uncharged and charged Gauss–
Bonnet–Anti-de Sitter black holes in extended phase space.
Considering the cosmological constant � as a thermody-
namic pressure and its conjugate quantity as a thermody-
namic volume, we present the Maxwell equal-area law of
higher Gauss–Bonnet–AdS black holes in extended phase
space. These black hole solutions involve critical behaviors
like the van der Waals gas. We show that below the critical
temperature Tc the stable equilibrium is violated. Based on
the Maxwell construction, we obtain the isobar line for which
the liquid–gas phases coexist.

The paper is organized as follows. In Sect. 2, we give
an overview on the thermodynamics of higher dimensional
Gauss–Bonnet black holes in AdS geometry. In Sect. 3, we
first study the equal-area law of Gauss–Bonnet–AdS black
hole in extended phase space for uncharged solutions. Next,
we extend the analysis to the charged case in five dimensions.
Then we present the results for higher dimensions. The last
section is devoted to our conclusion.
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2 Thermodynamics of Gauss–Bonnet black holes
in AdS space

In this section, we give an overview on thermodynamics of
Gauss–Bonnet black holes in AdS space. This matter is based
on much work by other authors [16,28–31]. Indeed, we start
by considering a d-dimensional Einstein–Maxwell theory in
the presence of the Gauss–Bonnet terms and a cosmological
constant � = − (d−1)(d−2)

2l2 . The corresponding action reads

I = 1

16π

∫
dd x

√−g[R − 2� + αGB(Rμνγ δ Rμνγ δ

−4Rμν Rμν + R2) − 4π Fμν Fμν], (1)

where αGB is the Gauss–Bonnet coefficient with dimension
[length]2. In this action, Fμν is the Maxwell field strength
given by Fμν = ∂μ Aν − ∂ν Aμ where Aμ is an abelian gauge
field. Roughly speaking, the discussion will be given here
corresponding to the case with a positive Gauss–Bonnet coef-
ficient, namely, αGB ≥ 0. As shown in [28], dynamical solu-
tions appear only in higher dimensional theories (d ≥ 5).
For this reason, it should be interesting to concentrate on
such models. In this way, the above action produces a static
black hole solution with the following metric:

ds2 = − f (r)dt2 + f −1(r)dr2 + r2hi j dxi dx j , (2)

where hi j dxi dx j is the line element of a (d −2)-dimensional
maximal symmetric Einstein space with the constant curva-
ture (d − 2)(d − 3)k and volume 	k . It is noted that k takes
the three values 1, 0, and −1, corresponding to the spherical,
Ricci flat, and hyperbolic topology of the black hole hori-
zon, respectively. According to [22,29,32,33], the metric
function f takes the following form:

f (r) = k + r2

2α

⎛
⎝1 −

⎛
⎝1 + 64παM

(d − 2)	krd−1

− 2αQ2

(d−2)(d−3)r2d−4 − 64παP

(d−1)(d−2)

⎞
⎠

1
2
⎞
⎟⎠, (3)

where α = (d −3)(d −4)αGB. In this solution, M represents
the black hole mass, Q is linked to the charge of the black
hole, and P = − �

8π
. For a well-defined vacuum solution

associated with M = Q = 0, the effective Gauss–Bonnet
coefficient α and pressure P must satisfy the following con-
straint:

0 ≤ 64παP

(d − 1)(d − 2)
≤ 1. (4)

It is recalled that the mass M can be given in terms of the
horizon radius rh of the black hole determined by the largest
real root of the equation f (rh) = 0. It takes the following
form:

M = (d − 2)	krd−3
h

16π

(
k + k2α

r2
h

+ 16π Pr2
h

(d − 1)(d − 2)

)

+ 	k Q2

8π(d − 3)rd−3
h

. (5)

Similarly, the Hawking temperature of the black hole reads

T = 1

4π
f ′(rh) = 1

4πrh(r2
h + 2kα)

×
(

16π Pr4
h /(d − 2) + (d − 3)kr2

h

+ (d − 5)k2α − 2Q2

(d − 2)r2d−8
h

)
. (6)

It is worth noting that in the discussion of the thermodynam-
ics of the black hole in the extended phase space by consid-
ering the pressure P = − �

