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Abstract. Cables are efficient structural elements that are used in cable-stayed bridges, suspension bridges 
and other cable structures. A significant problem which arose from the praxis is the cables’ rain-wind 
induced vibrations as these cables are subjected to environmental excitations. Rain-wind induced stay-cable 
vibrations may occur at different cable eigenfrequencies. Large amplitude Rain-Wind-Induced-Vibrations 
(RWIV) of stay cables are a challenging problem in the design of cable-stayed bridges. Several methods, 
including aerodynamic or structural means, have been investigated in order to control the vibrations of 
bridge’s stay-cables. The present research focuses on the effectiveness of a movable anchorage system with 
a Classical Rolling Pendulum Bearing (CRPB) device. An analytical model of cable-damper system is 
developed based on the taut string representation of the cable. The gathered integral-differential equations 
are solved through the use of the Lagrange transformation. . Finally, a case study with realistic geometrical 
parameters is also presented to establish the validity of the proposed system.    

1 Introduction  
Cable-stayed (C-S) bridges have been known since the 
beginning of the 18th century, but there were difficulties 
in their static and dynamic analysis. A significant 
problem, which arose from the practice, is the cables 
rain-wind induced vibrations. Large amplitude Rain-
Wind-Induced-Vibrations (RWIV) of stay-cables 
constitutes a challenging problem in the design of C-S 
bridges. Several methods, have been investigated in 
order to control the vibrations of bridge’s stay cables.  
      This paper investigates the effectiveness of a 
movable anchorage system with a Classical Rolling 
Pendulum Bearing (CRPB) device. An analytical model 
of the cable-damper system is developed herein based on 
the taut string representation of the cable. The gathered 
integral-differential equations are solved through the use 
of the Lagrange transformation. Finally, a case study 
with realistic geometrical parameters is also presented to 
establish the validity of the proposed system, while the 
required device for the studied case is designed (see Fig. 
1). 

 
(a)                                             (b)                                                               (c)  

Fig. 1. Various forms of a CRPB with: (a) one, (b) two,     
          and (c) three concaves 

2 Basic assumptions 
The deformed shape of the cables under dead and live 
loads is a catenary curve, with displacements wo and 

tensile forces To (see Fig.2), which because of its very 
shallow form can be approximated by a second-order 
parabola. 
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Fig. 2. Cable and reference axes 
 
Under the action of the dynamic loads py(x,t) and 
pz(x,t), the cable takes the form of Fig. 3, with additional 
displacements ud , υd, wd and tensile forces Td. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Deformation of the cable 
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3 Equilibrium equations of a taut cable 

3.1 Projection on xoz-plane 

3.1.1 Equilibrium of horizontal forces 

Projecting on xoz-plane and taking the equilibrium of 
horizontal forces, we obtain: 
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3.1.2 Equilibrium of vertical forces  

Projecting on xoz-plane and taking the equilibrium of 
vertical forces, we obtain: 
 

 

 
 
 
 
 
 
Fig. 4. Projection on xoz-plane 
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3.2 Projection on xoy-plane 

Projecting on xoy-plane, we obtain: 

         ),(2

2

2

2

txpmc
x

T
x

T ydd
d

d
d

o 





 

           (3) 

 
 

 

 
 
 
Fig. 5. Projection on xoy-plane 

3.3 The cables’ deformation 

With boundary condition 0)0( dw  we obtain:         















 

L

z
o

L

dodo
o

d EA
dxLwithdxwwLwLw

L
T

0
3

0 cos
:)()(1


  (4) 

3.4 Catenary and the parabola approach 

It is usual to use the parabola as a curve that is very close 
to the catenary one, especially for shallow forms of 
cables. For a cable’s shallow form the equation of a 

parabola passing from the points (0,0), (L,0) and having 

o
o H

gmw   is given by the following formula:   
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4 Analysis  

4.1. The cable  

The stay-cable model with the considered anchorage-
bearing system is shown in Fig. 6. 
 
