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This paper studies robust stability, stabilization, and𝐻
∞
control for a class of nonlinear discrete time stochastic systems. Firstly, the

easily testing criteria for stochastic stability and stochastic stabilizability are obtained via linear matrix inequalities (LMIs). Then a
robust𝐻

∞
state feedback controller is designed such that the concerned system not only is internally stochastically stabilizable but

also satisfies robust 𝐻
∞

performance. Moreover, the previous results of the nonlinearly perturbed discrete stochastic system are
generalized to the system with state, control, and external disturbance dependent noise simultaneously. Two numerical examples
are given to illustrate the effectiveness of the proposed results.

1. Introduction

Stochastic control has been one of the most important
research topics in modern control theory. The study of
stochastic stability can be traced back to the 1960s; see [1]
and the recently well-known monographs [2, 3]. Stability
is the first considered problem in system analysis and
synthesis, while stabilization is to look for a controller to
stabilize an unstable system. 𝐻

∞
control is one of the most

important robust control approaches, which aims to design
the controller to restrain the external disturbance below a
given level. We refer the reader to [4–9] for stability and
stabilization of Itô-type stochastic systems and [10–14] for
stability and stabilization of discrete time stochastic systems.
Stochastic 𝐻

∞
control of Itô-type systems starts from [15],

which has been extensively studied in recent years; see [16–
20] and the references therein. Discrete time𝐻

∞
control with

multiplicative noise can be found in [21–25].
Along with the development of computer technology,

discrete time difference systems have attracted a great deal of
attention, which have been studied extensively; see [26, 27].
The reason is twofold: Firstly, discrete time systems are ideal
mathematical models in the study of satellite attitude control
[28], mathematical finance [29], single degree of freedom

inverted pendulums [21], and gene regulator networks [30].
Secondly, as said in [27], the study for discrete time systems
has the advantage over continuous time differential systems
from the perspective of computation; moreover, it presents
a very good approach to study differential equations and
functional differential equations.

From the existing works on stability, stabilization, and
𝐻
∞

control of discrete time stochastic systems with multi-
plicative noise, we can find that, except for linear stochastic
systemswhere perfect results have been obtained [22–25], few
works are on the stability of the general nonlinear discrete
time stochastic system [12]

𝑥 (𝑡 + 1) = 𝑓 (𝑥 (𝑡) , 𝑤 (𝑡) , 𝑡) , 𝑥 (0) = 𝑥
0

(1)

or the𝐻
∞
control of affine nonlinear discrete time stochastic

system [21]

𝑥 (𝑡 + 1)

= 𝑓 (𝑥 (𝑡)) + 𝑔 (𝑥 (𝑡)) 𝑢 (𝑡) + ℎ (𝑥 (𝑡)) ] (𝑡)

+ [𝑓
1
(𝑥 (𝑡)) + 𝑔

1
(𝑥 (𝑡)) 𝑢 (𝑡) + ℎ

1
(𝑥 (𝑡))] 𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐿 (𝑥 (𝑡)) .

(2)
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Up to now, the results of the deterministic discrete time
nonlinear 𝐻

∞
control [31] have not been perfectly general-

ized to the above nonlinear stochastic systems. For example,
although some stability results in continuous time Itô systems
[3] can be extended to nonlinear discrete stochastic systems
[12], the corresponding criteria are not easily applied in
practice; this is because the mathematical expectation of the
trajectory is involved in the preconditions. In addition, [21]
tried to discuss a general nonlinear 𝐻

∞
control of discrete

time stochastic systems, but only the 𝐻
∞

control of a class
of norm bounded systems was perfectly solved based on
linear matrix inequality (LMI) approach. As said in [32],
the general𝐻

∞
control of nonlinear discrete time stochastic

multiplicative noise systems remains unsolved. We have to
admit such a fact that some research issues of discrete systems
are more difficult to solve than those of continuous time
systems. For instance, a stochastic maximum principle for Itô
systems was obtained in 1990 [33], but a nonlinear discrete
time maximum principle has just been presented in [34].

Recently, [7, 13] investigated the robust quadratic stability
and feedback stabilization of a class of nonlinear continue
time and discrete time systems, respectively, where the
nonlinear terms are quadratically bounded. Such a nonlinear
constraint possesses great practical importance and has been
widely used in many types of systems, such as singularly per-
turbed systems with uncertainties [35, 36], neutral systems
with nonlinear perturbations [37], impulsive Takagi-Sugeno
fuzzy systems [38], and some time-delay systems [18]. It
should be pointed out that the small gain theorem can also be
used to examine the robustness as done in [39] for the study of
the simple adaptive control system within the framework of
the small gain theorem. In addition, the robustness of a class
of nonlinear feedback systems with unknown perturbations
was discussed based on the robust right coprime factorization
and passivity property [40]. All these methods are expected
to play important roles in stochastic uncertain𝐻

∞
control.

This paper deals with a class of nonlinear uncertain
discrete time stochastic systems, for which the system state,
control input, and external disturbance depend on noise
simultaneously, which was often called (𝑥, 𝑢, V)-dependent
noise for short [24] and which mean that not only the
system state as in [21] but also the control input and external
disturbance are subject to random noise. Hence, our con-
cerned models have more wide applications. The considered
nonlinear dynamic term is priorly unknown but belongs
to a class of functions with a bounded energy level, which
represent a kind of very important nonlinear functions, and
has been studied by many researchers; see, for example,
[41]. For such a class of nonlinear discrete time stochastic
systems, the stochastic stability, stabilization, and𝐻

∞
control

have been discussed, respectively, and easily testing criteria
have also been obtained. What we have obtained extends the
previous works to more general models.

The paper is organized as follows: in Section 2, we give
a description of the considered nonlinear stochastic sys-
tems and define robust stochastic stability and stabilization.
Section 3 contains our main results. Section 3.1 presents a
robust stability criterion which extends the result of [13] to
more general stochastic systems. Section 3.2 gives a sufficient

condition for robust stabilization criterion. Section 3.3 is
about 𝐻

∞
control, where an LMI-based sufficient condition

for the existence of a static state feedback 𝐻
∞

controller is
established. All our main results are expressed in terms of
LMIs. In Section 4, two examples are constructed to show the
effectiveness of our obtained results.

