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Abstract. UWB radar technologies enable localization of moving persons (targets) sit-
uated behind nonmetallic obstacles. Under exact knowledge of the propagation times,
from the transmitting to the receiving antennas, of the radar emitted electromagnetic wave
(time of arrival, TOA), a highly accurate target localization can be achieved. Since TOA
estimates only are available, their use for target localization may result in a sizeable target
localization error. In this paper we study the influence of TOA quantization on the point
target localization accuracy using numerical simulation methods.

1 Introduction

In the last years, great efforts have been made to develop methods for the localization of human beings
based on monitoring their respiratory motion [1, 5]. For that purpose, ultra-wideband (UWB) sensors
(radars) operating in the frequency band DC-5 GHz can be used with advantage. Electromagnetic
waves occupying such frequency band can penetrate most nonmetallic materials with a small enough
attenuation, and hence persons located behind such obstacles can be detected. On the other hand, due
to the employment of the ultra-wide bandwidth, UWB sensors can provide fine range resolution (in
order of centimetres), and hence a high accuracy of the target localization as well [2].

Deep analyses of the problem of the person localization by UWB sensor has shown that there
are many factors affecting the accuracy of person localization. The accuracy of the so-called time-
of-arrival (TOA) estimation (time necessary for electromagnetic wave emitted by the radar to travel
from transmitting to receiving antennas) and the UWB radar antenna layout belongs among them. In
this paper, the impact of TOA quantization (TOA estimation problem) and the geometry of the radar
antennas (defining the radar antenna layout) on the accuracy of the localization of a point target behind
a wall will be studied using numerical simulation methods.

2 TOA based localization of a static point target behind a wall

Let us consider a measurement equipment consisting of one transmitting antenna T placed at the
origin (0, 0, 0) of the Cartesian coordinate system, and 4 receiving antennas Ri, i = 1, 2, 3, 4, placed
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Fig. 1. Wave propagation time doesn’t depend on the wall position

The Problem 2 we will solve in the similar way minimizing

F (P,w) =

NR∑

i=1

[TOAi(P,w)− Ti]
2 −→ min

w,P
w > 0, yP > y1 + w

. (4)

3.1 Newton’s Method with Approximate Hesse Matrix and
Gradient

For the solution of Problems 1 and 2 represented by problems (3) and (4) we
use the Newton method. Starting from a point X [0], at each iteration a system
of linear algebraic equations is solved:

X [k+1] = X [k] − [H(X [k])]−1 · ∇F (X [k]), k = 0, 1, . . . (5)

Both, the gradient ∇F (X [k]) and the Hesse matrix H(X [k]), are calculated nu-
merically using the central finite difference approximations of the second order
for derivatives with the step h = 2 × 10−5. Columns of the Hesse matrix are
calculated using central differences of gradient, and afterwards the Hesse matrix
is symmetrized. Instead of the inverse, the pseudoinverse Hesse matrix is used.

For the Problem 2 we first solve the Problem 1 for some initial value of the
wall width winit, and on the second stage we are looking for better values with
enlarged size of the vector X, i.e., for X = (x; y; z;w).

3.2 TOA Calculation

Three layer Air-Concrete-Air problem of a wave propagation is indeed only two
layer Air-Concrete problem (see [6], page 102). It is evident from Fig. 1, where

w

s

P = (s, yP )

s∗A

Figure 1. The wave propagation time does not depend on the wall position (left). The beam trajectory plane
containing a point target P and an antenna A (right).

at the distance d from the transmitting antenna at the points

R1 = (d, 0, 0), R2 = (−d, 0, 0), R3 = (0, 0, d), R4 = (0, 0,−d). (1)

A concrete wall of width w is assumed to be parallel to the plane y = 0 (Oxz). The speed of light in
the air, resp. within the wall we denote ca, resp. cw. Further let us suppose that a point target is at a
point P = (xP, yP, zP).

An electromagnetic wave propagates from the transmitting antenna T through the wall and air
reaching the point target P, and after the reflection it propagates through the wall and air to the re-
ceivers Ri, i = 1, . . . , n (in this paper we consider case n = 4, see (1)). The time of the electromagnetic
wave propagation from a transmitting to receiving antenna is denoted as the time of arrival (TOA).
For these times, the notation such as TOAi or TOA(P)i, i = 1, . . . , n, will be used throughout this
paper.

An algorithm for the localization of a point target behind a wall based on the information about
TOA to the receivers has been presented in [3]. Under the assumption of 4 or more available exact
TOA values it is possible to determine not only the target position, but also the wall width (or the
material relative permittivity).

