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Let 𝑋 be a nonempty set. For a fixed subset 𝑌 of 𝑋, let Fix(𝑋, 𝑌) be the set of all self-maps on 𝑋 which fix all elements in 𝑌. Then
Fix(𝑋, 𝑌) is a regular monoid under the composition of maps. In this paper, we characterize the natural partial order on Fix(𝑋, 𝑌)

and this result extends the result due to Kowol and Mitsch. Further, we find elements which are compatible and describe minimal
and maximal elements.

1. Introduction

For any semigroup 𝑆, the natural partial order on𝐸(𝑆), the set
of all idempotents on 𝑆, is defined by

𝑒 ≤ 𝑓 iff 𝑒 = 𝑒𝑓 = 𝑓𝑒. (1)

In 1980, Hartwig [1] and Nambooripad [2] proved that if
𝑆 is a regular semigroup, then the relation

𝑎 ≤ 𝑏 iff 𝑎 = 𝑒𝑏 = 𝑏𝑓 for some 𝑒, 𝑓 ∈ 𝐸 (𝑆) (∗)

is a partial order on 𝑆which extends the usual ordering of the
set 𝐸(𝑆).

Later in 1986, the natural partial order on a regular
semigroup was further extended to any semigroup 𝑆 by
Mitsch [3] as follows:

𝑎 ≤ 𝑏 iff 𝑎 = 𝑥𝑏 = 𝑏𝑦,

𝑥𝑎 = 𝑎 for some 𝑥, y ∈ 𝑆
1
.

(2)

Let 𝑋 be a set and 𝐵(𝑋) denote the semigroup of binary
relations on the set 𝑋 under the composition of relations. A
partial transformation semigroup is the collection of functions
from a subset of𝑋 into𝑋with composition which is denoted
by 𝑃(𝑋). Let 𝑇(𝑋) be the set of all transformations from 𝑋

into itself and it is called the full transformation semigroup on
𝑋. Then 𝑃(𝑋) and 𝑇(𝑋) are subsemigroups of 𝐵(𝑋). It is well
known that 𝑃(𝑋) and 𝑇(𝑋) are regular semigroups.

In 1986, Kowol and Mitsch [4] characterized the natural
partial order on 𝑇(𝑋) in terms of images and kernels. They
also proved that an element 𝛼 ∈ 𝑇(𝑋) is maximal with
respect to the natural order if and only if 𝛼 is surjective or
injective; 𝛼 is minimal if and only if 𝛼 is a constant map.
Moreover, they described lower and upper bounds for two
transformations and gave necessary and sufficient conditions
for their existence.

Later in 2006, Namnak and Preechasilp [5] studied two
natural partial orders on B(𝑋) and characterized when two
elements of 𝐵(𝑋) are related under these orders. They also
described the minimality, maximality, left compatibility, and
right compatibility of elements with respect to each order.

Let 𝑌 be a subset of𝑋. Recently, Fernandes and Sanwong
[6] defined

𝑃𝑇 (𝑋, 𝑌) = {𝛼 ∈ 𝑃 (𝑋) : 𝑋𝛼 ⊆ 𝑌} , (3)

where 𝑋𝛼 denotes the image of 𝛼. Moreover, they defined
𝐼(𝑋, 𝑌) to be the set of all injective transformations in
𝑃𝑇(𝑋, 𝑌). Hence 𝑃𝑇(𝑋, 𝑌) and 𝐼(𝑋, 𝑌) are subsemigroups of
𝑃(𝑋).
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In [7], Sangkhanan and Sanwong described natural par-
tial order ≤ on 𝑃𝑇(𝑋, 𝑌) and 𝐼(𝑋, 𝑌) in terms of domains,
images, and kernels. They also compared ≤ with the subset
order and characterized the meet and join of these two
orders. Furthermore, they found elements of 𝑃𝑇(𝑋, 𝑌) and
𝐼(𝑋, 𝑌) which are compatible and determined the minimal
and maximal elements.

Let 𝑌 be a fixed subset of𝑋 and

Fix (𝑋, 𝑌) = {𝛼 ∈ 𝑇 (𝑋) : 𝑦𝛼 = 𝑦 ∀𝑦 ∈ 𝑌} . (4)

In 2013, Honyam and Sanwong [8] proved that Fix(𝑋, 𝑌) is
a regular semigroup and they also determined its Green’s
relations and ideals. Moreover, they proved that Fix(𝑋, 𝑌) is
never isomorphic to 𝑇(𝑍) for any set 𝑍 when 0 ̸= 𝑌 ⊊ 𝑋,
and every semigroup 𝑆 is isomorphic to a subsemigroup of
Fix(𝑋󸀠, 𝑌󸀠) for some appropriate sets 𝑋

󸀠 and 𝑌
󸀠 with 𝑌

󸀠
⊆

𝑋
󸀠. Note that this also follows trivially from the fact that

𝑇(𝑋) embeds in Fix(𝑋 ∪ 𝑍,𝑍) for any set 𝑍 with 𝑋 ∩ 𝑍 =

0. Recently, the authors in [9] proved that there are only
three types of maximal subsemigroups of Fix(𝑋, 𝑌) and these
maximal subsemigroups coincide with the maximal regular
subsemigroups when𝑋\𝑌 is a finite set with |𝑋\𝑌| ≥ 2.They
also gave necessary and sufficient conditions for Fix(𝑋, 𝑌) to
be factorizable, unit-regular, and directly finite.

In this paper, we characterize the natural partial order
on Fix(𝑋, 𝑌) and find elements which are compatible under
this order in Section 3. In Section 4, we describe the
minimal elements, the maximal elements, and the covering
elements. Moreover, we find the number of upper covers
of minimal elements and the number of lower covers of
maximal elements.

2. Preliminaries and Notations

In [8], the authors proved that Fix(𝑋, 𝑌) is a regular subsemi-
group of 𝑇(𝑋). Note that Fix(𝑋, 𝑌) contains 1

𝑋
, the identity

map on 𝑋. If 𝑌 = 0, then Fix(𝑋, 𝑌) = 𝑇(𝑋); and if |𝑋| = 1

or 𝑋 = 𝑌, then Fix(𝑋, 𝑌) consists of one element, 1
𝑋
. So,

throughout this paper we will consider the case 𝑌 ⊊ 𝑋 and
|𝑋| > 1.