For convenience, the notations adopted in this paper are
as follows.
𝑀
󸀠 is the transpose of the matrix𝑀 or vector𝑀, 𝑀 ≥ 0

(𝑀 > 0): 𝑀 is a positive semidefinite (positive definite)
symmetric matrix; 𝐼 is the identity matrix; 𝑅𝑛 is the 𝑛-
dimensional Euclidean space; 𝑅𝑛×𝑚 is the space of all 𝑛 ×
𝑚 matrices with entries in 𝑅; 𝑁 is the natural number
set; that is, 𝑁 represents {0, 1, 2, . . .}; 𝑁

𝑡
denotes the set of

{0, 1, . . . , 𝑡}; 𝑙2
𝑤
(𝑁, 𝑅
𝑛

) denotes the set of all nonanticipative
square summable stochastic processes

𝑦 = {𝑦
𝑛
: 𝑦
𝑛

∈ 𝐿
2

(Ω, 𝑅
𝑛

) , 𝑦
𝑛
is F
𝑛−1

measurable}
𝑛∈𝑁

.

(3)

The 𝑙2-norm of 𝑦 ∈ 𝑙2
𝑤
(𝑁, 𝑅
𝑛

) is defined by

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩𝑙
2

𝑤
(𝑁,𝑅
𝑛
)
= (

∞

∑

𝑛=0

𝐸
󵄩
󵄩
󵄩
󵄩
𝑦
𝑛

󵄩
󵄩
󵄩
󵄩

2

)

1/2

. (4)

Similarly, 𝑙2
𝑤
(𝑁
𝑇
, 𝑅
𝑛

) and ‖𝑦‖
𝑙
2

𝑤
(𝑁,𝑅
𝑛
)
can be defined.

2. System Descriptions and Definitions

Consider the discrete stochastic iterative system described by
the following equation:

𝑥 (𝑡 + 1) = 𝐴𝑥 (𝑡) + ℎ
1
(𝑡, 𝑥 (𝑡)) + 𝐵𝑢 (𝑡)

+ (𝐶𝑥 (𝑡) + ℎ
2
(𝑡, 𝑥 (𝑡)) + 𝐷𝑢 (𝑡)) 𝑤 (𝑡) ,

𝑥 (0) = 𝑥
0
∈ 𝑅
𝑛

, 𝑡 ∈ 𝑁,

(5)

where 𝑥(𝑡) ∈ 𝑅𝑛 is the 𝑛-dimensional state vector and 𝑢(𝑡) ∈
𝑅
𝑚 is the 𝑚-dimensional control input. {𝑤(𝑡)}

𝑡≥0
is a se-

quence of one-dimensional independent white noise proc-
esses defined on the complete filtered probability space (Ω,
F, {F

𝑡
}
𝑡≥0
,P), whereF

𝑡
= 𝜎{𝑤(0), 𝑤(1), . . . , 𝑤(𝑡)}.Assume

that 𝐸[𝑤(𝑡)] = 0, 𝐸[𝑤(𝑡)𝑤(𝑗)] = 𝛿
𝑡𝑗
, where 𝐸 stands for the

expectation operation and 𝛿
𝑡𝑗
is a Kronecker function defined

by 𝛿
𝑡𝑗
= 0 for 𝑡 ̸= 𝑗 while 𝛿

𝑡𝑗
= 1 for 𝑡 = 𝑗. Without loss of

generality, 𝑥
0
is assumed to be determined. The following is

assumed to hold throughout this paper.

Assumption 1. The nonlinear functions ℎ
1
(𝑡, 𝑥(𝑡)) and

ℎ
2
(𝑡, 𝑥(𝑡)) describe parameter uncertainty of the system and

satisfy the following quadratic inequalities:

ℎ
󸀠

1
(𝑡, 𝑥 (𝑡)) ℎ

1
(𝑡, 𝑥 (𝑡)) ≤ 𝛼

2

1
𝑥
󸀠

(𝑡)𝐻
󸀠

1
𝐻
1
𝑥 (𝑡) , (6)

ℎ
󸀠

2
(𝑡, 𝑥 (𝑡)) ℎ

2
(𝑡, 𝑥 (𝑡)) ≤ 𝛼

2

2
𝑥
󸀠

(𝑡)𝐻
󸀠

2
𝐻
2
𝑥 (𝑡) , (7)

for all 𝑡 ∈ 𝑁, where 𝛼
𝑖
is a constant related to the function ℎ

𝑖

for 𝑖 = 1, 2.𝐻
𝑖
is a constant matrix reflecting structure of ℎ

𝑖
.
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We note that inequalities (6) and (7) can be written as a
matrix form:

[

[

[

𝑥

ℎ
1

ℎ
2

]

]

]

󸀠

[

[

[

−𝛼
2

1
𝐻
󸀠

1
𝐻
1
− 𝛼
2

2
𝐻
󸀠

2
𝐻
2
0 0

0 𝐼 0

0 0 𝐼

]

]

]

[

[

[

𝑥

ℎ
1

ℎ
2

]

]

]

≤ 0. (8)

System (5) is regarded as the generalized version of the
system in [13, 42]. We note that, in system (5), the system
state, control input, and uncertain terms depend on noise
simultaneously, which makes (1) more useful in describing
many practical phenomena.

Definition 2. The unforced system (5) with 𝑢 = 0 is said to be
robustly stochastically stable with margins 𝛼

1
> 0 and 𝛼

2
> 0

if there exists a constant 𝛿(𝑥
0
, 𝛼
1
, 𝛼
2
) such that

𝐸[

∞

∑

𝑡=0

𝑥
󸀠

(𝑡) 𝑥 (𝑡)] ≤ 𝛿 (𝑥
0
, 𝛼
1
, 𝛼
2
) . (9)

Definition 2 implies 𝐸{‖𝑥(𝑡)‖2} → 0.

Definition 3. System (5) is said to be robustly stochastically
stabilizable if there exists a state feedback control law 𝑢(𝑡) =
𝐾𝑥(𝑡), such that the closed-loop system

𝑥 (𝑡 + 1) = (𝐴 + 𝐵𝐾) 𝑥 (𝑡) + ℎ
1
(𝑡, 𝑥 (𝑡))

+ ((𝐶 + 𝐷𝐾) 𝑥 (𝑡) + ℎ
2
(𝑡, 𝑥 (𝑡))) 𝑤 (𝑡) ,

𝑥 (0) = 𝑥
0
∈ 𝑅
𝑛

, 𝑡 ∈ 𝑁

(10)

is robustly stochastically stable for all nonlinear functions
ℎ
𝑖
(𝑡, 𝑥(𝑡)) (𝑖 = 1, 2) satisfying (6) and (7).