In [4] the results of through-floor localization of a person using an ultra-wide band (UWB)
radar are presented. A motionless person has been lying on the base floor at the position P =
(−0.77; 2.84; 0.35) [m] (5 antennas were placed on the first floor, and coordinate axis y was directed
down). Note that the respiratory motion is usually the only visible form of a movement for a static mo-
tionless person. For the TOAi estimation, a reduced WP-STAPELOC method was employed [5]. The
estimated position was Pest = (−0.91; 2.71; 0.61) [m], getting the localization precision 32.265 cm.

Using some sampling frequency of the measurement one gets only the TOA values TOAi rounded
(at least) to the closest upper sample time values. From a point of view of the rounded TOA values
a points set of equivalency E(P) =

{
P̃ ∈ R3 |TOA(P̃)i = TOA(P)i

}
(equivalency domain) can be

defined. The impact of the time quantization (discretization) on the target localization accuracy – the
shape and size of an equivalency domain E(P) – is presented below.

3 Time of arrival calculation

The TOA calculation in our simulations was based on the Fermat principle of least time, which leads
to the Snell–Descartes law of refraction describing the relationship between the angles of incidence
and refraction, when referring to the waves passing through a boundary between two different isotropic
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Figure 2. Equivalency domain E(P) boundary points for a point P = (−0.77; 2.84; 0.35) [m] for 3 GHz (left) and
12 GHz (right) sampling frequency (lengths of the arrows in radius vector P direction are 10 cm)
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Figure 3. Projections of E(P) boundary points onto the plane orthogonal to the radius vector P (left), distribution
of the projections onto the line parallel to the radius vector P (right) – sampling frequency 3 GHz

media, such as water, glass, or air. From the figure 1 left it is evident, that the wave propagation time
does not depend on the wall position, so one side of the wall has been placed at the plane y = 0.
Applying the Fermat principle, minimizing the wave propagation time (see [3]), we get the following
algebraic equation
[
c2

a − c2
w

] · s4
∗ − 2s

[
c2

a − c2
w

] · s3
∗ +
[
c2

ayP(yP − 2w) + (c2
a − c2

w)(s2 + w2)
] · s2

∗ + 2c2
w · s · w2 · s∗ − c2

w · w2 · s2 = 0

for the determination of a value s∗, where s =
√

x2
P + z2

P (Figure 1 right).

4 Numerical results

For selected points P discretized values TOAi, i = 1, . . . , 4 have been calculated. Relative permittivity
7.7 for reinforced concrete, receivers distance d = 0.8 m, and the wall width w = 41 cm have been
used. Afterwards for 5102 selected directions on a unit sphere using bisection method boundary points
of the equivalency domain E(P) have been determined (Figure 2).
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The shape of the equivalency domain E(P) is flattened – its diameter for 3 GHz sampling frequency
size was 44.13 cm (the first row of Table 1), it was close to the diameter of the E(P) projection onto
the plane orthogonal to the radius vector P (Figure 3 left), and the deviations in the radius vector P
direction were from dPmin = −0.938 upto dPmax = 3.827 cm getting the equivalency domain width in
the P direction 4.765 cm (Table 1 and Figure 3 right).

Table 1. Precision dependence on the sampling frequency for a point P = (−0.77; 2.84; 0.35) [m]

frequency [GHz] dmin [cm] dmax [cm] dPmin [cm] dPmax [cm] diam [cm]
3 0.016 26.833 −0.938 3.827 44.129
6 0.016 17.542 −0.938 1.277 22.747
12 0.016 7.106 −0.055 0.945 9.570

Table 2. Precision dependence on the sampling frequency for a point P = (1; 10;−2) [m]

frequency [GHz] dmin [cm] dmax [cm] dPmin [cm] dPmax [cm] diam [cm]
3 0.414 93.829 −3.777 1.253 142.245
6 0.052 41.214 −0.623 0.663 52.287
12 0.052 28.612 −0.568 0.609 36.641
3∗ 0.710 60.564 −2.881 1.777 78.774
6∗ 0.100 27.562 −1.509 0.789 35.999
12∗ 0.100 11.794 −0.770 0.306 18.473

∗ – receivers distance from the transmitting antenna 1.6 m
Minimal, resp. maximal distances of boundary points from the point P are denoted by dmin, resp.

dmax (Tables 1 and 2). The table 2 contains values for a point P = (1; 10;−2) [m].

5 Conclusions

Our investigation has shown that for a higher sampling frequency 12 GHz the localization accuracy
represented by the equivalency domain diameters is acceptable for practical using. For larger distances
the accuracy is smaller. Larger receiving antennas distances lead to a higher localization precision. It
would be interesting to consider equipment with 2 receivers, e.g., R3 and R4 shifted in the x direction.
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