For any 𝛼 ∈ 𝑇(𝑋), the symbol 𝜋
𝛼
denotes the partition of

𝑋 induced by the map 𝛼, namely,

𝜋
𝛼
= {𝑥𝛼

−1
: 𝑥 ∈ 𝑋𝛼} . (5)

For 𝛼, 𝛽 ∈ 𝑇(𝑋),A ⊆ 𝜋
𝛼
, andB ⊆ 𝜋

𝛽
, we say thatA refines

B if for each 𝐴 ∈ A there exists 𝐵 ∈ B such that 𝐴 ⊆ 𝐵.
Throughout this paper, unless otherwise stated, let 𝑌 =

{𝑦
𝑖
: 𝑖 ∈ 𝐼}.
For each 𝛼 ∈ Fix(𝑋, 𝑌), we have 𝑦

𝑖
𝛼 = 𝑦

𝑖
for all 𝑖 ∈ 𝐼. So

𝑌 = 𝑌𝛼 ⊆ 𝑋𝛼. If 𝛼 ∈ Fix(𝑋, 𝑌), then we write

𝛼 = (

𝐴
𝑖
𝐵
𝑗

𝑦
𝑖

𝑏
𝑗

) (6)

and take as understood that the subscripts 𝑖 and 𝑗 belong to
the index sets 𝐼 and 𝐽, respectively, such that 𝑋𝛼 = {𝑦

𝑖
: 𝑖 ∈

𝐼}∪{𝑏
𝑗
: 𝑗 ∈ 𝐽},𝑦

𝑖
𝛼
−1

= 𝐴
𝑖
, and 𝑏

𝑗
𝛼
−1

= 𝐵
𝑗
.Thus𝐴

𝑖
∩𝑌 = {𝑦

𝑖
}

for all 𝑖 ∈ 𝐼, 𝐵
𝑗
⊆ 𝑋 \ 𝑌 for all 𝑗 ∈ 𝐽 and {𝑏

𝑗
: 𝑗 ∈ 𝐽} ⊆ 𝑋 \ 𝑌.

Here 𝐽 can be an empty set.
An idempotent 𝑒 in a semigroup 𝑆 is said to be minimal if

𝑒 has the property 𝑓 ∈ 𝐸(𝑆) and 𝑓 ≤ 𝑒 implies 𝑓 = 𝑒.
In [8] the authors showed that

𝐸
𝑚

= {(

𝐴
𝑖

𝑦
𝑖

) : {𝐴
𝑖
: 𝑖 ∈ 𝐼} is a partition of𝑋 with 𝑦

𝑖

∈ 𝐴
𝑖
}

(7)

is the set of all minimal idempotents in Fix(𝑋, 𝑌) and it is
an ideal of Fix(𝑋, 𝑌). We note that 𝐸

𝑚
is simply the set {𝛼 ∈

Fix(𝑋, 𝑌) : 𝑋𝛼 = 𝑌} and 𝛼 is an idempotent in Fix(𝑋, 𝑌) if
and only if 𝑥𝛼 = 𝑥 for all 𝑥 ∈ 𝑋𝛼 \ 𝑌.

3. Natural Partial Order on Fix(𝑋,𝑌)

Kowol and Mitsch [4] gave a characterization of the natural
partial order on 𝑇(𝑋). Later in 1994, Higgins [10] showed
that if 𝑇 is a regular subsemigroup of a semigroup 𝑆, then
the natural partial order on 𝑇 is the restriction to 𝑇 of the
natural partial order on 𝑆. Herewe describe the natural partial
order on Fix(𝑋, 𝑌) which is a regular subsemigroup of 𝑇(𝑋)

without making use of Higgins’ result and when we take 𝑌 =

0, we recapture the result above by Kowol and Mitsch.
We note that if 𝛼, 𝛽 ∈ Fix(𝑋, 𝑌) and 𝛼 = 𝛽𝛾 for some

𝛾 ∈ Fix(𝑋, 𝑌), then 𝜋
𝛽
refines 𝜋

𝛼
.

Since Fix(𝑋, 𝑌) is regular, we use (∗) to study the natural
partial order on this semigroup.

Theorem 1. Let 𝛼, 𝛽 ∈ Fix(𝑋, 𝑌). Then 𝛼 ≤ 𝛽 if and only if the
following statements hold:

(1) 𝑋𝛼 ⊆ 𝑋𝛽;
(2) 𝜋
𝛽
refines 𝜋

𝛼
;

(3) if 𝑥𝛽 ∈ 𝑋𝛼, then 𝑥𝛽 = 𝑥𝛼.

Proof. Suppose that 𝛼 ≤ 𝛽. Then, by (∗), we have

𝛼 = 𝜆𝛽 = 𝛽𝛾 (8)

for some 𝜆, 𝛾 ∈ 𝐸(Fix(𝑋, 𝑌)). Thus 𝑋𝛼 = (𝑋𝜆)𝛽 ⊆ 𝑋𝛽. Since
𝛼 = 𝛽𝛾, we get that 𝜋

𝛽
refines 𝜋

𝛼
. Now, let 𝑥𝛽 ∈ 𝑋𝛼. Then

𝑥𝛽 = 𝑥
󸀠
𝛼 for some 𝑥

󸀠
∈ 𝑋 and thus 𝑥𝛽 = 𝑥

󸀠
𝛼 = 𝑥

󸀠
𝛽𝛾 =

(𝑥
󸀠
𝛽)𝛾. Hence 𝑥𝛽 ∈ 𝑋𝛾 and then 𝑥𝛼 = 𝑥𝛽𝛾 = 𝑥𝛽 since 𝛾 is

an idempotent.
Conversely, assume that conditions (1)–(3) hold. By con-

dition (1), we can write

𝛼 = (

𝐴
𝑖
𝐵
𝑗

𝑦
𝑖

𝑏
𝑗

) ,

𝛽 = (

𝐴
󸀠

𝑖
𝐶
𝑗

𝐶
𝑘

𝑦
𝑖

𝑏
𝑗

𝑏
𝑘

) ,

(9)

where𝑦
𝑖
∈ 𝐴
𝑖
∩𝐴
󸀠

𝑖
, 𝑏
𝑗
, 𝑏
𝑘
∈ 𝑋\𝑌, and𝐵

𝑗
, 𝐶
𝑗
, 𝐶
𝑘
⊆ 𝑋\𝑌. Since

𝑦
𝑖
∈ 𝐴
𝑖
∩𝐴
󸀠

𝑖
and 𝜋

𝛽
refines 𝜋

𝛼
, we obtain𝐴

󸀠

𝑖
⊆ 𝐴
𝑖
for all 𝑖 ∈ 𝐼.
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If 𝐽 = 0, then define 𝜆 = 𝛼 and thus 𝛼 = 𝜆𝛽. If 𝐽 ̸= 0, then,
for each 𝑗 ∈ 𝐽, let 𝑐

𝑗
∈ 𝐶
𝑗
. So 𝑐
𝑗
𝛽 = 𝑏
𝑗
∈ 𝑋𝛼. By condition (3),

𝑐
𝑗
𝛼 = 𝑐
𝑗
𝛽 = 𝑏
𝑗
; that is, 𝑐

𝑗
∈ 𝐵
𝑗
and hence 𝐶

𝑗
⊆ 𝐵
𝑗
. Define

𝜆 = (

𝐴
𝑖
𝐵
𝑗

𝑦
𝑖

𝑐
𝑗

) . (10)

We get 𝜆 ∈ 𝐸(Fix(𝑋, 𝑌)) and 𝛼 = 𝜆𝛽.
If𝐾 = 0, then 𝛼 = 𝛽1

𝑋
. If𝐾 ̸= 0, then, for each 𝑘 ∈ 𝐾, we

choose 𝑐
𝑘
∈ 𝐶
𝑘
.