When there is the external disturbance ](⋅) in system (5),
we consider the following nonlinear perturbed system:

𝑥 (𝑡 + 1)

= 𝐴𝑥 (𝑡) + 𝐴
0
] (𝑡) + 𝐵𝑢 (𝑡) + ℎ

1
(𝑡, 𝑥 (𝑡))

+ (𝐶𝑥 (𝑡) + 𝐶
0
] (𝑡) + 𝐷𝑢 (𝑡) + ℎ

2
(𝑡, 𝑥 (𝑡))) 𝑤 (𝑡) ,

𝑧 (𝑡) = [

𝐿𝑥 (𝑡)

𝑀] (𝑡)
]

𝑥 (0) = 𝑥
0
∈ 𝑅
𝑛

, 𝑡 ∈ 𝑁,

(11)

where ](𝑡) ∈ 𝑅𝑞 and 𝑧(𝑡) ∈ 𝑅𝑝 are, respectively, the
disturbance signal and the controlled output. ](𝑡) is assumed
to belong to 𝑙2

𝑤
(𝑁, 𝑅
𝑞

), so ](𝑡) is independent of 𝑤(𝑡).

Definition 4 (𝐻
∞

control). For a given disturbance attenua-
tion level 𝛾 > 0, 𝑢(𝑡) = 𝐾𝑥(𝑡) is an𝐻

∞
control of system (11),

if

(i) system (11) is internally stochastically stabilizable for
𝑢(𝑡) = 𝐾𝑥(𝑡) in the absence of ](𝑡); that is,

𝑥 (𝑡 + 1) = (𝐴 + 𝐵𝐾) 𝑥 (𝑡) + ℎ
1
(𝑡, 𝑥 (𝑡))

+ [(𝐶 + 𝐷𝐾) 𝑥 (𝑡) + ℎ
2
(𝑡, 𝑥 (𝑡))] 𝑤 (𝑡)

(12)

is robustly stochastically stable;

(ii) The𝐻
∞
norm of system (11) is less than 𝛾 > 0; that is,

‖𝑇‖ = sup
]∈𝑙2
𝑤
(𝑁,𝑅
𝑞
),𝑢(𝑡)=𝐾𝑥(𝑡),] ̸=0,𝑥

0
=0

‖𝑧 (𝑡)‖
𝑙
2

𝑤
(𝑁,𝑅
𝑝
)

‖] (𝑡)‖
𝑙
2

𝑤
(𝑁,𝑅
𝑞
)

= sup
]∈𝑙2
𝑤
(𝑁,𝑅
𝑞
),𝑢(𝑡)=𝐾𝑥(𝑡),] ̸=0,𝑥

0
=0

(∑
∞

𝑡=0
𝐸 ‖𝑧 (𝑡)‖

2

)

1/2

(∑
∞

𝑡=0
𝐸 ‖] (𝑡)‖2)

1/2

< 𝛾.

(13)

3. Main Results

In this section, we give ourmain results on stochastic stability,
stochastic stabilization, and robust 𝐻

∞
control via LMI-

based approach. Firstly, we introduce the following two
lemmas which will be used in the proof of our main results.

Lemma 5 (Schur’s lemma). For a real symmetric matrix 𝑆 =
[

𝑆
11
𝑆
12

𝑆
𝑇

12
𝑆
22

], the following three conditions are equivalent:

(i) 𝑆 < 0.

(ii) 𝑆
11
< 0, 𝑆

22
− 𝑆
𝑇

12
𝑆
−1

11
𝑆
12
< 0.

(iii) 𝑆
22
< 0, 𝑆

11
− 𝑆
12
𝑆
−1

22
𝑆
𝑇

12
< 0.

Lemma 6. For any real matrices 𝑈, 𝑁󸀠 = 𝑁 > 0 and𝑊 with
appropriate dimensions, we have

𝑈
󸀠

𝑁𝑊+𝑊
󸀠

𝑁𝑈 ≤ 𝑈
󸀠

𝑁𝑈 +𝑊
󸀠

𝑁𝑊. (14)

Proof. Because 𝑁󸀠 = 𝑁 > 0, 𝑈󸀠𝑁𝑊 + 𝑊
󸀠

𝑁𝑈 =

(𝑈
󸀠

𝑁
1/2

)(𝑁
1/2

𝑊) + (𝑊
󸀠

𝑁
1/2

)(𝑁
1/2

𝑊). Inequality (14) is an
immediate corollary of the well-known inequality

𝑋
󸀠

𝑌 + 𝑌
󸀠

𝑋 ≤ 𝑋
󸀠

𝑋 + 𝑌
󸀠

𝑌. (15)

3.1. Robust Stability Criteria. Consider the following un-
forced stochastic discrete time system:

𝑥 (𝑡 + 1) = 𝐴𝑥 (𝑡) + ℎ
1
(𝑡, 𝑥 (𝑡))

+ (𝐶𝑥 (𝑡) + ℎ
2
(𝑡, 𝑥 (𝑡))) 𝑤 (𝑡) ,

𝑥 (0) = 𝑥
0
∈ 𝑅
𝑛

, 𝑡 ∈ 𝑁,

(16)

where {ℎ
1
(𝑡, 𝑥(𝑡))}

𝑡≥0
and {ℎ

2
(𝑡, 𝑥(𝑡))}

𝑡≥0
satisfy (8). The

following theorem gives a sufficient condition of robust
stochastic stability for system (16).

Theorem 7. System (16) with margins 𝛼
1
> 0 and 𝛼

2
>

0 is said to be robustly stochastically stable, if there exists
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a symmetric positive definite matrix 𝑄 > 0 and a scalar 𝛼 > 0
such that

[

[

[

[

[

[

[

[

−𝑄 + 2𝛼
2

1
𝛼𝐻
󸀠

𝐻 + 2𝛼
2

2
𝛼𝐻
󸀠

𝐻 𝐴
󸀠

𝑄 𝐶
󸀠

𝑄 0

∗ −

1

2

𝑄 0 0

∗ ∗ −

1

2

𝑄 0

∗ ∗ ∗ 𝑄 − 𝛼𝐼

]

]

]

]

]

]

]

]

< 0.

