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This paper proposes an approach for the robust stabilization of systems controlled byMPC strategies. Uncertain SISO linear systems
with box-bounded parametric uncertainties are considered.The proposed approach delivers some constraints on the control inputs
which impose sufficient conditions for the convergence of the system output. These stability constraints can be included in the set
of constraints dealt with by existing MPC design strategies, in this way leading to the “robustification” of the MPC.

1. Introduction

The term Model Predictive Control, MPC, stands for a wide
range of control methods which make an explicit usage of
the process model to obtain the control signal by minimizing
an objective function [1]. It is difficult to determine the
exact origin of MPC techniques, but it is known that they
were developed in the 70s to solve control problems related
to chemical industry and oil refining [2]. Currently, their
application has been widespread in other sectors. The main
features that have contributed to the growing use of predictive
controllers, according to Maciejowski [3], are their ability to
deal with time delays. Physical and operational constraints
can be incorporated directly in the control design, reducing
the number of emergency stops of the system.This makes the
MPC controllers efficient and able to operate for long periods
without requiring intervention [4].

A critical step in the design of MPC controllers is the
determination of plant model to be used in the prediction.
Discrepancies between the plant and its model may lead to
poor performances or even to system instability. This situa-
tion motivated the development of robust MPC techniques
that are intended to preserve stability and performance,

despite inaccuracies or uncertainties in themodel. As pointed
out by Mayne [5], “while major aspects of nominal MPC
were well understood by 2000, the presence of uncertainty (. . .)
and the associated topic of robustness against uncertainty, is a
major challenge that is still receiving considerable attention.”
According to Mayne, assuming that the decision variable
is a control sequence, there are three general approaches
that are followed in MPC design for uncertain systems:
(i) to take the uncertainty into account by requiring that
the control problem constraints are satisfied for all possible
realizations of the disturbance sequence; (ii) to employ a local
feedback around a nominal trajectory; and (iii) to consider
unstructured uncertainty in the system model.

Under the approach (i), the earlier literature employed
the nominal value of the objective function of the MPC
as a Lyapunov function [6–8]. In [9] a robust invariant
terminal set was employed in order to ensure recursive
feasibility. Several papers [10–12] addressed the problem of
min-max MPC, in which the objective function is defined as
the maximum, over the uncertainty set, of a cost function.
Such a methodology is theoretically interesting, but it tends
to be computationally costly. Reference [13] proposed an
approximated min-max approach in order to reduce the
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computational burden. More recently, the robust stability of
MPC has been studied under the viewpoint of the input-to-
state stability (ISS) [14, 15].

The approach (ii), also called the tube-based MPC,
employs simple parameterized local policies in order to
approximate the (ideal) optimization over the control poli-
cies, instead of performing the optimization over the control
sequences. References [16–18] follow this approach.

Finally, the approach (iii) usually relies on the small gain
theorem. The first attempt to follow this direction was devel-
oped in the works [19–21], employing a frequency domain
approach. In [22], the standard H

∞
model is employed. A

related approach is described in [23].
It is also worth mentioning MPC schemes for nonlinear

systems. For instance, [24] presents a methodology which
is based on an adaptive neural network. In [25], a neural
network is also employed in order to achieve the robustness
of the MPC against uncertainties in the control input matrix.
The paper [26] performs an MPC that deals with nonlinear
systems with dead-zone input. Other related references are
[27, 28].

This paper proposes a methodology for the robust stabi-
lization of uncertain SISO systems with parametric uncer-
tainty which can be situated in the approach (i) above.
The issue of stabilization is stated here from its first prin-
ciples, as a feasibility problem related to the convergence
of a sequence. This stability condition can be treated as a
constraint in the MPC synthesis, taking advantage of the
easy management of constraints within MPC. This defines
a problem of optimal control synthesis with a constraint of
robust stability which, itself, is calculated as a solution of a
nonlinear optimization problem. It should be noticed that the
algorithm for solving such a problem involves the solution of
a subproblem of nonlinear optimization within an algorithm
step which requires some computation time that may prevent
the application of the proposed scheme to systems with
small sampling times. In relation to this issue, the following
points should bementioned: (i) Several important plants have
sampling times that are within the range of several minutes
to several hours. In those cases, it is better to apply a more
precise and less conservative algorithm that runs in some
seconds than an approximate algorithm that runs in some
milliseconds. (ii) Any proposal of robust MPC that adopts
approximated formulae and conservative bounds in order to
achieve fast computation should be benchmarked against a
less conservative version of the same strategy. The proposed
approach can be used as a benchmark for the performance of
other MPC design procedures.

The proposed methodology is compared with the design
technique of class (i) presented in [13] and with the design
technique of class (iii) presented in [19–21]. Computational
experiments show that the proposed methodology leads to
the stabilization of plants belonging to larger uncertainty sets,
considering parametric uncertainties represented by interval
sets. The results suggest that the proposed methodology can
be less conservative in the case of uncertainty sets of that type.

The remainder of this paper is structured as follows.
Section 2 presents the problem statement. Section 3 describes
the proposed formulation. Section 4 shows simulation results.
Section 5 closes the paper with some conclusions.