Case 1. Consider 𝑋𝛽 = 𝑋. Then 𝑋 \ 𝑋𝛼 = {𝑏
𝑘
: 𝑘 ∈ 𝐾}. We

define 𝛾 ∈ Fix(𝑋, 𝑌) by

𝑥𝛾 =

{

{

{

𝑥, 𝑥 ∈ 𝑋𝛼,

𝑐
𝑘
𝛼, 𝑥 = 𝑏

𝑘
∈ 𝑋 \ 𝑋𝛼.

(11)

To prove that 𝛼 = 𝛽𝛾, let 𝑥 ∈ 𝑋. If 𝑥 ∈ 𝐴
󸀠

𝑖
for some 𝑖 or 𝑥 ∈ 𝐶

𝑗

for some 𝑗, then it is clear that 𝑥𝛼 = 𝑥𝛽𝛾. Now, if 𝑥 ∈ 𝐶
𝑘
for

some 𝑘, then 𝑥𝛽 = 𝑐
𝑘
𝛽 and thus 𝑥𝛼 = 𝑐

𝑘
𝛼 since 𝜋

𝛽
refines 𝜋

𝛼
.

So (𝑥𝛽)𝛾 = 𝑏
𝑘
𝛾 = 𝑐
𝑘
𝛼 = 𝑥𝛼. Hence𝛼 = 𝛽𝛾. It remains to show

that 𝛾 is an idempotent. Let 𝑥𝛾 ∈ 𝑋𝛾 \𝑋𝛼. Then 𝑥𝛾 = 𝑐
𝑘
𝛼 for

some 𝑘. Thus (𝑥𝛾)𝛾 = (𝑐
𝑘
𝛼)𝛾 = 𝑐

𝑘
𝛼 = 𝑥𝛾 since 𝑐

𝑘
𝛼 ∈ 𝑋𝛼.

Case 2. Consider𝑋𝛽 ⊊ 𝑋.We choose 𝑐
0
∈ 𝑋 \𝑋𝛽 and define

𝛾
󸀠
∈ Fix(𝑋, 𝑌) by

𝑥𝛾
󸀠
=

{{{{

{{{{

{

𝑥, 𝑥 ∈ 𝑋𝛼,

𝑐
𝑘
𝛼, 𝑥 = 𝑏

𝑘
∈ 𝑋𝛽 \ 𝑋𝛼,

𝑐
0
, 𝑥 ∈ 𝑋 \ 𝑋𝛽.

(12)

By the same prove as given in Case 1, we get 𝛼 = 𝛽𝛾
󸀠 and

(𝑥𝛾
󸀠
)𝛾
󸀠
= 𝑥𝛾
󸀠 for all 𝑥𝛾󸀠 ∈ 𝑋𝛽. If 𝑥𝛾󸀠 = 𝑐

0
, then (𝑥𝛾

󸀠
)𝛾
󸀠
=

𝑐
0
𝛾
󸀠
= 𝑐
0
= 𝑥𝛾
󸀠. So 𝛾

󸀠 is an idempotent. Therefore, 𝛼 ≤ 𝛽 by
(∗).

Remark 2. If 𝑌 = 0, then Fix(𝑋, 𝑌) = 𝑇(𝑋), and we have
the characterization of ≤ on 𝑇(𝑋) which first appeared in [4,
Proposition 2.3].

As a direct consequence of Theorem 1, we get the
following corollary.

Corollary 3. Let 𝛼, 𝛽 ∈ Fix(𝑋, 𝑌) with 𝛼 ≤ 𝛽. If 𝑋𝛼 \ 𝑌 =

𝑋𝛽 \ 𝑌, then 𝛼 = 𝛽.

Let 𝑆 be a semigroup. An element 𝑎 ∈ 𝑆 is said to be left
(right) compatible with respect to the partial order ≤ if 𝑎𝑏 ≤

𝑎𝑐 (𝑏𝑎 ≤ 𝑐𝑎) whenever 𝑏 ≤ 𝑐.

The following results describe all the left compatible and
right compatible elements in Fix(𝑋, 𝑌) when 0 ̸= 𝑌 ⊊ 𝑋.
We also write 𝛼 < 𝛽 instead of 𝛼 ≤ 𝛽 and 𝛼 ̸= 𝛽 for 𝛼, 𝛽 ∈

Fix(𝑋, 𝑌).

Theorem 4. Assume that 0 ̸= 𝑌 ⊊ 𝑋 and let 𝜆 ∈

Fix(𝑋, 𝑌).Then 𝜆 is left compatible if and only if 𝜆 is a minimal
idempotent or 𝜆 is surjective.

Proof. Suppose that 𝜆 is left compatible. Assume by contrary
that 𝜆 is not a minimal idempotent and 𝜆 is not surjective. So
there are 𝑎 ∈ 𝑋𝜆 \ 𝑌 and 𝑏 ∈ 𝑋 \ 𝑋𝜆. Define

𝛼 = (

𝑦
𝑖
𝑋 \ 𝑌

𝑦
𝑖

𝑎
) ,

𝛽 = (

𝑦
𝑖
𝑏 𝑋 \ (𝑌 ∪ {𝑏})

𝑦
𝑖
𝑎 𝑏

) .

(13)

Then 𝛼, 𝛽 ∈ Fix(𝑋, 𝑌) with 𝛼 < 𝛽 and thus 𝜆𝛼 ≤ 𝜆𝛽 since 𝜆

is left compatible. However, 𝑋𝜆𝛼 ̸⊆ 𝑋𝜆𝛽 since 𝑎 ∈ 𝑋𝜆𝛼 but
𝑎 ∉ 𝑋𝜆𝛽, a contradiction.