(17)

Proof. If (17) holds, we set 𝑉(𝑥(𝑡)) = 𝑥
󸀠

(𝑡)𝑄𝑥(𝑡) as a
Lyapunov function candidate of system (16), where 0 < 𝑄 <
𝛼𝐼 by (17). Note that 𝑥(𝑡) and 𝑤(𝑡) are independent, so the
difference generator is

𝐸Δ𝑉 (𝑥 (𝑡)) = 𝐸 [𝑉 (𝑥 (𝑡 + 1)) − 𝑉 (𝑥 (𝑡))]

= 𝐸 {𝑥
󸀠

(𝑡) (𝐴
󸀠

𝑄𝐴 + 𝐶
󸀠

𝑄𝐶 − 𝑄)𝑥 (𝑡)

+ 𝑥
󸀠

(𝑡) 𝐴
󸀠

𝑄ℎ
1
(𝑡, 𝑥 (𝑡)) + ℎ

󸀠

1
(𝑡, 𝑥 (𝑡)) 𝑄𝐴𝑥 (𝑡)

+ ℎ
󸀠

1
(𝑡, 𝑥 (𝑡)) 𝑄ℎ

1
(𝑡, 𝑥 (𝑡)) + 𝑥

󸀠

(𝑡) 𝐶
󸀠

𝑄ℎ
2
(𝑡, 𝑥 (𝑡))

+ ℎ
󸀠

2
(𝑡, 𝑥 (𝑡)) 𝑄𝐶𝑥 (𝑡) + ℎ

󸀠

2
(𝑡, 𝑥 (𝑡)) 𝑄ℎ

2
(𝑡, 𝑥 (𝑡))} .

(18)

Applying Lemma 6 and inequalities (6)-(7), by 0 < 𝑄 < 𝛼𝐼,
we have

𝑥
󸀠

(𝑡) 𝐴
󸀠

𝑄ℎ
1
(𝑡, 𝑥 (𝑡)) + ℎ

󸀠

1
(𝑡, 𝑥 (𝑡)) 𝑄𝐴𝑥 (𝑡)

≤ 𝑥
󸀠

(𝑡) 𝐴
󸀠

𝑄𝐴𝑥 (𝑡) + ℎ
󸀠

1
(𝑡, 𝑥 (𝑡)) 𝑄ℎ

1
(𝑡, 𝑥 (𝑡))

≤ 𝑥
󸀠

(𝑡) (𝐴
󸀠

𝑄𝐴 + 𝛼
2

1
𝛼𝐻
󸀠

𝐻)𝑥 (𝑡) ,

𝑥
󸀠

(𝑡) 𝐶
󸀠

𝑄ℎ
2
(𝑡, 𝑥 (𝑡)) + ℎ

󸀠

2
(𝑡, 𝑥 (𝑡)) 𝑄𝐶𝑥 (𝑡)

≤ 𝑥
󸀠

(𝑡) (𝐶
󸀠

𝑄𝐶 + 𝛼
2

2
𝛼𝐻
󸀠

𝐻)𝑥 (𝑡) ,

ℎ
󸀠

1
(𝑡, 𝑥 (𝑡)) 𝑄ℎ

1
(𝑡, 𝑥 (𝑡)) + ℎ

󸀠

2
(𝑡, 𝑥 (𝑡)) 𝑄ℎ

2
(𝑡, 𝑥 (𝑡))

≤ 𝑥
󸀠

(𝑡) (𝛼
2

1
𝛼𝐻
󸀠

𝐻 + 𝛼
2

2
𝛼𝐻
󸀠

𝐻)𝑥 (𝑡) .

(19)

Substituting (19) into (18), we achieve that

𝐸Δ𝑉 (𝑥 (𝑡)) ≤ 𝐸 {𝑥
󸀠

(𝑡) (2𝐴
󸀠

𝑄𝐴 + 2𝐶
󸀠

𝑄𝐶 − 𝑄

+ 2𝛼
2

1
𝛼𝐻
󸀠

𝐻 + 2𝛼
2

2
𝛼𝐻
󸀠

𝐻)𝑥 (𝑡)} .

(20)

By Schur’s complement,

Ω fl 2𝐴󸀠𝑄𝐴 + 2𝐶󸀠𝑄𝐶 − 𝑄 + 2𝛼2
1
𝛼𝐻
󸀠

𝐻 + 2𝛼
2

2
𝛼𝐻
󸀠

𝐻

< 0

(21)

is equivalent to

[

[

[

[

[

[

−𝑄 + 2𝛼
2

1
𝛼𝐻
󸀠

𝐻 + 2𝛼
2

2
𝛼𝐻
󸀠

𝐻 𝐴
󸀠

𝑄 𝐶
󸀠

𝑄

∗ −

1

2

𝑄 0

∗ ∗ −

1

2

𝑄

]

]

]

]

]

]

< 0, (22)

which holds by (17). We denote 𝜆max(Ω) and 𝜆min(Ω) to be
the largest and the minimum eigenvalues of the matrix Ω,
respectively; then (20) yields

𝐸Δ𝑉 (𝑥 (𝑡)) ≤ 𝜆max (Ω) 𝐸 ‖𝑥 (𝑡)‖
2

. (23)

Taking summation on both sides of the above inequality from
𝑡 = 0 to 𝑡 = 𝑇 ≥ 0, we get

𝐸 [𝑉 (𝑥 (𝑇))] − 𝑉 (𝑥
0
) = 𝐸[

𝑇

∑

𝑡=0

Δ𝑉 (𝑥 (𝑡))]

≤ 𝜆max (Ω) 𝐸[
𝑇

∑

𝑡=0

𝑥
󸀠

(𝑡) 𝑥 (𝑡)] .

(24)

Therefore,

𝜆min (−Ω) 𝐸[
𝑇

∑

𝑡=0

𝑥
󸀠

(𝑡) 𝑥 (𝑡)] ≤ 𝑉 (𝑥
0
) , (25)

which leads to

𝐸[

𝑇

∑

𝑡=0

𝑥
󸀠

(𝑡) 𝑥 (𝑡)] ≤ 𝛿 (𝑥
0
, 𝛼
1
, 𝛼
2
) fl

𝑉 (𝑥
0
)

𝜆min (−Ω)
. (26)

Hence, the robust stochastic stability of system (16) is
obtained by (26) via letting 𝑇 → ∞.

Remark 8. FromTheorem7, if LMI (17) has feasible solutions,
then, for any bounded parameters 𝛼̂

1
and 𝛼̂

2
on the uncertain

perturbation satisfying 𝛼̂
1
≤ 𝛼
1
and 𝛼̂

2
≤ 𝛼
2
, system (16) is

robustly stochastically stable with margins 𝛼̂
1
and 𝛼̂

2
.

3.2. Robust Stabilization Criteria. In this subsection, a suffi-
cient condition about robust stochastic stabilization via LMI
will be given.

Theorem 9. System (5) with margins 𝛼
1
and 𝛼

2
is robustly

stochastically stabilizable if there exist real matrices 𝑌 and𝑋 >
0 and a real scalar 𝛽 > 0 such that

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

−𝑋 𝛼
1
𝑋𝐻
󸀠

𝛼
2
𝑋𝐻
󸀠

𝐽
󸀠

1
𝐽
󸀠

2
0

∗ −

1

2

𝛽𝐼 0 0 0 0

∗ ∗ −

1

2

𝛽𝐼 0 0 0

∗ ∗ ∗ −

1

2

𝑋 0 0

∗ ∗ ∗ ∗ −

1

2

𝑋 0

∗ ∗ ∗ ∗ ∗ 𝛽𝐼 − 𝑋

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0 (27)

holds, where

𝐽
1
= 𝐴𝑋 + 𝐵𝑌,

𝐽
2
= 𝐶𝑋 + 𝐷𝑌.