2. Problem Statement

Consider a system described by a CARIMA (Controlled Auto-
Regressive Integrating Moving-Average) model, as follows [1]:

Δ𝑦 (𝑘) = 𝑇a,b (𝑧) Δ𝑢 (𝑘) , (1)

where the term Δ = 1 − 𝑧

−1 corresponds to an integral action
that enables deleting the static error and

𝑇a,b (𝑧) =
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is the transfer function of the model for the parameter vector
(a, b) = (𝑎

1
, . . . , 𝑎

𝑛
, 𝑏

0
, . . . , 𝑏

𝑚
), with 𝑛 > 𝑚.

Suppose that the time delay of the system is given by 𝑑 =

𝑛 − 𝑚 − 1; thus (1) is equivalent to

Δ𝑦 (𝑘) = 𝑏

0
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1
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(3)

A large diversity of real processes can be modeled using
CARIMA models, for instance, unmanned seaplanes [29],
stirred tank reactors [30], vehicle yaw [31], gas engines [32],
and distillation columns [33, 34].Therefore, the development
of control design techniques that are suitable for thosemodels
is relevant.

It is assumed that the process to be controlled is described
by themodel (1), subject to uncertainties on the coefficients of
the transfer function, with each parameter 𝑎

𝑗
and 𝑏

𝑖
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to its respective uncertainty interval 𝑎

𝑗
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. The box setC given by
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(4)

describes the possible instances of the system parameter
vector. It is assumed here that 𝑎

𝑗
𝑎

𝑗
≥ 0 ∀𝑗 = 1, . . . , 𝑛 and

𝑏

𝑖
𝑏

𝑖
≥ 0 ∀𝑖 = 1, . . . , 𝑚.
System (1) with uncertain parameters described by (4)

will be controlled by a Model Predictive Control (MPC)
scheme, for which the following notation is employed: 𝑤(𝑘)

is the reference which 𝑦(𝑘) should track; Δ𝑦(𝑘 + 𝑖 | 𝑘)

is the predicted value of the output increment Δ𝑦 on time
𝑘 + 𝑖, calculated on time 𝑘, for 𝑖 = {1, . . . , 𝐻

𝑝
}, where 𝐻

𝑝
is

the prediction horizon; Δ𝑢(𝑘 + 𝑖 | 𝑘) is the future control
signal increment at time 𝑘 + 𝑖, used in the output increment
predictions, for 𝑖 = {0, . . . , 𝐻

𝑐
− 1}, where 𝐻

𝑐
is the control

horizon (𝐻

𝑐
≤ 𝐻

𝑝
).

Different cost functions can be adopted for the definition
of an MPC strategy which works along with the stability
constraints that are proposed in this paper. For simplicity, the
cost function 𝐽 of the MPC is assumed to be the traditional
quadratic function that considers the error between the
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prediction 𝑦(𝑘 + 𝑗 | 𝑘) and a known reference 𝑤(𝑘 + 𝑗) and
the control input increment Δ𝑢(𝑘):

𝐽 =

𝐻𝑝

∑

𝑗=1

𝛿 (𝑗) (𝑦 (𝑘 + 𝑗 | 𝑘) − 𝑤 (𝑘 + 𝑗))

2

+

𝐻𝑐−1

∑

𝑖=0

𝜆 (𝑖) (Δ𝑢 (𝑘 + 𝑖 | 𝑘))

2

,

(5)

where 𝛿(𝑗) and 𝜆(𝑖) are the weighting sequences of the error
and the control effort, respectively. The following min-max
problem is considered in the MPC, for the plant model with
parameter uncertainty:

min
Δ𝑢

max
(a,b)∈C

𝐽 (Δ𝑢, a, b) . (6)

An MPC employing the min-max objective function (6) was
proposed in [13]. That control, in its unconstrained version,
is named here as the RMPC (MPC with robust min-max
approach). The MPC to be considered in this paper will be
based on the RMPC, because the min-max index in (6) is
suitable for dealing with set-bounded uncertainties. However
it should be noticed that other indices could be defined,
for instance, based on the expectation of the values of the
uncertain parameters. Those alternative indices are expected
to lead to better performances, since they are not assigned to
the role of ensuring the system robustness in the context of
the proposed methodology, which will enforce stability using
constraints. The definition of those alternative indices is left
as a theme for future research.

The problem to be solved in this paper is defined as
follows [35].

Definition 1 (asymptotic convergence problem). Consider
system (3) with uncertain parameters as described by
(4), with any given initial condition {Δ𝑢(−𝑚), . . . , Δ𝑢(0),

Δ𝑦(−𝑛), . . . , Δ𝑦(0)}, and a given constant reference signal
𝑤(𝑘) = 𝜌, with 𝜌 ∈ R. Find a sequence of control input
increments Δ𝑢(𝑘 | 0), for 𝑘 > 0, such that

lim
𝑘→∞

𝑦 (𝑘 | 0) − 𝑤 (𝑘) = 0 (7)

for all (a, b) ∈ C.

For the sake of simplicity, the reference input 𝑤(𝑘) is
assumed to be zero in the development that follows. More
general reference signals can be tackled according to the
guidelines presented, for instance, in [21].

3. Convergence Constraints

Theresults to be established in the sequel rely on the following
lemma.