Conversely, let 𝛼 ≤ 𝛽. If 𝜆 is a minimal idempotent, then
𝜆𝛼 = 𝜆 = 𝜆𝛽. Now, assume that 𝜆 is surjective. So 𝑋𝜆𝛼 =

𝑋𝛼 ⊆ 𝑋𝛽 = 𝑋𝜆𝛽. Let 𝐴 ∈ 𝜋
𝜆𝛽
. So 𝐴 = 𝑥(𝜆𝛽)

−1
= (𝑥𝛽

−1
)𝜆
−1

for some𝑥 ∈ 𝑋𝜆𝛽. Since𝛼 ≤ 𝛽, we have that𝜋
𝛽
refines𝜋

𝛼
and

hence 𝑥𝛽−1 ⊆ 𝑥
󸀠
𝛼
−1 for some 𝑥󸀠 ∈ 𝑋𝛼. Since 𝑥󸀠 ∈ 𝑋𝛼, we get

𝑥
󸀠
= 𝑢𝛼 for some 𝑢 ∈ 𝑋 and 𝑢 = V𝜆 for some V ∈ 𝑋 because

𝜆 is surjective. Hence V𝜆𝛼 = 𝑢𝛼 = 𝑥
󸀠; that is, 𝑥󸀠 ∈ 𝑋𝜆𝛼.

Further, 𝐴 = (𝑥𝛽
−1
)𝜆
−1

⊆ (𝑥
󸀠
𝛼
−1
)𝜆
−1

= 𝑥
󸀠
(𝜆𝛼)
−1

∈ 𝜋
𝜆𝛼
,

thus 𝜋
𝜆𝛽

refines 𝜋
𝜆𝛼
. Let 𝑎𝜆𝛽 ∈ 𝑋𝜆𝛼. So (𝑎𝜆)𝛽 ∈ 𝑋𝛼 and

then 𝑎𝜆𝛽 = 𝑎𝜆𝛼. By Theorem 1, we have 𝜆𝛼 ≤ 𝜆𝛽 which
implies that 𝜆 is left compatible.

Theorem 5. The following statements hold.

(1) If |𝑌| = 1, then 𝜆 ∈ Fix(𝑋, 𝑌) is right compatible if and
only if 𝜆 is a minimal idempotent or 𝜆 is injective.

(2) If |𝑌| ≥ 2, then 𝜆 ∈ Fix(𝑋, 𝑌) is right compatible if and
only if 𝜆 is injective.

Proof. (1) Assume that 𝑌 = {𝑦} and 𝜆 is right compatible.
Suppose in the contrary that 𝜆 is not a minimal idempotent
and 𝜆 is not injective. So we can write

𝜆 = (

𝐴 𝐵
𝑗

𝑦 𝑏
𝑗

) , (14)

where 𝑦 ∈ 𝐴 and 𝐽 ̸= 0. Since 𝜆 is not injective, two cases
arise.

Case 1. Consider |𝐴| ≥ 2. Choose 𝑎 ∈ 𝐴 \ {𝑦} and 𝑐 ∈ 𝐵
𝑗0

for some 𝑗
0
∈ 𝐽. Let 𝑋 \ {𝑎, 𝑐} = {𝑥

𝑘
: 𝑘 ∈ 𝐾} and define

𝛼 ∈ Fix(𝑋, 𝑌) by

𝛼 = (

{𝑎, 𝑐} 𝑥
𝑘

𝑐 𝑥
𝑘

) ; (15)

we get 𝛼 < 1
𝑋
. Moreover, we have 𝑎(1

𝑋
𝜆) = 𝑎𝜆 = 𝑦 =

𝑦(1
𝑋
𝜆), hence there is 𝐵 ∈ 𝜋

1𝑋𝜆
such that {𝑎, 𝑦} ⊆ 𝐵.

However, {𝑎, 𝑦} ̸⊆ 𝐶 for all 𝐶 ∈ 𝜋
𝛼𝜆

since 𝑎(𝛼𝜆) = 𝑐𝜆 =

𝑏
𝑗0

̸= 𝑦 = 𝑦(𝛼𝜆).This means that 𝜋
1𝑋𝜆

does not refine 𝜋
𝛼𝜆
. By

Theorem 1, we get 𝛼𝜆 ≰ 1
𝑋
𝜆, a contradiction.
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Case 2. Consider |𝐵
𝑗0
| ≥ 2 for some 𝑗

0
∈ 𝐽. Choose 𝑎, 𝑏 ∈ 𝐵

𝑗0

such that 𝑎 ̸= 𝑏. Let 𝑋 \ {𝑎, 𝑏, 𝑦} = {𝑥
𝑘

: 𝑘 ∈ 𝐾}. Define
𝛼, 𝛽 ∈ Fix(𝑋, 𝑌) by

𝛼 = (

{𝑦, 𝑎} 𝑏 𝑥
𝑘

𝑦 𝑎 𝑥
𝑘

) ,

𝛽 = (

𝑎 𝑏 𝑦 𝑥
𝑘

𝑏 𝑎 𝑦 𝑥
𝑘

) ,

(16)

we get 𝛼 < 𝛽. Since 𝑎(𝛽𝜆) = 𝑏𝜆 = 𝑎𝜆 = 𝑏(𝛽𝜆), there is
𝐵 ∈ 𝜋

𝛽𝜆
such that {𝑎, 𝑏} ⊆ 𝐵. However, {𝑎, 𝑏} ̸⊆ 𝐶 for all

𝐶 ∈ 𝜋
𝛼𝜆

since 𝑎(𝛼𝜆) = 𝑦𝜆 = 𝑦 ̸= 𝑏
𝑗0

= 𝑎𝜆 = 𝑏(𝛼𝜆). So
𝜋
𝛽𝜆

does not refine 𝜋
𝛼𝜆
. By Theorem 1, we get 𝛼𝜆 ≰ 𝛽𝜆, a

contradiction.
Conversely, let 𝛼, 𝛽 ∈ Fix(𝑋, 𝑌) be such that 𝛼 ≤ 𝛽. If 𝜆

is a minimal idempotent, then 𝜆 = (
𝑋

𝑦 ) and 𝛼𝜆 = 𝜆 = 𝛽𝜆;
that is, 𝜆 is right compatible. Now, assume that 𝜆 is injective.
Since 𝑋𝛼 ⊆ 𝑋𝛽, we get 𝑋𝛼𝜆 ⊆ 𝑋𝛽𝜆. Let 𝐴 ∈ 𝜋

𝛽𝜆
. So

𝐴 = 𝑥(𝛽𝜆)
−1

= (𝑥𝜆
−1
)𝛽
−1 for some 𝑥 ∈ 𝑋𝛽𝜆 and hence

(𝑥𝜆
−1
)𝛽
−1

⊆ 𝑥
󸀠
𝛼
−1 for some 𝑥

󸀠
∈ 𝑋𝛼. So 𝑥

󸀠
= 𝑢𝛼 for

some 𝑢 ∈ 𝑋. Since 𝜆 is injective, {𝑥󸀠} = V𝜆−1 for some
V ∈ 𝑋𝜆 and 𝑢𝛼𝜆 = 𝑥

󸀠
𝜆 = V; that is, V ∈ 𝑋𝛼𝜆. Thus

𝑥
󸀠
𝛼
−1

= (V𝜆−1)𝛼−1 = V(𝛼𝜆)−1 ∈ 𝜋
𝛼𝜆

which implies that 𝜋
𝛽𝜆

refines 𝜋
𝛼𝜆
. Let 𝑎𝛽𝜆 ∈ 𝑋𝛼𝜆. So 𝑎𝛽𝜆 = 𝑏𝛼𝜆 for some 𝑏 ∈ 𝑋.