(28)

In this case, 𝑢(𝑡) = 𝐾𝑥(𝑡) = 𝑌𝑋
−1

𝑥(𝑡) is a robustly
stochastically stabilizing control law.
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Proof. We consider synthesizing a state feedback controller
𝑢(𝑡) = 𝐾𝑥(𝑡) to stabilize system (5). Substituting 𝑢(𝑡) = 𝐾𝑥(𝑡)
into system (5) yields the closed-loop system described by

𝑥 (𝑡 + 1) = 𝐴𝑥 (𝑡) + ℎ
1
(𝑡, 𝑥 (𝑡))

+ (𝐶𝑥 (𝑡) + ℎ
2
(𝑡, 𝑥 (𝑡))) 𝑤 (𝑡) ,

𝑥 (0) = 𝑥
0
∈ 𝑅
𝑛

, 𝑡 ∈ 𝑁,

(29)

where 𝐴 = 𝐴 + 𝐵𝐾 and 𝐶 = 𝐶 + 𝐷𝐾. By Theorem 7, system
(29) is robustly stochastically stable if there exists a matrix
𝑄, 0 < 𝑄 < 𝛼𝐼, such that the following LMI

Ω̃ fl
[

[

[

[

[

[

−𝑄 + 2𝛼
2

1
𝛼𝐻
󸀠

𝐻 + 2𝛼
2

2
𝛼𝐻
󸀠

𝐻 𝐴

󸀠

𝑄 𝐶

󸀠

𝑄

∗ −

1

2

𝑄 0

∗ ∗ −

1

2

𝑄

]

]

]

]

]

]

< 0

(30)

holds. Let 𝑄−1 = 𝑋 and pre- and postmultiply

diag [𝑋,𝑋,𝑋] (31)

on both sides of inequality (30), and it yields

[

[

[

[

[

[

−𝑋 + 2𝛼
2

1
𝛼𝑋𝐻
󸀠

𝐻𝑋 + 2𝛼
2

2
𝛼𝑋𝐻
󸀠

𝐻𝑋 𝑋𝐴

󸀠

𝑋𝐶

󸀠

∗ −

1

2

𝑋 0

∗ ∗ −

1

2

𝑋

]

]

]

]

]

]

< 0.

(32)

In order to transform (32) into a suitable LMI form, we set
𝛽 = 1/𝛼; then 0 < 𝑄 < 𝛼𝐼 is equivalent to

𝛽𝐼 − 𝑋 < 0, 𝛽 > 0. (33)

Combining (33) with (32) and setting the gain matrix 𝐾 =
𝑌𝑋
−1, LMI (27) is obtained. The proof is completed.

3.3. 𝐻
∞
Control. In this subsection,main result about robust

𝐻
∞

control will be given via LMI approach.

Theorem 10. Consider system (11) with margins 𝛼
1
> 0 and

𝛼
2
> 0. For the given 𝛾 > 0, if there exist real matrices 𝑋 > 0

and 𝑌 and scalar 𝛽 > 0 satisfying the following LMI,

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

−𝑋 𝐿
󸀠

𝛼
2

1
𝑋𝐻
󸀠

1
𝛼
2

2
𝑋𝐻
󸀠

2
𝐽
󸀠

1
𝐽
󸀠

2
0 0 0 0 𝐽

󸀠

1
𝐽
󸀠

2
0

∗ −𝐼 0 0 0 0 0 0 0 0 0 0 0

∗ ∗ −

1

3

𝛽𝐼 0 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ −

1

3

𝛽𝐼 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ −𝑋 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −𝑋 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼 𝐴
󸀠

0
𝐶
󸀠

0
𝑀
󸀠

𝐴
0
𝐶
0

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑋 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑋 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑋 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑋 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝛽𝐼 − 𝑋

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (34)

where 𝐽
1
= 𝐴𝑋 + 𝐵𝑌, 𝐽

2
= 𝐶𝑋 + 𝐷𝑌, then system (11) is𝐻

∞

controllable, and the robust𝐻
∞

control law is 𝑢(𝑡) = 𝐾𝑥(𝑡) =
𝑌𝑋
−1

𝑥(𝑡) for 𝑡 ∈ 𝑁.

Proof. When ](𝑡) = 0, byTheorem 9, system (11) is internally
stabilizable via 𝑢(𝑡) = 𝐾𝑥(𝑡) = 𝑌𝑋−1𝑥(𝑡), because LMI (34)
implies LMI (27). Next, we only need to show ‖𝑇‖ < 𝛾.

Take 𝑢(𝑡) = 𝐾𝑥(𝑡) and choose the Lyapunov function
𝑉(𝑥(𝑡)) = 𝑥

󸀠

(𝑡)𝑄𝑥(𝑡), where

0 < 𝑄 < 𝛼𝐼, 𝛼 > 0 (35)

for some 𝛼 > 0 to be determined; then for the system

𝑥 (𝑡 + 1) = 𝐴𝑥 (𝑡) + 𝐴
0
] (𝑡) + ℎ

1
(𝑡, 𝑥 (𝑡))

+ (𝐶𝑥 (𝑡) + 𝐶
0
] (𝑡) + ℎ

2
(𝑡, 𝑥 (𝑡))) 𝑤 (𝑡) ,

𝑧 (𝑡) = [

𝐿𝑥 (𝑡)

𝑀] (𝑡)
] ,

𝑥 (0) = 𝑥
0
∈ 𝑅
𝑛

, 𝑡 ∈ 𝑁

(36)
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with 𝐴 = 𝐴 + 𝐵𝐾 and 𝐶 = 𝐶 + 𝐷𝐾, we have, with 𝑥(𝑡) and
](𝑡) independent of 𝑤(𝑡), in mind that

𝐸Δ𝑉 (𝑥 (𝑡)) = 𝐸 [𝑉 (𝑥 (𝑡 + 1)) − 𝑉 (𝑥 (𝑡))]

= 𝐸 [𝑥
󸀠

(𝑡 + 1)𝑄𝑥 (𝑡 + 1) − 𝑥
󸀠

(𝑡) 𝑄𝑥 (𝑡)]