Lemma2. Suppose the output sequence 𝑦(𝑘) of a discrete-time
system satisfies the following condition:
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, with 0 < 𝜀 < 1 ∀𝑘, (8)

where 𝑟 is a positive integer. Then, |𝑦(𝑘)| → 0 when 𝑘 → ∞.

Proof. This comes directly from lim
𝑘→∞

𝜀

𝑘

= 0 ∀𝑘 ∈ [0, 1).

This lemma states a standard sufficient condition for
the convergence of a sequence. The basic idea here is to
impose condition (8) to the plant output, propagating it as
a constraint for the values of the input increments Δ𝑢(𝑘)

such that the predicted output satisfies (8). The plant output
should stay as close as possible to a reference signal 𝑤(𝑘).The
following convergence condition is imposed:
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where 0 < 𝜖 < 1 and 𝑟 is a positive integer, which leads to
|𝑦(𝑘) − 𝑤(𝑘)| → 0. Considering 𝑘 the current time instant, a
sequence of future input increments Δu = {Δ𝑢(𝑘 | 𝑘), Δ𝑢(𝑘 +

1 | 𝑘), . . . , Δ𝑢(𝑘 + 𝐻

𝑐
− 1 | 𝑘)} should be determined such

that (9) is satisfied. The computation of such a sequence will
be performed using a state-space description of the system.
Let the following matrices be defined:

0
(𝑖,𝑗)

: matrix with 𝑖 rows and 𝑗 columns, with all
entries equal to 0.
I
𝑗
: identity matrix with 𝑗 rows and columns.
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,

Ψ = [1 0
(1,𝑚+𝑛+𝑑−1)

] .

(10)

In addition, the matrices Φ and Ω are defined in different
ways, depending on the value of the time delay 𝑑. For 𝑑 > 0,

b = [𝑏
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For 𝑑 = 0,

b = [𝑏

1
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𝑏

𝑚
] ,

Φ =
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0
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(12)

The system represented by the transfer function (2) is
equivalent to the space-state system given by

z (𝑘 + 1) = Φz (𝑘) + ΩΔ𝑢 (𝑘) ,

Δ𝑦 (𝑘 + 1) = Ψz (𝑘 + 1) .

(13)

Now define the matrix

Θ

𝑟
= [Φ

𝑟−1

Ω Φ

𝑟−2

Ω ⋅ ⋅ ⋅ ΦΩ Ω] (14)

and the decision variable vector

Δu
𝑟
(𝑘)

= [Δ𝑢 (𝑘 | 𝑘) Δ𝑢 (𝑘 + 1 | 𝑘) ⋅ ⋅ ⋅ Δ𝑢 (𝑘 + 𝑟 − 1 | 𝑘)]

𝑇

.

(15)

The following lemma can be stated as a result of the recursive
application of (13).

Lemma 3. The 𝑟-step-ahead prediction model of system (2) is
given by

z (𝑘 + 𝑟) = Φ

𝑟z (𝑘) + Θ

𝑟
Δu
𝑟
(𝑘) ,

Δ𝑦 (𝑘 + 𝑟) = Ψz (𝑘 + 𝑟) .

(16)

Proof. Expression (16) comes as a direct composition of (13)
applied on 𝑟 consecutive steps, with the replacement of
expressions (14) and (15) in the suitable places.

The matrices Φ

𝑟 and Θ

𝑟
depend on the uncertain param-

eters 𝑎

𝑗
and 𝑏

𝑖
. On the instant 𝑘, the vector z(𝑘) is composed

of known scalars (past values of 𝑢(⋅) and 𝑦(⋅), up to instant 𝑘).
The variable 𝑦(𝑘 + 𝑟) depends on Φ

𝑟, Θ

𝑟
and on the decision

variable vector Δu
𝑟
(𝑘), which should be specified such that

(9) holds.The following lemma, stated under the assumption

that there is no system uncertainty, constitutes a well-known
result related to deadbeat controllers which is presented here
as a bound for the achievable system performance.

Lemma 4. Assume that system (13) is controllable. In this case,
for any initial condition z(𝑘), there exists a decision variable
vector Δu

𝑟
(𝑘) with 𝑟 ≤ 𝑛 + 𝑚 such that z(𝑘 + 𝑟) = 0.

Proof. It should be noticed that Θ

𝑟
becomes equivalent to the

controllability matrix of the system when 𝑟 = 𝑛 + 𝑚. In the
case of a controllable system, the controllability matrix is a
full-rank square matrix of size (𝑛 + 𝑚) × (𝑛 + 𝑚). Therefore,
when 𝑟 = 𝑛 + 𝑚 it will be possible to state {𝑢(𝑘), 𝑢(𝑘 +

1), . . . , 𝑢(𝑘 + 𝑟 − 1)} such that

Δu
(𝑛+𝑚)

(𝑘) = −Θ

−1

(𝑛+𝑚)
Φ

(𝑛+𝑚)z (𝑘) . (17)

In some special cases, it might be possible that a number of
steps smaller than 𝑛 + 𝑚 become enough, which completes
the proof.