Since 𝜆 is injective, 𝑎𝛽 = 𝑏𝛼 and then 𝑎𝛽 ∈ 𝑋𝛼.Thus 𝑎𝛽 = 𝑎𝛼

since 𝛼 ≤ 𝛽 and that 𝑎𝛽𝜆 = 𝑎𝛼𝜆. Therefore, 𝛼𝜆 ≤ 𝛽𝜆, and we
conclude that 𝜆 is right compatible.

(2) Suppose that 𝜆 is right compatible and 𝜆 is not
injective. Write

𝜆 = (

𝐴
𝑖
𝐵
𝑗

𝑦
𝑖

𝑏
𝑗

) , (17)

where 𝑦
𝑖
∈ 𝐴
𝑖
and |𝐼| ≥ 2. Since 𝜆 is not injective, two cases

arise.

Case 1. |𝐴
𝑖0
| ≥ 2 for some 𝑖

0
∈ 𝐼. Choose 𝑎 ∈ 𝐴

𝑖0
\ {𝑦
𝑖0
} and

𝑦
𝑖1
∈ 𝑌 \ {𝑦

𝑖0
}. Let𝑋 \ {𝑦

𝑖1
, 𝑎} = {𝑥

𝑘
: 𝑘 ∈ 𝐾} and define

𝛼 = (
{𝑦
𝑖1
, 𝑎} 𝑥

𝑘

𝑦
𝑖1

𝑥
𝑘

) . (18)

Then 𝛼 < 1
𝑋
and hence 𝛼𝜆 ≤ 1

𝑋
𝜆. We can see that {𝑦

𝑖0
, 𝑎} ⊆

𝐴
𝑖0
∈ 𝜋
𝜆
= 𝜋
1𝑋𝜆

, but {𝑦
𝑖0
, 𝑎} ̸⊆ 𝐵 for all 𝐵 ∈ 𝜋

𝛼𝜆
since 𝑎𝛼𝜆 =

𝑦
𝑖1
𝜆 = 𝑦
𝑖1

̸= 𝑦
𝑖0
= 𝑦
𝑖0
𝛼𝜆. This means that 𝜋

1𝑋𝜆
does not refine

𝜋
𝛼𝜆
, a contradiction.

Case 2. |𝐵
𝑗0
| ≥ 2 for some 𝑗

0
∈ 𝐽. This is virtually identical to

Case 2 of (1) above.

4. Minimal and Maximal Elements

Let 𝑆 be a semigroup together with the partial order ≤. 𝑆 is
said to be directed downward if every pair of elements has a
lower bound. In other words, for any 𝑎 and 𝑏 in 𝑆, there exists
𝑐 in 𝑆 with 𝑐 ≤ 𝑎 and 𝑐 ≤ 𝑏. A directed upward semigroup is
defined dually.

If 𝑌 = 0, then Fix(𝑋, 𝑌) = 𝑇(𝑋) and it has neither
minimum nor maximum elements under the natural order
(see [4]). So, in Lemmas 6 and 7 we assume that 0 ̸= 𝑌 ⊊ 𝑋.

Lemma 6. Assume that 0 ̸= 𝑌 ⊊ 𝑋. Then the following
statements are equivalent.

(1) Fix(𝑋, 𝑌) has a minimum element.
(2) Fix(𝑋, 𝑌) is directed downward.
(3) |𝑌| = 1.

Proof. (1)⇒(2) This is clear.
(2)⇒(3) Assume that Fix(𝑋, 𝑌) is directed downward. Let

𝑦
𝑖1
, 𝑦
𝑖2
∈ 𝑌 and 𝐽 = 𝐼 \ {𝑖

1
, 𝑖
2
}. Consider

𝛼 = (
𝑦
𝑗

𝑦
𝑖2

(𝑋 \ 𝑌) ∪ {𝑦
𝑖1
}

𝑦
𝑗

𝑦
𝑖2

𝑦
𝑖1

) ,

𝛽 = (
𝑦
𝑗

𝑦
𝑖1

(𝑋 \ 𝑌) ∪ {𝑦
𝑖2
}

𝑦
𝑗

𝑦
𝑖1

𝑦
𝑖2

) .

(19)

We have 𝛼, 𝛽 ∈ Fix(𝑋, 𝑌) and there is 𝛾 ∈ Fix(𝑋, 𝑌) such that
𝛾 ≤ 𝛼 and 𝛾 ≤ 𝛽. By Theorem 1, 𝜋

𝛼
refines 𝜋

𝛾
and 𝜋

𝛽
refines

𝜋
𝛾
. Then there is 𝐴 ∈ 𝜋

𝛾
such that (𝑋 \ 𝑌) ∪ {𝑦

𝑖1
} ⊆ 𝐴 and

(𝑋\𝑌)∪{𝑦
𝑖2
} ⊆ 𝐴.Thus 𝑦

𝑖1
, 𝑦
𝑖2
∈ 𝐴 and hence 𝑦

𝑖1
= 𝑦
𝑖2
. Since

𝑦
𝑖1
, 𝑦
𝑖2
are arbitrary elements in 𝑌, we obtain that |𝑌| = 1.

(3)⇒(1) Assume that 𝑌 = {𝑦}. It is easy to see that 𝜃 =

(
𝑋

𝑦 ) is the minimum element in Fix(𝑋, 𝑌).

Lemma 7. Assume that 0 ̸= 𝑌 ⊊ 𝑋. Then the following
statements are equivalent.

(1) Fix(𝑋, 𝑌) has a maximum element.
(2) Fix(𝑋, 𝑌) is directed upward.
(3) |𝑋 \ 𝑌| = 1.