 

 

 
Fig. 6. The stay-cable model 
 

4.2 The rolling pendulum bearing system  

Let us consider a C.R.P.B. device with one concave 
rolling, like the one of Fig.7. The C.R.P.B. system is 
made from material like the one of the classical ball-
bearings having surfaces elaborated wery diligently, with 
coefficient of rolling friction ranging from 0.002 to 
0.005. Therefore, the developed friction forces can be 
neglected in this preliminary study. On the other hand, 
the angle of the friction cone amounts up to 0.34o, which 
corresponds to a very small static friction. 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Geometry of a C.R.P.B. system  

4.3 The equation of motion 

We obtain the following equation of motion:  
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4.4 The free vibrating cable 

The equation of motion of a free vibrating cable with 
movable anchorage is: 
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We are searching for a solution of separated variables of 
the form: 
                            )()(),( txWtxwd                 (8) 
 
One can determine the following form of the shape 
functions: 
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4.5 The forced vibrating cable 

 We are searching for a solution of the form: 
                       

n
nnd tZxWtxw )()(),(                       (10) 

and we conclude finally to: )()( 1 sLtZ kk      (11) 

5 Numerical results and discussion 

5.1 The cables  

Let us consider a C-S bridge with dense distribution of 
cables from which we study a cable having tension 
To=300000 dN/cable, cross-sectional area F=7.5∙10-
3m2, diameter D=0.13 m, weight G=70 dN/m, mass per 
unit length m=7kg/m, and variable length L=150, 250, 
and 350m. 

5.2 The rain-wind combination 

It has been observed that the rain-wind-induced vibration 
in bridge cables usually occurs in a frequency range 
from 0.5 to 4 sec-1. For the study of the vibration of a 
cable under the action of a rain-wind combination we 
choose the following loading:  ttfxpp sin20)()(  , 
where ω=1, 2, 3, 4 sec-1 (for the study of the above 
cables without a damping system) and ω=3 sec-1 (for the 
study of the above cables with the proposed C.R.P.B. 
devise). 

5.3 Behavior of the cables without a damping 
system 

Table 1. Eigenfrequencies of the cables 

     m=7kg/m ,       To=300000 dN 
   L=150m   L=250m    L=350m 
ω 1 4.4697 2.8186 2.1507 
ω 2  8.6716 5.2029 3.7164 
ω 3  13.0125 7.8130 5.5868 
ω 4  17.3432 10.4059 7.4328 
ω 5  21.6801 13.0093 9.2936 

 
In Figs 8 to 10, one can see the oscillations of the mid-
length of the studied cables with length   L=150, L=250 
and L=350m, subjected to loadings acting with 
frequencies ω=1, 2, 3, 4 sec-1. 
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In this case, big deformations appear, because the 
eigenfrequency of the external load  is near to the first 
one of the cable ( ω1 =4.47 sec-1) 
 
Fig. 8. Oscillations of the mid-length of a cable of length     
            L=150m, without any damping system 
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In this case, big deformations appear, because the 
eigenfrequency of the external load is near to the first 
one of the cable (ω1 =2.82 sec-1).              
  
Fig. 9. Oscillations of the mid-length of a cable of length   
            L=250m, without any damping system   
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In this case, big deformations appear, because the 
eigenfrequency of the external load is near to the first 
one of the cable (ω1 =2.15 sec-1).  
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Fig. 10.   Oscillations of the mid-length of a cable of length             
                L=350m, without any damping system 

5.4 The damping system 

In the followings, we will use a C.R.P.B. device, based 
on the operation principle of the simple system of Fig. 7. 
We will consider devices with concave radii R=1, 2, and 
3 meters.  
 
In the plots of Figs 12, 13, 14, we see the oscillations of 
the middle and of the anchor head of a cable of length 
150m, tension 300000dN, and for different values of R. 
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 Fig. 11.  Oscillations of the mid-length and of its anchor head     
 of a cable of L=150m, R=3m ___ with ,  - - - without   
 C.R.P.B 
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Fig. 12.  Oscillations of the mid-length and of its anchor head      
of a cable of L=150m, R=2m ___ with , - - -   without C.R.P.B 
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Fig. 13. Oscillations of the mid-length and of its anchor head 
of a cable of L=150m, R=1m ___ with,- - -   without C.R.P.B 
 
From the above plots of Figs 11 to 13, we ascertain that 
smaller radii are more effective than the greater ones. 