8π
, the black hole mass M should

be identified with the enthalpy H ≡ M rather than the inter-
nal energy of the gravitational system [34]. It turns out that
many other thermodynamic quantities can be obtained using
the thermodynamical equations. For instance, the entropy S,
thermodynamic volume V , and electric potential (chemical
potential) 
 take the following forms:

S =
∫ rh

0
T −1

(
∂ H

∂r

)
Q,P

dr

= 	krd−2
h

4

(
1 + 2(d − 2)αk

(d − 4)r2
h

)
, (7)

V =
(

∂ H

∂ P

)
S,Q

= 	krd−1
h

d − 1
, (8)


 =
(

∂ H

∂ Q

)
S,P

= 	k Q

4π(d − 3)rd−3
h

. (9)

These thermodynamic quantities satisfy the following differ-
ential form:

dH = T dS + 
dQ + V dP + A dα, (10)

where

A ≡
(

∂ H

∂α

)
S,Q,P

= (d − 2)k2	k

16π
rd−5

h

− (d − 2)k	k T

2(d − 4)
rd−4

h (11)

is the conjugate quantity to the Gauss–Bonnet coefficient α,
being considered as a variable. By the scaling argument, the
generalized Smarr relation for the black holes can be written
as

(d − 3)H =(d−2)T S−2PV +2A α + (d − 3)Q
. (12)

Moreover, many solutions treating other black holes are given
in [13,34]. This class of black hole solutions has volume

123



Eur. Phys. J. C (2015) 75 :71 Page 3 of 9 71

V ∼ 	krd−1
h and an area given by A ∼ 	krd−2

h . In this way,
the black hole horizon has a scalar curvature Rh ∼ k/r2

h . The
Gauss–Bonnet term on the horizon is RGB ∼ k2/r4

h . In fact,
the first term in (11) can be put in the form V RGB, while the
second term takes the form T ARh. It is observed that both
terms vanish in the flat solution corresponding to k = 0. It
is noted that the first term in (11) is nothing but the second
term in the black hole mass (5), while the second term in (11)
is identified with the second term of the black hole entropy
(7) multiplied by Hawking temperature T . Using Legendre
transformations, the Gibbs free energy and the Helmholtz
free energy read

G =G(T, P, Q)= H −T S, F = F(T, V, Q)=G−PV .

(13)

Moreover, we recall that the Helmholtz free energy F can be
obtained by removing the contribution of the background of
the AdS vacuum solution. In this way, only the situation asso-
ciated with a negative F can be regarded as the black hole
solution considered as a thermodynamically AdS vacuum
solution. In the case associated with the hyperbolic horizon
(k = −1) [35], the black hole entropy (7) could be nega-
tive. In fact, a negative entropy has no meaning in statistical
physics. For these reasons, the constraints

F ≤ 0, S ≥ 0, rh > 0, T ≥ 0,

0 ≤ 64παP

(d − 1)(d − 2)
≤ 1 (14)

should be added. It is noted that in the case k = −1, the met-
ric function f given in Eq. 3 shows the existence of a minimal
horizon radius r2

h ≥ 2α. However, the non-negative values
of the black hole entropy (7) produce a stronger constraint
on the horizon radius given by r2

h ≥ (2 + 4/(d − 4))α.

3 The equal-area law of Gauss–Bonnet–AdS black hole
in extended phase space

Having given the essentials on the thermodynamics of the
Gauss–Bonnet–Anti-de Sitter black holes, we now move on
to investigate the corresponding Maxwell equal-area law.

3.1 The construction of equal-area law in P–v diagram

In the study of the van der Waals system for an isotherm
below the critical temperature T < Tc the two points, of the
(P, v) plane, solving the equation

∂ P

∂v
= 0 (15)

indicate the stability limit of the system. It is observed that
the critical point corresponding to the largest volume is inter-
preted as the stability limit of the gaseous phase. However,

Fig. 1 A P–v curve below the critical temperature

the critical point associated with the smallest volume corre-
sponds to the stability limit of the liquid phase. The chemical
potential of such thermodynamic systems should satisfy

dμ = −SdT + V dP. (16)

In the isotherm transformation, the difference of chemical
potential between two states with the pressure P and P0

should have the following form:

μ − μ0 =
∫ P

P0

V dP. (17)

It is realized that the Gauss–Bonnet–AdS black holes present
similar behaviors as illustrated in Fig. 1.