= 𝐸 {𝑥
󸀠

(𝑡) [𝐴

󸀠

𝑄𝐴 + 𝐶

󸀠

𝑄𝐶 − 𝑄]𝑥 (𝑡)

+ 𝑥
󸀠

(𝑡) 𝐴

󸀠

𝑄ℎ
1
(𝑡, 𝑥 (𝑡)) + 𝑥

󸀠

(𝑡) 𝐶

󸀠

𝑄ℎ
2
(𝑡, 𝑥 (𝑡))

+ 𝑥
󸀠

(𝑡) [𝐴

󸀠

𝑄𝐴
0
+ 𝐶

󸀠

𝑄𝐶
0
] ] (𝑡)

+ ℎ
󸀠

1
(𝑡, 𝑥 (𝑡)) 𝑄𝐴𝑥 (𝑡) + ℎ

󸀠

1
(𝑡, 𝑥 (𝑡)) 𝑄ℎ

1
(𝑡, 𝑥 (𝑡))

+ ℎ
󸀠

1
(𝑡, 𝑥 (𝑡)) 𝑄𝐴

0
] (𝑡) + ℎ󸀠

2
(𝑡, 𝑥 (𝑡)) 𝑄𝐶𝑥 (𝑡)

+ ℎ
󸀠

2
(𝑡, 𝑥 (𝑡)) 𝑄ℎ

2
(𝑡, 𝑥 (𝑡)) + ℎ

󸀠

2
(𝑡, 𝑥 (𝑡)) 𝑄𝐶

0
] (𝑡)

+ ]󸀠 (𝑡) (𝐴󸀠
0
𝑄𝐴
0
+ 𝐶
󸀠

0
𝑄𝐶
0
) ] (𝑡)

+ ]󸀠 (𝑡) [𝐴󸀠
0
𝑄𝐴 + 𝐶

󸀠

0
𝑄𝐶] 𝑥 (𝑡)

+ ]󸀠 (𝑡) 𝐴󸀠
0
𝑄ℎ
1
(𝑡, 𝑥 (𝑡)) + ]󸀠 (𝑡) 𝐶󸀠

0
𝑄ℎ
2
(𝑡, 𝑥 (𝑡))} .

(37)

Set 𝑥
0
= 0, and then for any ](𝑡) ∈ 𝑙2

𝑤
(𝑁, 𝑅
𝑝

),

‖𝑧 (𝑡)‖
2

𝑙
2

𝑤
(𝑁
𝑇
,𝑅
𝑝
)
− 𝛾
2

‖] (𝑡)‖2
𝑙
2

𝑤
(𝑁
𝑇
,𝑅
𝑞
)

= 𝐸

𝑇

∑

𝑡=0

[𝑥
󸀠

(𝑡) 𝐿
󸀠

𝐿𝑥 (𝑡) + ]󸀠 (𝑡)𝑀󸀠𝑀] (𝑡)

− 𝛾
2]󸀠 (𝑡) ] (𝑡) + Δ𝑉 (𝑡)] − 𝑥󸀠 (𝑇)𝑄𝑥 (𝑇)

≤ 𝐸

𝑇

∑

𝑡=0

{𝑥
󸀠

(𝑡) 𝐿
󸀠

𝐿𝑥 (𝑡) + ]󸀠 (𝑡)𝑀󸀠𝑀] (𝑡)

− 𝛾
2]󸀠 (𝑡) ] (𝑡) + ]󸀠 (𝑡) (𝐴󸀠

0
𝑄𝐴
0
+ 𝐶
󸀠

0
𝑄𝐶
0
) ] (𝑡)

+ 𝑥
󸀠

(𝑡) [𝐴

󸀠

𝑄𝐴 + 𝐶

󸀠

𝑄𝐶 − 𝑄]𝑥 (𝑡)

+ 𝑥
󸀠

(𝑡) 𝐴

󸀠

𝑄ℎ
1
(𝑡, 𝑥 (𝑡)) + 𝑥

󸀠

(𝑡) 𝐶

󸀠

𝑄ℎ
2
(𝑡, 𝑥 (𝑡))

+ 𝑥
󸀠

(𝑡) [𝐴𝑄𝐴
0
+ 𝐶

󸀠

𝑄𝐶
0
] ] (𝑡)

+ ℎ
󸀠

1
(𝑡, 𝑥 (𝑡)) 𝑄𝐴𝑥 (𝑡) + ℎ

󸀠

1
(𝑡, 𝑥 (𝑡)) 𝑄ℎ

1
(𝑡, 𝑥 (𝑡))

+ ℎ
󸀠

1
(𝑡, 𝑥 (𝑡)) 𝑄𝐴

0
] (𝑡) + ℎ󸀠

2
(𝑡, 𝑥 (𝑡)) 𝑄𝐶𝑥 (𝑡)

+ ℎ
󸀠

2
(𝑡, 𝑥 (𝑡)) 𝑄ℎ

2
(𝑡, 𝑥 (𝑡)) + ℎ

󸀠

2
(𝑡, 𝑥 (𝑡)) 𝑄𝐶

0
] (𝑡)

+ ]󸀠 (𝑡) 𝐴󸀠
0
𝑄ℎ
1
(𝑡, 𝑥 (𝑡)) + ]󸀠 (𝑡) 𝐶󸀠

0
𝑄ℎ
2
(𝑡, 𝑥 (𝑡))

+ ]󸀠 (𝑡) [𝐴󸀠
0
𝑄𝐴 + 𝐶

󸀠

0
𝑄𝐶] 𝑥 (𝑡)} .

(38)

Using Lemma 6 and setting 𝑥󸀠(𝑡)𝐴󸀠 = 𝑈󸀠, ℎ
1
(𝑡, 𝑥(𝑡)) = 𝑊,

and𝑁 = 𝑄 > 0, we have

𝑥
󸀠

(𝑡) 𝐴

󸀠

𝑄ℎ
1
(𝑡, 𝑥 (𝑡)) + ℎ

󸀠

1
(𝑡, 𝑥 (𝑡)) 𝑄𝐴𝑥 (𝑡)

≤ 𝑥
󸀠

(𝑡) 𝐴

󸀠

𝑄𝐴𝑥 (𝑡) + ℎ
󸀠

1
(𝑡, 𝑥 (𝑡)) 𝑄ℎ

1
(𝑡, 𝑥 (𝑡)) .