Proof. (1)⇒(2) This is clear.
(2)⇒(3) Assume that Fix(𝑋, 𝑌) is directed upward. Let

𝑎, 𝑏 ∈ 𝑋 \ 𝑌 and𝑋 \ {𝑎, 𝑏} = {𝑥
𝑘
: 𝑘 ∈ 𝐾}. Define

𝛼 = (

𝑎 𝑏 𝑥
𝑘

𝑏 𝑎 𝑥
𝑘

) ∈ Fix (𝑋, 𝑌) . (20)

Then there is 𝛾 ∈ Fix(𝑋, 𝑌) such that 𝛼 ≤ 𝛾 and 1
𝑋

≤ 𝛾.
Since 𝛼 and 1

𝑋
are bijective, 𝛾 is also bijective and thus 𝑏𝛾 ∈

(𝑋𝛼 \ 𝑌) ∩ (𝑋1
𝑋
\ 𝑌). So 𝑎 = 𝑏𝛼 = 𝑏𝛾 = 𝑏1

𝑋
= 𝑏. Since 𝑎, 𝑏

are arbitrary elements in𝑋 \ 𝑌, we get |𝑋 \ 𝑌| = 1.
(3)⇒(1) Assume that |𝑋 \ 𝑌| = 1. It is easy to see that 1

𝑋

is the maximum element in Fix(𝑋, 𝑌).

We now describe minimal and maximal elements in
Fix(𝑋, 𝑌) when 0 ̸= 𝑌 ⊊ 𝑋. If |𝑌| = 1, then Fix(𝑋, 𝑌) has a
minimum element by Lemma 6 and it isminimal. In the same
way, if |𝑋\𝑌| = 1, then Fix(𝑋,Y) has a maximum element by
Lemma 7 and it is maximal.

Theorem 8. Assume that 0 ̸= 𝑌 ⊊ 𝑋 and let 𝛼 ∈ Fix(𝑋, 𝑌).
Then 𝛼 is minimal if and only if 𝛼 is a minimal idempotent.
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Proof. Assume that 𝛼 is minimal but 𝛼 is not a minimal
idempotent. So we can write

𝛼 = (

𝐴
𝑖
𝐵
𝑗

𝑦
𝑖

𝑏
𝑗

) , (21)

where 𝐽 ̸= 0. Choose 𝑖
0

∈ 𝐼 and 𝑗
0

∈ 𝐽. Let 𝐼󸀠 = 𝐼 \ {𝑖
0
},

𝐽
󸀠
= 𝐽 \ {𝑗

0
} and define 𝛽 ∈ Fix(𝑋, 𝑌) by

𝛽 = (

𝐴
𝑖0
∪ 𝐵
𝑗0

𝐴
𝑖
󸀠 𝐵
𝑗
󸀠

𝑦
𝑖0

𝑦
𝑖
󸀠 𝑏
𝑗
󸀠

) . (22)

Hence 𝛽 < 𝛼, which contradicts the minimality of 𝛼.
Conversely, assume that 𝛼 is a minimal idempotent and

𝛽 ≤ 𝛼. Since 𝑌 ⊆ 𝑋𝛽 ⊆ 𝑋𝛼 = 𝑌, we get 𝑋𝛽 = 𝑋𝛼 and hence
𝑋𝛽 \ 𝑌 ⊆ 𝑋𝛼 \ 𝑌. By Corollary 3, we obtain 𝛽 = 𝛼.

Theorem 9. Assume that 0 ̸= 𝑌 ⊊ 𝑋 and let 𝛼 ∈ Fix(𝑋, 𝑌).
Then 𝛼 is maximal if and only if 𝛼 is injective or 𝛼 is surjective.

Proof. Let 𝛼 be maximal. Assume that 𝛼 is not injective and
surjective. So there are 𝑎, 𝑏, 𝑐 ∈ 𝑋 such that 𝑎𝛼 = 𝑏𝛼 with
𝑎 ̸= 𝑏 and 𝑐 ∈ 𝑋 \ 𝑋𝛼. Write

𝛼 = (

𝐴
𝑖
𝐵
𝑗

𝑦
𝑖

𝑏
𝑗

) . (23)

Case 1. 𝑎, 𝑏 ∈ 𝐴
𝑖0
for some 𝑖

0
∈ 𝐼.Wemay assume that 𝑎 ̸= 𝑦

𝑖0
.

Let 𝐼󸀠 = 𝐼 \ {𝑖
0
} and define

𝛽 = (

𝐴
𝑖0
\ {𝑎} 𝑎 𝐴

𝑖
󸀠 𝐵
𝑗

𝑦
𝑖0

𝑐 𝑦
𝑖
󸀠 𝑏
𝑗

) . (24)

Then 𝛽 ∈ Fix(𝑋, 𝑌) and 𝛼 < 𝛽 which contradicts the
maximality of 𝛼.

Case 2. 𝑎, 𝑏 ∈ 𝐵
𝑗0
for some 𝑗

0
∈ 𝐽. Then we let 𝐽󸀠 = 𝐽 \ {𝑗

0
}

and define

𝛾 = (

𝐴
𝑖
𝐵
𝑗0
\ {𝑎} 𝑎 𝐵

𝑗
󸀠

𝑦
𝑖

𝑏
𝑗0

𝑐 𝑏
𝑗
󸀠

) . (25)

Then 𝛾 ∈ Fix(𝑋, 𝑌) and 𝛼 < 𝛾 which contradicts the
maximality of 𝛼.

Conversely, assume that 𝛼 is injective or 𝛼 is surjective
and 𝛼 ≤ 𝛽 for some 𝛽 ∈ Fix(𝑋, 𝑌). Then 𝑋𝛼 ⊆ 𝑋𝛽 and 𝑋𝛼 \

𝑌 ⊆ 𝑋𝛽 \ 𝑌. Consider the case where 𝛼 is injective, by letting
𝑧 ∈ 𝑋𝛽 \ 𝑌. Then 𝑧 = 𝑥𝛽 for some 𝑥 ∈ 𝑋 \ 𝑌 and 𝑥𝛼 ∈

𝑋𝛼 \ 𝑌 ⊆ 𝑋𝛽 \ 𝑌; that is, 𝑥𝛼 = 𝑥
󸀠
𝛽 for some 𝑥

󸀠
∈ 𝑋 \ 𝑌. So

𝑥
󸀠
𝛽 ∈ 𝑋𝛼 and 𝑥

󸀠
𝛽 = 𝑥

󸀠
𝛼 by Theorem 1. Since 𝛼 is injective,

we get 𝑥 = 𝑥
󸀠 and thus 𝑧 = 𝑥𝛽 = 𝑥

󸀠
𝛽 = 𝑥𝛼 ∈ 𝑋𝛼 \ 𝑌, whence

𝑋𝛽 \ 𝑌 ⊆ 𝑋𝛼 \ 𝑌. Hence, in this case, 𝑋𝛼 \ 𝑌 = 𝑋𝛽 \ 𝑌 and
by Corollary 3 we obtain 𝛼 = 𝛽. In the case 𝛼 is surjective, we
get𝑋\𝑌 = 𝑋𝛼\𝑌 ⊆ 𝑋𝛽\𝑌 ⊆ 𝑋\𝑌; that is,𝑋𝛼\𝑌 = 𝑋𝛽\𝑌.
Again by Corollary 3, we have that 𝛼 = 𝛽. Therefore, 𝛼 is
maximal.