It observed from this figure that, at the point E , the black
hole lies at “gas” phase. However, at point “A”, the black
hole lies at “liquid” phase completely. Moreover, the region
between A and E can be considered as a coexistence phase.
However, the oscillating part of the curve between A and E
cannot be the coexistence line due to the fact that the part B D
violates the equilibrium conditions. At A and E , the chemical
potentials μA(T, P) and μB(T, P) are

μA(T, P) = μB(T, P). (18)

This relation produces the thermodynamic condition for the
phase equilibrium. Indeed, Eq. (17) gives

∫
E DC B A

vdP = 0, (19)

showing that the areas E DC and ABC are equal.
In what follows, the main aim is to investigate the position

of the points A and E for Gauss–Bonnet–AdS black holes in
higher dimensions. First, we discuss the uncharged case, then
we will present numerical solutions for the charged black
holes in the next section.
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3.2 Uncharged solutions

In this subsection, we discus the neutral case corresponding
to Q = 0. Identifying the pressure with the cosmological
constant and the corresponding conjugate thermodynamic
volume, the Hawking temperature (6) can be explored to
write down the state equation. The latter reads

P = d − 2

4rh

(
1 + 2kα

r2
h

)
T − (d − 2)(d − 3)k

16πr2
h

− (d − 2)(d − 5)k2α

16πr4
h

. (20)

To make contact with the van der Waals equation, we should
use a series expansion with the inverse of the specific volume
v. The calculation leads to

P = T

v − b
− a

v2 ≈ T

v
+ bT

v2 − a

v2 + O(v−3). (21)

Identifying the specific volume v with the horizon radius of
the black holes as proposed in [9,13,21]:

v = 4rh

d − 2
, (22)

the specific volume v can be related to the horizon radius rh.
Using (22), one can recover all the results in terms of v. In
this way, Eq. (20) becomes

P = T

v
+ k(3 − d)

π(d − 2)v2 + 32αkT

(d − 2)2v3 − 16αk2(d − 5)

π(d − 2)3v4 .

(23)

To obtain the equal-area isobar, P = P0, one uses the fol-
lowing relations:

�S1 = P0(v2 − v1) (24)

and

�S2 =
∫ v2

v1

Pdv. (25)

The equal-area law requires the following equality:

�S1 = �S2 (26)

leading to

P0(v2 − v1) = T0 ln

(
v2

v1

)
+ k(d − 3)

π(d − 2)

(
1

v2
− 1

v1

)

− 16αk

π(d − 2)2

(
1

v2
2

− 1

v2
1

)

+16α(d − 5)k2(v1 − v2)
(
v2

1 + v1v2 + v2
2

)
3π(d − 2)3v3

1v3
2

.

(27)

In the isothermal curves, the points v1 and v2 should satisfy

P0 = T0

v1
+ k(3 − d)

π(d − 2)v2
1

+ 32αkT

(d − 2)2v3
1

− 16αk2(d − 5)

π(d − 2)3v4
1

,

(28)

P0 = T0

v2
+ k(3 − d)

π(d − 2)v2
2

+ 32αkT

(d − 2)2v3
2

− 16αk2(d − 5)

π(d − 2)3v4
2

.

(29)

From these equations, one can derive the relations

T0v
3
1v3

2 − (d − 3)kv2
1v2

2(v1 + v2)

π(d − 2)

+32kαT0v1v2
(
v2

1 + v1v2 + v2
2

)
(d − 2)2

= 16k2α(d − 5)(v1 + v2)
(
v2

1 + v2
2

)
π(d − 2)3 (30)

and

2P0 = T0

(
1

v1
+ 1

v2

)
+ k(3 − d)

π(d − 2)

(
1

v2
1

+ 1

v2
2

)
+ 32αkT

(d − 2)2

×
(

1

v3
1

+ 1

v3
2

)
− 16αk2(d − 5)

π(d − 2)3

(
1

v4
1

+ 1

v4
2

)
. (31)

Putting x = v1
v2

,(0 ≤ x ≤ 1), we get the following identities:

P0v
4
2 x3(1 − x)

= −T0v
3
2 x3 ln(x) − (d − 3)kv2

2(1 − x)x2

π(d − 2)

+αk(x−1)
(
16(d−5)k

(
x2+x+1

)−48π(d−2)T0v2x(x+1)
)

3π(d−2)3 ,

(32)

0 = T0v
3
2 x3 − (d − 3)kv2

2 x2(x + 1)

π(d − 2)