(39)

Similarly, the following inequalities can also be obtained:

𝑥
󸀠

(𝑡) 𝐶

󸀠

𝑄ℎ
2
(𝑡, 𝑥 (𝑡)) + ℎ

󸀠

2
(𝑡, 𝑥 (𝑡)) 𝑄𝐶𝑥 (𝑡)

≤ 𝑥
󸀠

(𝑡) 𝐶

󸀠

𝑄𝐶𝑥 (𝑡) + ℎ
󸀠

2
(𝑡, 𝑥 (𝑡)) 𝑄ℎ

2
(𝑡, 𝑥 (𝑡)) ,

ℎ
󸀠

1
(𝑡, 𝑥 (𝑡)) 𝑄𝐴

0
] (𝑡) + ]󸀠 (𝑡) 𝐴󸀠

0
𝑄ℎ
1
(𝑡, 𝑥 (𝑡))

≤ ℎ
󸀠

1
(𝑡, 𝑥 (𝑡)) 𝑄ℎ

1
(𝑡, 𝑥 (𝑡)) + ]󸀠 (𝑡) 𝐴󸀠

0
𝑄𝐴
0
] (𝑡) ,

ℎ
󸀠

2
(𝑡, 𝑥 (𝑡)) 𝑄𝐶

0
] (𝑡) + ]󸀠 (𝑡) 𝐶󸀠

0
𝑄ℎ
2
(𝑡, 𝑥 (𝑡))

≤ ℎ
󸀠

2
(𝑡, 𝑥 (𝑡)) 𝑄ℎ

2
(𝑡, 𝑥 (𝑡)) + ]󸀠 (𝑡) 𝐶󸀠

0
𝑄𝐶
0
] (𝑡) .

(40)

Substituting (39)-(40) into inequality (38) and considering
(35), it yields

‖𝑧 (𝑡)‖
2

𝑙
2

𝑤
(𝑁
𝑇
,𝑅
𝑝
)
− 𝛾
2

‖] (𝑡)‖2
𝑙
2

𝑤
(𝑁
𝑇
,𝑅
𝑞
)
≤ 𝐸

𝑇

∑

𝑡=0

{𝑥
󸀠

(𝑡) [−𝑄

+ 2𝐴

󸀠

𝑄𝐴 + 2𝐶

󸀠

𝑄𝐶 + 𝐿
󸀠

𝐿 + 3𝛼
2

1
𝛼𝐻
󸀠

1
𝐻
1

+ 3𝛼
2

2
𝛼𝐻
󸀠

2
𝐻
2
] 𝑥 (𝑡) + 𝑥

󸀠

(𝑡) [𝐴

󸀠

𝑄𝐴
0
+ 𝐶

󸀠

𝑄𝐶
0
] ] (𝑡)

+ ]󸀠 (𝑡) [𝐴
0
𝑄𝐴 + 𝐶

0
𝑄𝐶] 𝑥

󸀠

(𝑡) + ] (𝑡) (2𝐴󸀠
0
𝑄𝐴
0

+ 2𝐶
󸀠

0
𝑄𝐶
0
− 𝛾
2

𝐼 +𝑀
󸀠

𝑀) ] (𝑡)} = 𝐸
𝑇

∑

𝑡=0

[

𝑥 (𝑡)

] (𝑡)
]

󸀠

⋅ Ξ [

𝑥 (𝑡)

] (𝑡)
] ,

(41)

where

Ξ fl [
Ξ
11
Ξ
12

∗ Ξ
22

] (42)

with

Ξ
11
= −𝑄 + 2𝐴

󸀠

𝑄𝐴 + 2𝐶

󸀠

𝑄𝐶 + 𝐿
󸀠

𝐿 + 3𝛼
2

1
𝛼𝐻
󸀠

1
𝐻
1

+ 3𝛼
2

2
𝛼𝐻
󸀠

2
𝐻
2
,

Ξ
12
= 𝐴

󸀠

𝑄𝐴
0
+ 𝐶

󸀠

𝑄𝐶
0
,

Ξ
22
= 2𝐴
󸀠

0
𝑄𝐴
0
+ 2𝐶
󸀠

0
𝑄𝐶
0
− 𝛾
2

𝐼 +𝑀
󸀠

𝑀.

(43)

Let 𝑇 → ∞ in (41); then we have

‖𝑧 (𝑡)‖
2

𝑙
2

𝑤
(𝑁,𝑅
𝑝
)
− 𝛾
2

‖] (𝑡)‖2
𝑙
2

𝑤
(𝑁,𝑅
𝑞
)

≤ 𝐸

∞

∑

𝑡=0

[

𝑥 (𝑡)

] (𝑡)
]

󸀠

Ξ[

𝑥 (𝑡)

] (𝑡)
] .

(44)
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It is easy to see that if Ξ < 0, then ‖𝑇‖ < 𝛾 for system (11).
Next, we give an LMI sufficient condition for Ξ < 0. Notice
that

Ξ = [

Ξ
11
− 𝐴

󸀠

𝑄𝐴 𝐶

󸀠

𝑄𝐶
0

∗ Ξ
22
− 𝐴
󸀠

0
𝑄𝐴
0

]

+ [

𝐴

󸀠

𝐴
󸀠

0

]𝑄 [𝐴 + 𝐵𝐾 𝐴
0
] < 0

⇐⇒

[

[

[

[

Ξ
11
− 𝐴

󸀠

𝑄𝐴 𝐶

󸀠

𝑄𝐶
0

𝐴

󸀠

∗ Ξ
22
− 𝐴
󸀠

0
𝑄𝐴
0
𝐴
0

∗ ∗ −𝑄
−1

]

]

]

]

< 0

⇐⇒

[

[

[

[

[

[

[

Ξ̃
11
0 𝐴

󸀠

𝐶

󸀠

∗ Ξ̃
22
𝐴
0
𝐶
0

∗ ∗ −𝑄
−1

0

∗ ∗ ∗ −𝑄
−1

]

]

]

]

]

]

]

< 0,

(45)

where

Ξ̃
11
= Ξ
11
− 𝐴

󸀠

𝑄𝐴 − 𝐶

󸀠

𝑄𝐶,

Ξ̃
22
= Ξ
22
− 𝐴
󸀠

0
𝑄𝐴
0
− 𝐶
󸀠

0
𝑄𝐶
0
.