Considering the uncertain parameter case, a control
strategy that would be analogous to the deadbeat control may
be represented by

Δu∗
𝑟

= arg(min
Δu𝑟

max
C

󵄨

󵄨

󵄨

󵄨

𝑦 (𝑘 + 𝑟 | 𝑘)

󵄨

󵄨

󵄨

󵄨

) . (18)

Lemma 4 suggests that the choice 𝑟 = 𝑚 + 𝑛 would be
reasonable, even for the case of systems with uncertainty,
because with a smaller value for 𝑟 the control action might
be unable to produce an arbitrary contraction of the output
error. A more relaxed design formulation may be stated,
requiring only the feasibility of condition (9):

Δu
𝑟
(𝑘) : (max

C

󵄨

󵄨

󵄨

󵄨

𝑦 (𝑘 + 𝑟 | 𝑘)

󵄨

󵄨

󵄨

󵄨

) < 𝜖

󵄨

󵄨

󵄨

󵄨

𝑦 (𝑘)

󵄨

󵄨

󵄨

󵄨

. (19)

Expression (19) reduces to (18) when 𝜖 reaches its minimum
value that still results in a feasible problem. In order to solve
(19), it is worthy to note that

𝑦 (𝑘 + 𝑟 | 𝑘) = Δ𝑦 (𝑘 + 𝑟 | 𝑘) + Δ𝑦 (𝑘 + 𝑟 − 1 | 𝑘)

+ ⋅ ⋅ ⋅ + Δ𝑦 (𝑘 + 1 | 𝑘) + 𝑦 (𝑘) .

(20)

Using (16), (20) can be rewritten as

𝑦 (𝑘 + 𝑟 | 𝑘) = Ψ (Φ

𝑟

+ Φ

𝑟−1

+ ⋅ ⋅ ⋅ + Φ) z (𝑘)

+ Ψ

̂ΘΔu
𝑟
(𝑘) + 𝑦 (𝑘) ,

(21)

where ̂Θ is the matrix:

̂Θ = [(Φ

𝑟−1

+ Φ

𝑟−2

+ ⋅ ⋅ ⋅ + Φ + I
𝑚+𝑛+𝑑

) Ω (Φ

𝑟−2

+ Φ

𝑟−3

+ ⋅ ⋅ ⋅ + Φ + I
𝑚+𝑛+𝑑

) Ω ⋅ ⋅ ⋅ (Φ + I
𝑚+𝑛+𝑑

) Ω Ω] . (22)
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Consider
Λ = Ψ (Φ

𝑟

+ Φ

𝑟−1

+ ⋅ ⋅ ⋅ + Φ) z (𝑘) + 𝑦 (𝑘) ,

Γ

𝑟
= Ψ

̂Θ = [𝛾

𝑟
𝛾

𝑟−1
⋅ ⋅ ⋅ 𝛾

2
𝛾

1
] .

(23)

With the use of optimization tools, it is possible to obtain

Λ = min
C

Ψ (Φ

𝑟

+ Φ

𝑟−1

+ ⋅ ⋅ ⋅ + Φ) z (𝑘) + 𝑦 (𝑘) ,

Λ = max
C

Ψ (Φ

𝑟

+ Φ

𝑟−1

+ ⋅ ⋅ ⋅ + Φ) z (𝑘) + 𝑦 (𝑘) .

(24)

Suppose, without loss of generality, that the reference
signal 𝑤(𝑘) is zero. So, the stability condition (9) can be
rewritten as

󵄨

󵄨

󵄨

󵄨

Γ

𝑟
Δu
𝑟
(𝑘) + Λ

󵄨

󵄨

󵄨

󵄨

< 𝜖

󵄨

󵄨

󵄨

󵄨

𝑦 (𝑘)

󵄨

󵄨

󵄨

󵄨

. (25)

Equivalently,

−𝜖

󵄨

󵄨

󵄨

󵄨

𝑦 (𝑘)

󵄨

󵄨

󵄨

󵄨

< Γ

𝑟
Δu
𝑟
(𝑘) + Λ < 𝜖

󵄨

󵄨

󵄨

󵄨

𝑦 (𝑘)

󵄨

󵄨

󵄨

󵄨

, (26)

which leads to

−𝜖

󵄨

󵄨

󵄨

󵄨

𝑦 (𝑘)

󵄨

󵄨

󵄨

󵄨

− Λ ≤ Γ

𝑟
Δu
𝑟
(𝑘) ≤ 𝜖

󵄨

󵄨

󵄨

󵄨

𝑦 (𝑘)

󵄨

󵄨

󵄨

󵄨

− Λ. (27)

The coefficients 𝛾

𝑖
of the vector Γ

𝑟
are limited by

𝛾

𝑖
= max

C
𝛾

𝑖

𝛾

𝑖
= min

C
𝛾

𝑖

𝑖 = 1, . . . , 𝑟.

(28)

Consider thematrixM, whose rows correspond to all possible
combinations of minimum and maximum values of the
components of vector Γ

𝑟
:

M =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝛾

𝑟
𝛾

𝑟−1
⋅ ⋅ ⋅ 𝛾

2
𝛾

1

𝛾

𝑟
𝛾

𝑟−1
⋅ ⋅ ⋅ 𝛾

2
𝛾

1

𝛾

𝑟
𝛾

𝑟−1
⋅ ⋅ ⋅ 𝛾

2
𝛾

1

𝛾

𝑟
𝛾

𝑟−1
⋅ ⋅ ⋅ 𝛾

2
𝛾

1

.