−16α(d − 5)k2(x + 1)(x2 + 1)

π(d − 2)3

+32αkT0v2x(x2 + x + 1)

(d − 2)2 , (33)

and

2P0v
2
2 x2 = T0v

3
2 x3(1 + x) − (d − 3)kv2

2 x2(x2 + 1)

d − 2

+32πkαT0v2(x4 + x)

(d − 2)2 − 16k2α(d − 5)(x4 + 1)

(d − 2)3 . (34)

Using Eqs. (32), (33) and (34), we get a polynomial equation
admitting v2

2 as a real positive root,

a v4
2 + b v2

2 + c = 0 (35)
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where the coefficients a, b, and c read

a = 3(d − 3)(d − 2)4kx5(−2x + (x + 1) ln(x) + 2), (36)

b = 16α(d − 2)2k2x3(3(d − 5)(x + 1)(x2 + 1)

× ln(x) − (x − 1)((7d − 29)x2

−2(d + 1)x + 7d − 29)), (37)

c = 256α2(d − 5)k3(x − 1)

×(−3α + x(3x5 + 4x4 − 3α(x(x + 1)(x3 + x + 1)

+1) + 5x3 + 5x + 4) + 3). (38)

Solving the above polynomial equation, we get

v2
2 = −b + √

b2 − 4ac

2a
. (39)

In the limit x → 1, one should have v1 = v2 = vc. In what
follows, we discuss the convergence of this limit in terms
of the topology and the dimension of the spacetime. In fact,
three situations can appear. They are classified as follows:

– In the case of k = 0, corresponding to flat topology,
this limit diverges for any dimensions d. This shows the
absence of the critical points. Indeed, this can be seen from
the equation of state (23). The latter reduces to P = T

v
,

indicating that no phase transition can occur.
– In the case of k = −1, associated with the hyperbolic

topology, a negative value of v2
2 appears in d = 5. For

d ≥ 6, the limit also diverges. This implies that there does
not exist any phase transition.

– In the case of k = 1, corresponding to the spherical topol-
ogy, this limit diverges only when d ≥ 6. In the case of
d = 5, we have

vc = lim
x→1

√
y1

y2
= 4

√
2

3
α, wi th

{
y1 = 32α(x − 1)3

y2 = 18x2(x + 1) ln(x) − 36(x − 1)x2.
(40)

It is noted that a similar result has been found in [28]. Sub-
stituting (40) in (33) to eliminate v2 and setting T0 = χTc,
the critical temperature reads

Tc = 1

2π
√

6α
. (41)

We can also obtain the following relation:

512

√
2

3α
χx3

(
y1

y2

)
(x3 − 1)

+2048

9

(
8

√
2α

3
(x3 − 1) +

(
y1

y2

) 1
2

(1 − x2).

)
= 0.

(42)

Table 1 Numerical solutions for x , v1, v2, and P0 at different temper-
atures with Q = 0 in five dimensions with the spherical topology

α χ x v1 v2 P0

α = 0.5 1 1 2.3094 2.3094 0.01326

0.8 0.07111 0.85537 12.0282 0.00471

0.7 0.02543 0.67313 26.4629 0.00213

α = 1 1 1 3.2659 3.26599 0.00663

0.8 0.07111 1.20969 17.0104 0.00235

0.7 0.02543 0.95195 37.4241 0.00106

α = 2 1 1 4.6188 4.6188 0.00331

0.8 0.07111 1.71076 24.0564 0.00117

0.7 0.02543 1.34627 52.9257 0.00053

In Table 1, we present the numerical values of the v1,2 and
P0 for different values of the constant α.

From Table 1, we can see that x is not linked to the coupling
constant α. However, it increases at certain values of χ . The
specific volume v2 decreases and increases with χ and α,
respectively. The pressure P0 increases and decreases with
χ and α, respectively. For more details, we plot the pressure
P at constant temperature in terms of the specific volume v

for different values of the coupling constant α (Figs. 2, 3).
For different values of α, we observe that the isobar in the

isotherm will be shorter by increasing the temperature. When
the temperature reaches the critical one, the boundaries of the
isobar coincide, v1 = v2 = vc.