(46)

Using Lemma 5, Ξ < 0 is equivalent to

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

−𝑄 𝐿
󸀠

𝛼
2

1
𝐻
󸀠

1
𝛼
2

2
𝐻
󸀠

2
𝐴

󸀠

𝑄 𝐶

󸀠

𝑄 0 0 0 0 𝐴

󸀠

𝐶

󸀠

∗ −𝐼 0 0 0 0 0 0 0 0 0 0

∗ ∗ −

1

3𝛼

𝐼 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ −

1

3𝛼

𝐼 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ −𝑄 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −𝑄 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼 𝐴
0
𝑄 𝐶
0
𝑄 𝑀

󸀠

𝐴
0
𝐶
0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑄 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑄 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑄
−1

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑄
−1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0. (47)

It is obvious that seeking 𝐻
∞

gain matrix 𝐾 needs to solve
LMIs (47) and𝑄−𝛼𝐼 < 0. Setting𝑄−1 = 𝑋 and 𝛽 = 1/𝛼, and
pre- and postmultiplying

diag [𝑋, 𝐼, 𝐼, 𝐼, 𝑋,𝑋, 𝐼, 𝑋,𝑋, 𝐼, 𝐼, 𝐼] (48)
on both sides of (47) and considering (35), (34) is obtained
immediately. The proof is completed.

4. Numerical Examples

This section presents two numerical examples to demonstrate
the validity of our main results described above.

Example 1. Consider system (5) with parameters as

𝐴 = [

0.8 0.3

0.4 0.9

] ,

𝐶 = [

0.3 0.2

0.4 0.2

] ,

𝐻
1
= 𝐻
2
= [

1 0

0 1

] ,

𝐵 = 𝐷 = [

1

1

] ,

𝑥 (0) = [

𝑥
1
(0)

𝑥
2
(0)

] = [

50

−50

] .

(49)

For the unforced system (16) with 𝛼
1
= 𝛼
2
= 0.3, its

corresponding state locus diagram is made in Figure 1. From
Figure 1, it is easy to see that the status values are of serious
divergences through 50 iterations.Hence the unforced system
is not stable.

To design a feedback controller such that the closed-loop
system is stochastically stable, usingMatlab LMI Toolbox, we
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Figure 1: State trajectories of the autonomous system with 𝛼 = 0.3.

x
1
an
d
x
2

−50

−40

−30

−20

−10

0

10

20

30

40

50

2 4 6 8 10 12 14 16 18 200

t (sec)

Figure 2: State trajectories of the closed-loop system with 𝛼 = 0.3.

find that a symmetric, positive definitematrix𝑋, a realmatrix
𝑌, and a scalar 𝛽 given by

𝑋 = [

3.318 0.177

0.177 1.920

] ,

𝑌 = [−1.587 −0.930] ,

𝛽 = 1.868

(50)

solve LMI (27). So we get the feedback gain 𝐾 =

[−0.455 −0.443]. Submitting

𝑢 (𝑡) = [−0.455 −0.443] [

𝑥
1
(𝑡)

𝑥
2
(𝑡)

] (51)

into system (5), the state trajectories of the closed-loop system
are shown as in Figure 2.

From Figure 2, one can find that the controlled system
achieves stability using the proposed controller. Meanwhile,

x
1
an
d
x
2

5 10 15 20 25 30 35 40 45 500

t (sec)

−6000

−5000

−4000

−3000

−2000

−1000

0

1000

2000

3000

Figure 3: State trajectories of the autonomous system with 𝛼 = 0.1.

in the case 𝛼 ≤ 0.3, the controlled system maintains
stabilization.

In order to show the robustness, we use different values
of 𝛼 in Example 1 below. We reset 𝛼 = 0.1 and 𝛼 =
1 in system (5) with the corresponding trajectories shown
in Figures 3 and 4, respectively. By comparing Figures 1,
3, and 4, intuitively speaking, the more value 𝛼 takes,
the more divergence the autonomous system (5) has. By
using Theorem 9, we can get that, under the condition
of 𝛼 = 0.1 and 𝛼 = 1, the corresponding controllers
are 𝑢
𝛼=0.1
(𝑡) = [−0.4750 −0.4000] [

𝑥
1
(𝑡)

𝑥
2
(𝑡)
] and 𝑢

𝛼=1
(𝑡) =

[−0.4742 −0.4016] [
𝑥
1
(𝑡)

𝑥
2
(𝑡)
], respectively. Substitute 𝑢

𝛼=0.1
(𝑡)

and 𝑢
𝛼=1
(𝑡) into system (5) in turn, and the corresponding

closed-loop system is shown in Figures 5 and 6, respectively.
From the simulation results, we can see that the larger

the value 𝛼 takes, the slower the system converges. This
observation is reasonable, because the larger uncertainty the
system has, the stronger the robustness of controller requires.

Example 2. Consider system (11) with parameters as

𝐶
0
= [

0.2 0

0 0.1

] ,

𝐴
0
= [

0.3 0

0 0.3

] ,

𝐿 = [

0.2 0

0 0.2

] ,

𝑀 = [

0.2 0

0 0.2

] ,

𝐻
1
= 𝐻
2
= [

0.8 0

0 0.8

] .

(52)
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Figure 4: State trajectories of the autonomous system with 𝛼 = 1.
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Figure 5: State trajectories of the closed-loop system with 𝛼 = 0.1.
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Figure 6: State trajectories of the closed-loop system with 𝛼 = 1.
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Figure 7: State trajectories of the closed-loop system with 𝛼 = 0.3.

𝐴, 𝐵, 𝐶,𝐷 have the same values as in Example 1. Setting 𝐻
∞

norm bound 𝛾 = 0.6 and 𝛼
1
= 𝛼
2
= 0.3, a group of the

solutions for LMI (34) are

𝑋 = [

55.257 3.206

3.206 31.482

] ,

𝑌 = [−26.412 −15.475] ,

𝛽 = 30.596,

(53)

and the𝐻
∞

controller is

𝑢 (𝑡) = 𝐾𝑥 (𝑡) = 𝑌𝑋
−1

𝑥 (𝑡)

= [−0.452 −0.446] [

𝑥
1
(𝑡)

𝑥
2
(𝑡)

] .

(54)

The simulation result about Theorem 10 is described in
Figure 7.This further verifies the effectiveness ofTheorem 10.

In order to give a comparison with 𝛼 = 0.3, we set 𝛼 = 0.1
and 𝛼 = 1. By using Theorem 10, the 𝐻

∞
controller for 𝛼 =

0.1 is 𝑢(𝑡) = [−0.4737 −0.4076] [ 𝑥1(𝑡)
𝑥
2
(𝑡)
] with the simulation

result given in Figure 8. When 𝛼 = 1, LMI (34) is infeasible;
that is, in this case, system (11) is not𝐻

∞
controllable.

5. Conclusion

This paper has discussed robust stability, stabilization, and
𝐻
∞

control of a class of nonlinear discrete time stochastic
systems with system state, control input, and external distur-
bance dependent noise. Sufficient conditions for stochastic
stability, stabilization, and robust𝐻

∞
control law have been,

respectively, given in terms of LMIs. Two examples have also
been supplied to show the effectiveness of our main results.
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