.

.

.

.

. ⋅ ⋅ ⋅

.

.

.

.

.

.

𝛾

𝑟
𝛾

𝑟−1
⋅ ⋅ ⋅ 𝛾

2
𝛾

1

𝛾

𝑟
𝛾

𝑟−1
⋅ ⋅ ⋅ 𝛾

2
𝛾

1

𝛾

𝑟
𝛾

𝑟−1
⋅ ⋅ ⋅ 𝛾

2
𝛾

1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

. (29)

Note that
MΔu
𝑟
(𝑘) ≤ 1

(2
𝑟
,1)

(𝜖

󵄨

󵄨

󵄨

󵄨

𝑦 (𝑘)

󵄨

󵄨

󵄨

󵄨

− Λ) 󳨐⇒

Γ

𝑟
Δu
𝑟
(𝑘) ≤ 𝜖

󵄨

󵄨

󵄨

󵄨

𝑦 (𝑘)

󵄨

󵄨

󵄨

󵄨

− Λ,

∀ (a, b) ∈ C,

(30)

MΔu
𝑟
(𝑘) ≥ 1

(2
𝑟
,1)

(−𝜖

󵄨

󵄨

󵄨

󵄨

𝑦 (𝑘)

󵄨

󵄨

󵄨

󵄨

− Λ) 󳨐⇒

Γ

𝑟
Δu
𝑟
(𝑘) ≥ −𝜖

󵄨

󵄨

󵄨

󵄨

𝑦 (𝑘)

󵄨

󵄨

󵄨

󵄨

− Λ,

∀ (a, b) ∈ C.

(31)

On this point, it is possible to state Theorem 5, which
constitutes the main result of this paper.

Theorem 5. Let Δu
𝑟
(𝑘) denote the vector of the next 𝑟 control

input increments to be applied to system (2) after instant 𝑘. If

[

M
−M

] Δu
𝑟
(𝑘) ≤ [

1
(2
𝑟
,1)

(𝜖

󵄨

󵄨

󵄨

󵄨

𝑦 (𝑘)

󵄨

󵄨

󵄨

󵄨

− Λ)

1
(2
𝑟
,1)

(𝜖

󵄨

󵄨

󵄨

󵄨

𝑦 (𝑘)

󵄨

󵄨

󵄨

󵄨

+ Λ)

] (32)

holds, then the condition
󵄨

󵄨

󵄨

󵄨

𝑦 (𝑘 + 𝑟 | 𝑘)

󵄨

󵄨

󵄨

󵄨

< 𝜖

󵄨

󵄨

󵄨

󵄨

𝑦 (𝑘)

󵄨

󵄨

󵄨

󵄨

(33)

is satisfied, for all (a, b) ∈ C.

Proof. The proof of this theorem is stated as the sequence of
expressions, from expression (25) to expression (31).

The RMPC, with objective function stated in (6), jointly
with the stability constraints (32), will be called theRMPC-SC
(RMPCwith Stability Constraints).The RMPC-SC algorithm
is presented in Algorithm 1.

In practice, the feasibility of inequality (32) will depend
on the size of the model uncertainty. For systems with small
uncertainty sets, those conditionswill be satisfied easily, while
systems with large uncertainties may be unable to achieve the
feasibility of that inequality. This last case corresponds to the
situation in which there is no guarantee that a control input
sequence will be able to enforce the decrease of the amplitude
of the output signal for all instances of such systems.

An important issue in MPC algorithms is the recursive
feasibility, which means the guarantee that the system state
resulting from an iteration of the MPC will always be feasible
for the problem constraints, provided that the previous
iteration was also performed from a feasible initial state.

Definition 6 (recursive feasibility). Let Δu
𝑟
(𝑘) be defined

according to (15). Then, if the relation

{Δu
𝑟
(𝑘) satisfies (32)

󳨐⇒ Δu
𝑟
(𝑘 + 1) satisfies (32)}

(34)

holds, Algorithm 1 is said to be recursively feasible.

The following lemma states some sufficient conditions for
recursive feasibility of RMPC-SC.

Lemma 7. Consider a system described by (1) and (2), with
parameters belonging to the set C, described by (4), being
controlled by Algorithm 1. Let 𝜌 > 0 be a scalar such that
𝜌 ≥ 𝑎

𝑗
− 𝑎

𝑗
∀𝑗 = 1, . . . , 𝑛 and 𝜌 ≥ 𝑏

𝑖
− 𝑏

𝑖
∀𝑖 = 1, . . . , 𝑚.

Then, consider the following:

(i) If the setC represents a precisely known model, that is,
𝑎

𝑗
= 𝑎

𝑗
∀𝑗 = 1, . . . , 𝑛 and 𝑏

𝑖
= 𝑏

𝑖
∀𝑖 = 1, . . . , 𝑚, then

Algorithm 1 is guaranteed to have recursive feasibility
for some 𝑟 ≤ 𝑛 + 𝑚 and for any 𝜖 ∈ (0, 1).

(ii) For all 𝜖 ∈ (0, 1) there exists a 𝜌 which makes
Algorithm 1 recursively feasible.