4 Charged black hole solutions

This section concerns the case of charged Gauss–Bonnet–
AdS black holes in the AdS geometry. In this case, the state
equation can be written as

P = T

v
+ k(3 − d)

π(d − 2)v2 + 32αkT

(d − 2)2v3 − 16αk2(d − 5)

π(d − 2)3v4

+24d−11(d − 2)4−2d Q2

πv2d−4 . (43)

A close inspection of this equation shows that one may make
a separate study. First, we deal with the five dimensional case.
Then we study models associated with d ≥ 6.

4.1 Five dimensional case

In d = 5, the equation of the state (43) reduces to

P = T

v

(
1 + 32αk

9v2

)
− 2k

3πv2 + 512Q2

729πv6 . (44)

Using a similar analysis to the case of uncharged solutions,
Eqs. (32), (33), and (34) become, respectively,
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Fig. 2 The P–v diagram of uncharged Gauss–Bonnet–AdS black
holes in five dimensions. The dashed blue curve corresponds to the
critical temperature Tc, the red one is associated with the isotherm with
0.8Tc and the green one corresponds to 0.7Tc

P0v
6
2(1 − x)x5

= −2kv4
2 x4

3π
+ 512Q2

3645π
+
(

2kv4
2

3π
− 512Q2

3645π

)
x5

+T0

(
−16

9
αkv3

2 x5 + 16

9
αkv3

2 x3 − v5
2 x5 ln(x)

)
(45)

T0(96πα(d − 2)3kv3
2(1 + x + x2)x3

+3π(d − 2)5v5
2 x5) − 6(d − 2)4kv4

2(x + 1)x4 + 512Q2

×(1 + x)(1 + x2 + x4)) = 0 (46)

Fig. 3 The P–v diagram for charged Gauss–Bonnet–AdS black holes
in five dimensions. The dashed blue curve corresponds to the critical
temperature Tc, the red one corresponds to an isotherm with 0.8Tc, and
the green one corresponds to 0.7Tc

and

2P0v
6
2 x6 = T0

(
32

9
αkv3

2(x3 + 1)x3 + v5
2(x + 1)x5

)

+512Q2(x6 + 1) − 486kv4
2 x4(x2 + 1)

729π
. (47)

Using the above equations, we obtain also the polynomial
equation of v2. It is given by
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av6
2 + bv4

2 + cv2
2 + γ = 0 (48)

where the coefficients a, b, and c take now the following
form:

a = 7290k(x − 1)x6 + 3645k(x + 1)x6 ln

(
1

x

)
, (49)

b = 6480αk2(x − 1)3x4, (50)

c = −4608Q2(x5 − 1)x2 − 3840Q2(x + 1)

×(x4 + x2 + 1)x2 ln

(
1

x

)
, (51)

γ = 4096αk Q2(x − 1)3(x2 + x + 1)(x(x + 3) + 1). (52)

The limit x → 1, associated with v1 = v2 = vc, leads to

81kv6
c + 864αk2v4

c − +1280Q2v2
c + 8192αk Q2 = 0. (53)

This shows similarities to the one obtained in [28]. The crit-
ical specific volume, which is the positive real root of (53),
takes the following form:

v2
c = 32α

9
+ 80Q2

9 3
√

3X
+ 64k3α2

3 3
√

3X
+ 16X

9k 32/3 (54)

with

X = (
√

3
√

3888α4k9 Q2 + 4392α2k6 Q4 − 125k3 Q6

+72α3k6 + 126αk3 Q2)
1
3 . (55)

The corresponding critical temperature reads

Tc = 4(81kv4
c − 256Q2)

81πv3
c (32αk + 3v2

c )
. (56)

As in the uncharged case, we discuss the existence of the
critical points for different topologies. In fact, we have three
situations:

– For the flat topology, the apparition of k, in the fourth term
in (54), reveals the absence of the critical behavior.

– For the hyperbolic one, the constraint on the positivity of
the temperature and the specific volume does not show
critical behavior.

– For the spherical topology, the existence of the critical
point is controlled by the following constraint:

|Q| ≤ 6α. (57)

The Maxwell construction can be obtained using the same
analysis as the previous section. This gives rise to an equation
depending only on x . To derive the values of v1,2 and P0, we
should find x . For the charged case, we list all these results
in Table 2.