The above results are valid for both the cables’ 
deformations and the anchorages’ motion. 
In the plots of Figs 14, 15, and 16, we see the 
oscillations of the mid-length and of the anchor head of a 
cable of length 250m, tension 300000dN, and for 
different values of R. 
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Fig. 14. Oscillations of the mid-length and of its anchor head 
of a cable of L=250m, R=3m ___ with, - - -   without C.R.P.B 
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Fig. 15.  Oscillations of the mid-length and of its anchor head  
of a cable of L=250m, R=2m ___ with, - - - without C.R.P.B 
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Fig. 16.  Oscillations of the mid-length and of its anchor head   
of a cable of L=250m, R=1m ___ with,  - - -   without C.R.P.B 
 
From the above plots of Figs 14 to 16, we observe that 
although the oscillations’ amplitude is remarkable large 
the effectiveness of the system is obvious. We ascertain, 
again, that smaller radii are more effective than the 
greater ones. The above results are valid for both the 
cables’ deformations and the anchorages’ motion. 
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Fig. 17.  Oscillations of the mid-length and of its anchor head  
of a cable of L=350m, R=3m ___ with, - - -   without C.R.P.B 
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Fig. 18.  Oscillations of the mid-length and of its anchor head  
of a cable of L=350m, R=2m ___ with, - - -   without C.R.P.B 
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Fig. 19.  Oscillations of the mid-length and of its anchor head 
of a cable of L=350m, R=1m ___ with, - - -   without C.R.P.B 
 
In the plots of Figs 17, 18, and 19, we see the 
oscillations of the mid-length and of the anchor head of a 
cable with length 350m, tension 300000dN, and for 
different values of R. 
From the above plots of Figs 17 to 19, we ascertain, once 
again, that smaller radii are more effective than the 
greater ones. The above results are valid for both the 
cables’ deformations and the anchorages’ motion. 
 

6 Design of a C.R.P.B. device 

6.1 Bearing capability 

Manufactures of ball bearings typically publish “LOAD 
RATINGS” for each bearing that they produce. Both 
ABMA and ISO have published standards related to load 
ratings. ABMA std. 9  -  Load Ratings and Fatigue life 
for Ball Bearings. ABMA std. 12.1 and 12.2  -  
Instrument Ball Bearings. ISO  76  -  Static Load 
Ratings. ISO  281-  Dynamic Load Ratings and Rating 
Life. Static load ratings and dynamic load ratings are 
calculated on completely different ways and there is not 
direct relationship to one another. The Basic Static Load 
Rating applies to bearings where motion does not occur 
or occurs only infrequently. The basic load ratings and 
calculation methods are based on methods described by 
the above-mentioned ISO recommendations. 
As a standard of permissible static load, the basic load 
rating is specified as follows: Maximum contact pressure 
at the contact point 4200 MPa (1 MPa=100 N/cm2) 
Total permanent deformation of the compressed zone 
can be, approximately, 1/10000th of the rolling 
elementary diameter. The basic load rating for stainless 
steel is 80% of that for standard bearing steel. 
 

 

 

 

 

 

Fig. 20.   Geometry of a cylinder bearing 

According to the above recommendations, one can 
proceed as follows (see Fig. 20): 
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Fig. 21.  The required C.R.P.B. 

 
Therefore, for the safe undertaking of a load To, the 
required length d of the cylinder of Fig. 21, can be 
determined by the following relations: 
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6.2 Selection of the appropriate C.R.P.B. 

We select a device with R=1m, and D=2r=7cm. 
 
From §6.1, we have  cm07.05.3020.0r   and  
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   or, equivalently, 4 

cylinders with length 15cm. 
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The designed C.R.P.B. device shown in Fig. 22 can 
undertake loads acting to any direction because the 
rolling cylinders operate along two perpendicular axes. 

7 Conclusions 
In this paper, a movable anchorage system with Classical 
Rolling Pendulum Bearing (C.R.P.B.) for vibration 
control of stay cables has been proposed and 
investigated. A model for the control system has been 
formulated, based on the taut string representation in 
which the proposed device has been incorporated. 
From the studied cases, one can conclude to the 
followings: 
a) The constant of the equivalent spring of the CRPB 
system has been assessed. 
b) The results of cable response show that the proposed 
CRPB device can effectively reduce the oscillation 
magnitude of the cable, proving the efficiency of the 
system. 
c) The observed decrease of the cable’s oscillations 
amounts from 15% to 50%, while the motion of the 
anchor-head of the selected and designed device 
amounts from 1.5 to 6 cm. One must note that the CRPB 
device is very effective even for external loads acting 
with frequencies equal or near to one of the 
eigenfrequencies of the strained cable. 
d) The design parameters of the CRPB system for the 
selected cables are identified and the proper device has 
been designed.  
e) The proposed anchorage system is shown to perform 
more efficiently than the conventional passive external 
dampers, presenting a better solution from aesthetics 
point of view.   
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