Proof. Statement (i) comes from the fact that, in the case of
a precisely known system, the deadbeat control (Lemma 4)
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(1) Initialization: Define the model and the uncertainty setC, also the control parameters 𝐻

𝑝
, 𝐻

𝑐
, 𝜖 and 𝑟,

the reference signal 𝑤 and the initial conditions z.
(2) 𝑘 ← 0

(3) Determine the matrixM according to (29).
(4) while 𝑘 < 𝑘max do
(5) Calculate Λ and Λ, according to (24).
(6) Calculate Δu

𝑟
(𝑘) optimizing (6), subject to constraints (32) and possibly other

constraints related to the specific problem.
(7) 𝑢(𝑘) ← Δ𝑢(𝑘) + 𝑢(𝑘 − 1)

(8) Apply 𝑢(𝑘) to the plant input, and get 𝑦(𝑘) from the plant output.
(9) 𝑘 ← 𝑘 + 1

(10) end while

Algorithm 1: RMPC control with Stability Constraints (RMPC-SC).

can be applied. Therefore, the output can be brought from
any initial state to zero in up to 𝑛 + 𝑚 steps, so (32) will
be feasible for any 𝜖 ∈ (0, 1). Statement (ii) is established
by a simple continuity argument which is based on the fact
that the mapping from (a, b) to z(𝑘) defined implicitly in (16)
is continuous. This means that as (a, b) depart from their
nominal values and their uncertainty intervals grow, the value
of 𝜖which is necessary formaking (32) feasible will be greater.
Clearly, for a sufficiently large 𝜌, there will be no 𝜖 < 1 that
makes (32) feasible.

Some additional comments are necessary. First, there is
no guarantee that the stability constraints are compatible with
other constraints that may become necessary in a particular
situation. If more constraints are necessary, the recursive
feasibility of the resulting MPC should be studied for that
particular case.

Also, as can be inferred from the proof of Lemma 7,
in the case of uncertain systems whose parameters have
arbitrary uncertainty intervals, the recursive feasibility of the
constraints (32)may not hold.When the uncertainty intervals
are large it becomes possible that different system instances
belonging to the uncertainty set are conflicting, requiring
quite different control inputs to produce the effect of decreas-
ing the absolute value of the system output. Rigorously,
this situation means that it would be necessary to reduce
the uncertainty intervals, in order to allow the stabilization
condition to be verified in all time instants. This may be
performed either by going back to the system identification
phase, in order to findmore precisemodels for the plant, or by
an online refinement of the model that discards some regions
of the uncertainty set that are inconsistent with the observed
plant behavior.The issue of assessing model consistency with
data has been studied in some detail in Barbosa et al. [36].

4. Simulation Results

In this section, the performance of the RMPC-SC technique
is first evaluated under some different circumstances. After-
wards, the RMPC-SC is compared with four other techniques
of predictive control: the basic MPC and the GPC [37],
both nonrobust, the RMPC (an MPC with robust min-max

approach) [13], and the RGPC (robust GPC) proposed in
[19, 20].

In the simulation studies presented here, the value for the
parameter 𝛿(𝑗) of the objective function (5) is kept constant
as 𝛿(𝑗) = 1 for all methods. The aim of the design task
considered here is to find the control sequenceΔ𝑢 = Δ𝑢(𝑘+𝑗 |

𝑘), 𝑗 = 0, . . . , 𝐻

𝑐
− 1. In the basic MPC and GPC and in the

RGPC, a nominal model is considered for the prediction.
The RGPC represents an interesting benchmark for

comparison with RMPC-SC, since it is conceived with the
purpose of providing robustness against norm-bounded dis-
turbances. The diagram of RGPC is presented in Figure 1.
In the diagram, the low-pass filter provides the additional
degrees of freedom that are used in order to achieve the
robustness in the case of an uncertain model.

Two examples are considered in the simulation studies.
The first one is the classic angular positioning system stated
by Kwakernaak and Sivan [38]. The second example refers to
a simulated plant model, which was based on the problem
posed by Ramı́rez and Camacho [13], with constraints in
the increment input signal. The simulations were performed
in Matlab (R2013a). It was considered the initial condition
𝑢(0) = 0.05 and a reference signal 𝑤 constant and null.

4.1. Problem 1. The system consists of a rotating antenna at
the origin of the plane, driven by an electric motor. The
control problem is to provide an input voltage (𝑢𝑉) to the
motor, so as to direct the antenna to an object that moves on
the plane [39]. The antenna rotation can be described by the
following model:

𝜃 (𝑘) =

0.0078

𝑧

2
+ (0.1𝛼 (𝑘) − 2) 𝑧 + (1 − 0.1𝛼 (𝑘))

𝑢 (𝑘) , (35)

where the sampling period is 0.1 s, 𝜃(𝑘) is the angular position
(rad), and 0.1 s−1 ≤ 𝛼(𝑘) ≤ 10 s−1. The parameter 𝛼(𝑘)

is proportional to the coefficient of viscous friction in the
rotating parts of the antenna and is assumed to be arbitrarily
time-varying in the interval [0.1, 10]. In the model used in
MPC and GPC, 𝛼(𝑘) is fixed in the nominal value 𝛼

𝑛
(𝑘).