It follows from Table 2 that P0 decreases when one
increases α, Q, and χ . However, the specific volume v2

increases when α and χ decrease. In fact, the charge
decreases the values of v2. An important remark that emerges

Table 2 Numerical values of x , v1, v2, and P0 at different temperature
in five dimensions with the spherical topology in the presence of the
charge

(α, Q) χ x v1 v2 P0

(1, 1) 1 1 3.5447 3.5447 0.00619

0.8 0.11658 1.69635 14.5506 0.00254

0.7 0.05765 1.50503 26.1024 0.00139(
1, 3

2

)
1 1 3.77814 3.77814 0.00582

0.8 0.13991 1.95332 13.961 0.002531

0.7 0.07388 1.759006 23.8078 0.00146

(2, 3) 1 1 5.3431 5.3434 0.00291

0.8 0.13991 2.76241 19.7438 0.00126

0.7 0.07388 2.48768 33.6694 0.00073

from this calculation is that x remains constant where we have
a proportionality between incremented values of the charge
and coupling constant (α1, Q1) ∝ (α2, Q2), showing that
the charge and α can be interrelated [28]. In what follows,
we plot the isotherms in the (P, v) diagram and show the
equal Maxwell area.

4.2 Higher dimensional cases

The complete form of the equation of states (23) gives also a
polynomial equation of v2. Similar calculations can be done
for higher dimensional black holes. In the limit x → 1, the
specific volume is a real positive solution with the following
polynomial form:

1

524288
(d − 2)8 Q2v8

2 (96α(2d − 7)k

+(d − 2)2(2d − 5)v2
2

)
= 4−2dk((d − 2)v2)

2d

×
(

12α2(d − 5)k2 − 3

4
α(d − 2)2kv2

2

+ 1

256
(d − 3)(d − 2)4v4

2

)
. (58)

The critical temperature reads

Tc =
24d−11 Q

1
d−3

(
(d − 2)v2 Q

1
3−d

)7−2d

π
(
(d − 2)2v2

2 + 96αk
) ×

⎛
⎜⎝− 2

+
163−d Q

6
d−3

(
(d−2)v2 Q

1
3−d

)2d (
32α(d−5)+(d−3)(d−2)2kv2

2

)
(d − 2)8v8

2

⎞
⎟⎠ .

(59)

It is observed that the Ricci flat topology and the hyper-
bolic one do not allow for the existence of critical behaviors.
Up to some conditions, the critical behaviors appear only in
the case of the spherical topology corresponding to k = 1. In

fact, α|Q| −2
(d−3) should not be too large [28]. For reasons of

123
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Table 3 Numerical values of x , v1, v2, and P0 at different values of α

in the six dimensional spherical topology with non-vanishing charge

(α, Q) χ x v1 v2 P0

(1, 1) 1 1 1.91384 1.91384 0.0183735

0.8 0.08212 0.92344 11.2444 0.006092

0.7 0.03799 0.85358 22.4677 0.002983

(1, 2) 1 1 2.17689 2.17689 0.002823

0.8 0.12462 1.18883 9.53966 0.0066212

0.7 0.06473 1.10356 17.0479 0.0036418

Fig. 4 The P–v diagram of the charged Gauss–Bonnet–AdS black
holes in six dimensions, the dashed blue curve corresponds to the critical
temperature Tc, the red one corresponds to isotherm with 0.8Tc, and the
green one is associated with 0.7Tc

simplicity, we restrict our study to d = 6. In particular, we
present the numerical results in d = 6 for x, v1,2 and P0 in
Table 3.

It is observed from Table 3 that P0 increases with Q and
χ . However, the specific volume v2 decreases with Q and χ .
The comparison between Tables 2 and 3 shows the effect of
the black hole dimensions. In fact, P0 and v2 increase and
decrease, respectively, with the dimension. To illustrate this
effect, we plot these results in Fig. 4, showing the Maxwell
equal area.

5 Conclusion

In this paper, we have studied the Maxwell equal-area law
of higher dimensional Gauss–Bonnet–anti-de Sitter black
holes. The corresponding critical behaviors show similarity
to the van der Waals one. We have shown that this construc-
tion can be used to eliminate the region of the violated stable
equilibrium ∂ P

∂v
> 0. In particular, we have found the isobar

line in which the two real phases coexist. It has been real-
ized that this construction can be viewed as a simple way
to derive the coordinates of the critical points. We have pre-
sented numerical calculations showing that the critical behav-
iors for the uncharged black holes appear only when d = 5.
For the charged case, we have studied solutions in d = 5 and
d = 6 separately and showed that, up to some constraints,
the critical behaviors appear only in the spherical topology.
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