Figure 1 shows the diagram of Fix(𝑋, 𝑌) when 𝑋 =

{1, 2, 3, 4} and 𝑌 = {1, 2}. The notation (𝑎𝑏𝑐𝑑) for 𝛼 ∈

Fix(𝑋, 𝑌)means that 1𝛼 = 𝑎, 2𝛼 = 𝑏, 3𝛼 = 𝑐, and 4𝛼 = 𝑑.

(1211)(1222) (1212) (1221)

(1213) (1214) (1231) (1241) (1223) (1224) (1232) (1242) (1233) (1244)

(1234) (1243)

Figure 1

An element 𝛽 ∈ Fix(𝑋, 𝑌) is called an upper cover for 𝛼 ∈

Fix(𝑋, 𝑌) if 𝛼 < 𝛽 and there is no 𝛾 ∈ Fix(𝑋, 𝑌) such that
𝛼 < 𝛾 < 𝛽; lower covers are defined dually.

Lemma 10. Assume that 0 ̸= 𝑌 ⊊ 𝑋 and let 𝛼 ∈ Fix(𝑋, 𝑌).
Then the following statements hold.

(1) If 𝛼 is not minimal in Fix(𝑋, 𝑌), then there is some
lower cover of 𝛼 in Fix(𝑋, 𝑌).

(2) If 𝛼 is not maximal in Fix(𝑋, 𝑌), then there is some
upper cover of 𝛼 in Fix(𝑋, 𝑌).

Proof. (1) Let 𝛼 ∈ Fix(𝑋, 𝑌) be not minimal. By Theorem 8,
𝛼 is not a minimal idempotent. So we can write

𝛼 = (

𝐴
𝑖
𝐵
𝑗

𝑦
𝑖

𝑏
𝑗

) , (26)

where 𝐽 ̸= 0. Define 𝛽 as in the proof of Theorem 8, we get
𝛽 < 𝛼. Suppose that there is 𝜆 ∈ Fix(𝑋, 𝑌) such that 𝛽 ≤ 𝜆 ≤

𝛼. Then by Theorem 1, 𝑋𝛽 ⊆ 𝑋𝜆 ⊆ 𝑋𝛼 and thus 𝑋𝛽 \ 𝑌 ⊆

𝑋𝜆 \ 𝑌 ⊆ 𝑋𝛼 \ 𝑌. Since 𝑋𝛼 \ 𝑌 = (𝑋𝛽 \ 𝑌) ∪ {𝑏
𝑗0
} which

implies 𝑋𝜆 \ 𝑌 = 𝑋𝛽 \ 𝑌 or 𝑋𝜆 \ 𝑌 = 𝑋𝛼 \ 𝑌, thus 𝜆 = 𝛽 or
𝜆 = 𝛼 by Corollary 3. Therefore, 𝛽 is a lower cover of 𝛼.

(2)The proof is similar to (1), using 𝛽 or 𝛾 from the proof
of Theorem 9 as appropriate.

Now, we aim to find the number of upper covers of min-
imal elements and the number of lower covers of maximal
elements when 𝑋 is a finite set. The following lemma is
needed in finding such numbers.

Lemma 11. Assume that 0 ̸= 𝑌 ⊊ 𝑋 and let 𝛼, 𝛽 ∈ Fix(𝑋, 𝑌)

with 𝛼 < 𝛽. Then 𝛽 is an upper cover of 𝛼 if and only if |𝑋𝛽 \

𝑋𝛼| = 1.

Proof. Write

𝛼 = (

𝐴
𝑖
𝐵
𝑗

𝑦
𝑖

𝑏
𝑗

) . (27)

Since 𝛼 < 𝛽, we can write

𝛽 = (

𝐴
󸀠

𝑖
𝐶
𝑗

𝐶
𝑘

𝑦
𝑖

𝑏
𝑗

𝑏
𝑘

) , (28)
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where 𝑦
𝑖
∈ 𝐴
󸀠

𝑖
⊆ 𝐴
𝑖
, 𝐶
𝑗
⊆ 𝐵
𝑗
, and 𝐶

𝑘
is contained in either

𝐴
𝑖
for some 𝑖 or 𝐵

𝑗
for some 𝑗. We get |𝐾| = |𝑋𝛽 \ 𝑋𝛼|.

Assume that𝛽 is an upper cover of𝛼. If |𝑋𝛽\𝑋𝛼| = 0, then
𝑋𝛽 = 𝑋𝛼 which implies that 𝛽 = 𝛼, a contradiction. For the
case |𝑋𝛽 \ 𝑋𝛼| > 1, we choose 𝑘

0
∈ 𝐾 and hence 𝐶

𝑘0
⊆ 𝐴
𝑖0

for some 𝑖
0
∈ 𝐼 or 𝐶

𝑘0
⊆ 𝐵
𝑗0
for some 𝑗

0
∈ 𝐽. Assume that

𝐶
𝑘0

⊆ 𝐴
𝑖0
(the other case being similar). Let 𝐼󸀠 = 𝐼 \ {𝑖

0
} and

𝐾
󸀠
= 𝐾 \ {𝑘

0
}. Define

𝛾 = (

𝐴
󸀠

𝑖0
∪ 𝐶
𝑘0

𝐴
󸀠

𝑖
󸀠 𝐶
𝑗

𝐶
𝑘
󸀠

𝑦
𝑖0

𝑦
𝑖
󸀠 𝑏
𝑗

𝑏
𝑘
󸀠

) ∈ Fix (𝑋, 𝑌) . (29)

Since 𝐾
󸀠

̸= 0, we get 𝛼 < 𝛾 < 𝛽, a contradiction. Therefore,
|𝑋𝛽 \ 𝑋𝛼| = 1.

The converse is proved in similar fashion to Lemma 10
(1).

Let 𝑋 be a finite set with 𝑛 elements and 𝑌 a nonempty
proper subset of𝑋 with 𝑟 elements. If |𝑌| = 1, then Fix(𝑋, 𝑌)

has unique minimal element, say 𝛼 = (
𝑋

𝑦 ). By Lemma 11,
each of upper covers of 𝛼 is of the form (

𝑋\𝐵 𝐵

𝑦 𝑏
), where 0 ̸=

𝐵 ⊆ 𝑋 \ {𝑦} and 𝑏 ∈ 𝑋 \ 𝑌. Since there are (2𝑛−1 − 1) ways to
choose 𝐵 and 𝑛 − 1 choice of 𝑏, in this case there are in total
(2
𝑛−1

− 1)(𝑛 − 1) upper covers of 𝛼.
If |𝑋\𝑌| = 1, then Fix(𝑋, 𝑌) has uniquemaximal element,

the identity map. Let 𝐼 = {1, 2, . . . , 𝑛 − 1}, 𝑌 = {𝑦
𝑖
: 𝑖 ∈ 𝐼}, and

𝑋 \ 𝑌 = {𝑏}. Then each of lower covers of 1
𝑋
is of the form

(
{𝑦𝑖0
,𝑏} 𝑦
𝑖
󸀠

𝑦𝑖0
𝑦
𝑖
󸀠
), where 𝐼󸀠 = 𝐼 \ {𝑖

0
}. Since 𝑖

0
can be chosen from 𝐼,

there are in total 𝑛 − 1 lower covers of 1
𝑋
.