4.1.1. RMPC-SC Performance. Simulations were first per-
formed for various values of 𝛼(𝑘), equally spaced within
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Figure 1: Diagram of RGPC.

the range [0.1, 10]. The RMPC-SC was applied using the
prediction and control horizons, 𝐻

𝑝
= 12 and 𝐻

𝑐
= 6,

respectively, and 𝑟 = 3.The values of the control parameters 𝜖

and 𝜆 have been taken within the ranges [0.7; 0.9] and [1, 3],
respectively. Figure 2 shows the results obtained, with the
stabilization of the plant in all cases.

The RMPC-SC controller was also simulated for the
system represented by the model (35) with 𝛼(𝑘) varying
randomly with time, within the uncertainty interval. Figure 3
shows an instance of the response of the LTV system con-
trolled by RMPC-SC, with control parameters 𝐻

𝑝
= 12, 𝐻

𝑐
=

6, 𝑟 = 3, 𝜖 = 0.8, and 𝜆 = 3. In fifty other simulations with
other realizations of the uncertain time-varying parameter
the system converged.

In order to analyze how the variation of the parameter
𝜖 interferes in the response of the system, the RMPC-SC
was applied to control the plant (35), with 𝛼(𝑘) = 10,
using different values for 𝜖. For each value of 𝜖 in the set
{0.4; 0.6; 0.8; 0.9}, the RMPC-SC was applied with 𝐻

𝑝
= 12,

𝐻

𝑐
= 6, 𝜆 = 3, and 𝑟 = 3, and the simulation results are

shown in Figure 4. A better performance is observed, in this
case, when 𝜖 = 0.9.

4.1.2. Comparison Studies. Figure 5 presents the results
obtained by RMPC-SC, RGPC, MPC, and GPC controllers
for the case 𝛼(𝑘) = 0.1. The GPC, MPC, and RMPC
considered 𝛼

𝑛
(𝑘) = 1. As can be seen in Figure 5, themethods

RMPC-SC, MPC, GPC, and RGPC achieved convergence,
with the best performance presented by MPC. The RMPC
became unstable in this case.

As can be seen in Figure 5, all methods except RMPC
showed a good control performance. The good results pre-
sented by GPC, RGPC, and MPC may be explained by the
proximity of the plantmodel to the nominalmodel. By taking
𝛼

𝑛
(𝑘) = 10, the system controlled by GPC, RGPC, and MPC

becomes unstable.
The values of the control parameters used by eachmethod

to obtain the results depicted in Figure 5 are described in
Table 1.

For𝛼(𝑘) = 10, all methods stabilize the plant, with a faster
response obtained by the system controlled by RMPC-SC, as
shown in Figure 6. It used 𝛼

𝑛
(𝑘) = 0.1 in GPC, RGPC, and

MPC. The values of the control parameters used in this case
are described in Table 2.

0 20 40 60 80 100 0
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y
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𝛼
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−0.5
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Figure 2: RMPC-SC with 𝛼(𝑘) ∈ [0.1; 10].

Table 1: Control parameters of RMPC-SC, RMPC,RGPC,GPC, and
MPC for the simulated plant with 𝛼(𝑘) = 0.1. In this table, Omeans
the filter order and 𝑤

𝑐
means the filter cutoff frequency, for RGPC.

𝐻

𝑝
𝐻

𝑐
𝜆 𝜖 𝑟 O 𝑤

𝑐

RMPC-SC 12 6 1 0.6 3 — —
RMPC 5 3 3 — — — —
RGPC 14 10 1 — — 2 0.85
GPC 14 10 — — — — —
MPC 12 6 0.05 — — — —

4.2. Problem 2. The following transfer function plant model
with two uncertain coefficients was based on [13]:

𝑇 (𝑧) =

𝑏𝑧 + 1

𝑧

2
− 1.9𝑧 + 𝑎

,
(36)

with the coefficients 𝑎 and 𝑏 in the box:

C =

{

{

{

0.7 ≤ 𝑎 ≤ 1

0.5 ≤ 𝑏 ≤ 1.5.

(37)

The plant is also subject to the constraint −2 ≤ Δ𝑢 ≤ 2.
The following control parameters were used by RMPC,

RGPC, and RMPC-SC: 𝐻

𝑝
= 8, 𝐻

𝑐
= 4, and 𝜆 = 1. The

RMPC-SC also used 𝜖 = 0.9 and 𝑟 = 3.The RGPC usedO = 2

and𝑤

𝑐
= 0.9. Due to the bad results obtained by theMPC and

GPC controllers, the performances of those methods are not
presented here.

The following nonminimum phase instance of the plant
model was considered first:

𝑇

𝑝1
(𝑧) =

0.5𝑧 + 1

𝑧

2
− 1.9𝑧 + 1

. (38)

The RMPC and RMPC-SC methods were applied in the
control of the plant (38) and have shown satisfactory results,
as can be seen in Figure 7.TheRGPCwas applied on the same
plant and has shown less satisfactory results, with a high-
frequency control signal, as can be seen in Figure 8. In this
case, RGPC used 𝜆 = 5 and considered the model described
in (36) as a nominal model, with 𝑎 = 1 and 𝑏 = 1.
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Figure 3: RMPC-SC with LTV model.
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Figure 4: System response of RMPC-SC for different values of 𝜖,
with 𝛼(𝑘) = 10.

The following unstable model instance of the plant was
also considered:

𝑇

𝑝2
(𝑧) =

1.5𝑧 + 1

𝑧

2
− 1.9𝑧 + 0.7

. (39)

TheRMPC-SC showed a satisfactory result in this case, as can
be seen in Figure 9, while RMPC and RGPC did not achieve
stability.
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Figure 5: MPC × GPC × RGPC × RMPC-SC with 𝛼(𝑘) = 0.1 and
𝛼

𝑛
(𝑘) = 1.

Table 2: Control parameters of RMPC-SC, RMPC, RGPC, GPC,
and MPC for the simulated plant with 𝛼(𝑘) = 10 and 𝛼

𝑛
(𝑘) = 0.1.

In this table, Omeans the filter order and 𝑤

𝑐
means the filter cutoff

frequency, for RGPC.

𝐻

𝑝
𝐻

𝑐
𝜆 𝜖 𝑟 O 𝑤

𝑐

RMPC-SC 12 6 3 0.9 3 — —
RMPC 6 4 1 — — — —
RGPC 12 6 10 — — 2 0.9
GPC 12 6 — — — — —
MPC 12 6 0.05 — — — —

The RMPC-SC and RMPC controllers were applied to
the plant (36) for different sets of values of the coeffi-
cients 𝑎 and 𝑏 in C: 36 pairs of coefficients (𝑎, 𝑏) were
generated, with 𝑎 ∈ {0.5; 0.7; 0.9; 1.1; 1.3; 1.5} and 𝑏 ∈

{0.7; 0.76; 0.82; 0.88; 0.94; 1}. A controller was considered to
be stabilizing when the mean of difference (𝑦(𝑘) − 𝑤(𝑘))

was lower than 0.01 for 𝑁/2 ≤ 𝑘 ≤ 𝑁, where 𝑁 is the
number of steps of the algorithm (in this example it used𝑁 =

100). Figure 10 shows the instances for which each method
achieved satisfactory results. It can be seen that theRMPC-SC
achieves stabilization for 35/36 of the system instances, while
RMPC stabilized the system in only 26/36 of the instances.
There was only one instance of the pair (𝑎, 𝑏) for which the
RMPC-SC did not get a good performance: the pair (𝑎, 𝑏) =

(0.7, 0.5).
The same analysis was performed in order to compare the

stabilization provided by RMPC-SC and RGPC controllers,
for the same plant (36), considering the same grid of param-
eter values. In this analysis, the parameters of RGPC were
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Figure 6: MPC × RMPC × GPC × RGPC × RMPC-SC: 𝛼(𝑘) = 10

and 𝛼

𝑛
(𝑘) = 0.1.
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Figure 7: RMPC-SC × RMPC with Plant (38).

chosen before the comparison, in order to achieve the widest
robustness. Given a pair of coefficients (𝑎, 𝑏), the stabilization
was declared when the mean of difference (𝑦(𝑘) − 𝑤(𝑘)) was
lower than 0.01, to 𝑁/2 ≤ 𝑘 ≤ 𝑁, for 𝑁 = 200.

Figure 11 shows the performance of the methods RGPC
and RMPC-SC for controlling the plant (36) associated
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Figure 8: RGPC × RMPC-SC with Plant (38).
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Figure 9: RMPC-SC with Plant (39).

with each pair (𝑎, 𝑏), with nominal model corresponding to
(𝑎, 𝑏) = (0.85, 1.0). The RMPC-SC achieved stabilization for
35/36 of the problem instances, while the RGPC achieved
stabilization for only 19/36 of the problem instances.

The results displayed in Figure 11 reveal an interesting
pattern: RMPC-SC leads to larger intervals of robustness for
uncertainties in the parameters (𝑎, 𝑏) than RGPC. This is
expected, since the kind of robustness provided by RGPC
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Figure 11: RMPC-SC × RGPC with Plant (36) associated with each
pair (𝑎, 𝑏). RGPC with nominal model (𝑎, 𝑏) = (0.85, 1.0). I:
satisfactory performance of RMPC-SC, ×: satisfactory performance
of RGPC.

is suitable for norm-bounded uncertainties (in an infinite-
dimensional space). As RMPC-SC is specifically designed for
providing robustness against parametric uncertainties in the
(𝑎, 𝑏)directions, RMPC-SC is expected to be less conservative
for those uncertainties, which is confirmed by the obtained
results.

5. Conclusions

The issue of guaranteeing robust stability of box-bounded
uncertain systems controlled by MPC strategies was dealt
with in this work using a “first-principle” approach, based
on a sufficient condition for the convergence of sequences
which gives rise to a set of constraints on the control inputs.
The proposed approach can be used jointly with most of the
usual MPC design strategies, as long as it is implemented
by the simple introduction of additional constraints in the
control inputs.The usefulness of the proposed technique was
illustrated in the examples, which showed a better robustness

performance than other techniques, in the case of box-
bounded uncertainties.

Two important limitations of the proposed technique
should be mentioned: its high computational cost and its
current availability only for SISO systems. The authors are
currently studying alternatives for solving those issues.
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