Theorem 12. Assume that 0 ̸= 𝑌 ⊊ 𝑋 and let 𝛼 ∈ Fix(𝑋, 𝑌).
Then the following statements hold.

(1) If 𝛼 = (
𝐴𝑖
𝑦𝑖
) is minimal, then there are

𝑟

∑

𝑖=1

(2
|𝐴𝑖|−1 − 1) (𝑛 − 𝑟) (30)

upper covers of 𝛼.
(2) If𝛼 is maximal, then there are (𝑛−𝑟)(𝑛−1) lower covers

of 𝛼.

Proof. Since 𝑌 is a finite set with 𝑟 elements, 𝑌 = {𝑦
1
, . . . , 𝑦

𝑟
}

and 𝐼 = {1, . . . , 𝑟}.
(1) Let 𝛼 = (

𝐴𝑖
𝑦𝑖
) be minimal in Fix(𝑋, 𝑌) and 𝛽 an upper

cover of 𝛼. Then |𝑋𝛽 \ 𝑋𝛼| = 1 by Lemma 11; that is, 𝑋𝛽 =

𝑌 ∪ {𝑏} for some 𝑏 ∈ 𝑋 \ 𝑌. Since 𝜋
𝛽
must refine 𝜋

𝛼
, we can

write

𝛽 = (
𝐴
󸀠

𝑖
𝐵

𝑦
𝑖

𝑏

) , (31)

where 𝐴
󸀠

𝑖
⊆ 𝐴
𝑖
and 0 ̸= 𝐵 ⊆ 𝐴

𝑖0
\ {𝑦
𝑖0
} for some 𝑖

0
∈ 𝐼. We

claim that𝐴󸀠
𝑖
= 𝐴
𝑖
for all 𝑖 ∈ 𝐼 \ {𝑖

0
}. Assume by contrary that

there is 𝑖
1
∈ 𝐼 \ {𝑖

0
} such that 𝐴󸀠

𝑖1
⊊ 𝐴
𝑖1
. Let 𝐵

1
= 𝐴
𝑖1
\ 𝐴
󸀠

𝑖1
.

So 0 ̸= 𝐵
1
∩ 𝐴
󸀠

𝑖
⊆ 𝐴
𝑖
for some 𝑖 ̸= 𝑖

1
, but 𝐵

1
⊆ 𝐴
𝑖1
; that is

𝐴
𝑖
∩ 𝐴
𝑖1

̸= 0, a contradiction. So we can write

𝛽 = (

𝐴
𝑖
󸀠 𝐴
𝑖0
\ 𝐵 𝐵

𝑦
𝑖
󸀠 𝑦

𝑖0
𝑏
) , (32)

where 𝐼󸀠 = 𝐼\{𝑖
0
}. Since there are 2|𝐴𝑖0 |−1−1ways to choose 𝐵

and 𝑛−𝑟 choices of 𝑏, in this case𝛽 can have (2|𝐴𝑖0 |−1−1)(𝑛−𝑟)
forms, but 𝑖

0
can be chosen from 𝐼 = {1, . . . , 𝑟}, so that there

are in total∑𝑟
𝑖=1

(2
|𝐴𝑖|−1 − 1)(𝑛 − 𝑟) upper covers of 𝛼.

(2) Assume that 𝛼 is maximal. Then 𝛼 is a bijection and
we can write

𝛼 = (

𝑦
𝑖
𝑏
𝑗

𝑦
𝑖

𝑐
𝑗

) , (33)

where 𝐽 = {1, . . . , 𝑛 − 𝑟} and {𝑏
𝑗
: 𝑗 ∈ 𝐽} = 𝑋 \ 𝑌 = {𝑐

𝑗
:

𝑗 ∈ 𝐽}. Let 𝛽 be a lower cover of 𝛼. Then |𝑋𝛼 \ 𝑋𝛽| = 1; that
is, 𝑋𝛽 = 𝑋𝛼 \ {𝑐

𝑗0
} for some 𝑗

0
∈ 𝐽. Let 𝐽󸀠 = 𝐽 \ {𝑗

0
} and

𝑏
𝑗
󸀠 ∈ {𝑏

𝑗
: 𝑗 ∈ 𝐽

󸀠
}. So 𝑏

𝑗
󸀠𝛼 = 𝑐

𝑗
󸀠 ∈ 𝑋𝛽 \ 𝑌, then 𝑏

𝑗
󸀠𝛼 = 𝑏

𝑗
󸀠𝛽

since 𝛽 < 𝛼. Hence 𝑥𝛼 = 𝑥𝛽 for all 𝑥 ∈ 𝑋\{𝑏
𝑗0
} and 𝑏

𝑗0
𝛽 = 𝑦

𝑖0

for some 𝑖
0
∈ 𝐼 or 𝑏

𝑗0
𝛽 = 𝑏
𝑗1
𝛽 = 𝑐
𝑗1
for some 𝑗

1
∈ 𝐽
󸀠. Thus

𝛽 = (
{𝑦
𝑖0
, 𝑏
𝑗0
} 𝑦
𝑖
󸀠 𝑏
𝑗
󸀠

𝑦
𝑖0

𝑦
𝑖
󸀠 𝑐
𝑗
󸀠

) , (34)

where 𝐼󸀠 = 𝐼 \ {𝑖
0
}, or

𝛽 = (
𝑦
𝑖
{𝑏
𝑗1
, 𝑏
𝑗0
} 𝑏
𝑘

𝑦
𝑖

𝑐
𝑗1

𝑐
𝑘

) , (35)

where 𝐾 = 𝐽 \ {𝑗
0
, 𝑗
1
}. For the first form and the second

form, the numbers of ways of placing 𝑏
𝑗0
is 𝑟 and 𝑛 − 𝑟 − 1,

respectively. So the total number of ways of placing 𝑏
𝑗0

is
𝑛 − 1. But 𝑗

0
varies in the index set 𝐽; hence there are in total

(𝑛 − 1)(𝑛 − 𝑟) lower covers of 𝛼.
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