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Summary - The estimation of genetic parameters in bivariate animal models is consid-
ered. It is shown that in a variety of models the computation can be reduced by introducing
scaled and transformed independent traits. This allows maximization over smaller dimen-
sions of parameter space. In 1 numerical example the procedure reduced the computation
by a factor’of 8. The advantages of transformed models are outlined.
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Résumé - L’estimation des variances et covariances dans un modèle individuel à
2 caractères après standardisation et transformation des variables. Cet article traite de
l’estimation des paramètres génétiques dans un modèle individuel à 2 variables. On montre
que, dans beaucoup de situations, le temps de calcul peut être diminué en standardisant
les caractères et en les rendant indépendants par une transformation, ce qui permet une
maximisation sur un espace de paramètres de moindre dimension. Un exemple numérique
particulier montre que le temps de calcul est divisé par 8. Les avantages des différents
modèles transformés sont présentés.
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INTRODUCTION

There is often the need for estimation of genetic and environmental variances and
covariances from animal breeding data. For example, to consider the responses from
alternative selection schemes or to efficiently predict the genetic merit of animals.
Usually in animal breeding schemes animals are selected on some criteria and so
methods of analysis are needed that take account of selection. Maximum likelihood
(ML) methods have been shown to take account of selection in univariate and
multivariate settings (for example, Henderson et al, 1959; Thompson, 1973) if the
records on which selection is based are included in the data. If this condition is

only partially fulfilled, ML methods are less biased by selection than analysis of
variance methods (Meyer and Thompson, 1984). A restricted or residual maximum
likelihood (REML) procedure uses the likelihood of residuals and has the advantage
that it takes account of the estimation of fixed effects when estimating variance
components and corrects for degrees of freedom (Patterson and Thompson, 1971).
In general these methods are computationally expensive requiring the solution and
inversion of equations of the order of number of animals x numher of traits, but
there are simplifications when all the traits are measured on all auimals and the
same fixed effect model is applied to all traits (Thompson, 1977: Meyer, 1985).

In the past, estimation methods have used equations based on first and second
differentials, but recently Graser et al (1987) and Meyer (1991) have shown how
the likelihood can be calculated recursively in univariate and multivariate settings
and advocated the direct maximization of the likelihood. Meyer (1991) also showed
that the computational effort can be reduced if, given some of the parameters, it
is relatively easy to maximize the likelihood for the rest of the parameters. The
maximization then has 2 stages and the dimension of search is reduced.

Meyer (1991) showed the advantage of these techniques for models with equal
design matrices and 3 variance components. In the recent analysis of data from a pig
nucleus herd (Crump, 1992) we required to estimate genetic correlations between
male and female performance when the 2 sexes were reared in different environments
and between growth and reproductive traits, and these models do not directly fit
into Meyer’s algorithm.

In this paper we show how Meyer’s method can be extended to fit these and
other models, by the introduction of scaling and transformation models. The models
considered included those for bivariate traits when different fixed effect models are

appropriate to each trait and to models with equal design matrices with more than
2 traits.

ESTIMATION

We will consider in turn estimation for 3 models.

Model 1

The first and simplest model is of the form



with

and var(el) = 10’;1 and var(e2) = IQe2 and el and e2 are uncorrelated, and the
fixed effects #i and (32 have no elements in common, and the random effects ui,
u2, el and e2 normally distributed. The vectors Yl and y2 are of length nl and n2
and matrices Xl, X2, Zl and Z2 are of size nl x tl, n2 x t2, ni x m and n2 x m. Our
motivation was a case when a trait Yl was measured on males and y2 was measured
on females and there was interest in the genetic covariance between traits (0’ A12)
and there was no environmental covariance between the records. This model was

analysed by Schaeffer et al (1978) using a method that involved calculation of the
second differentials of the likelihood and inversion of a matrix of order 2m for each -
iteration.

If the 2 residual variances are homogeneous then the univariate method used by
Meyer (1989) can be used if the model is written in the form

with

If, however, the residual variances are not homogeneous the situation is slightly
more complicated. If ue2, > U;2 the vector of residual can be written as

and if the elements of the first vector have variance 0’;2 and the non-zero elements
of the second vector variance 0’;1 - 0’;2 then it is seen that an extra component could
be introduced (if 0’;1 > 0’;2) and this component estimated, but this will increase
the dimension of the search by 1. We now develop a method that does not increase
the dimension of search. It is useful to think of a composite matrix of yi and y2,
of the form Y! _ [yi Y2] with

so that the vector of observations is y = yi + y* 2 *
We wish to maximize the log-likelihood of error contrasts (Patterson and

Thompson, 1971).



with í3 = (X’V-1X)-1X’V-ly and V is of the form R+ZGZ’ = R+Z(AxTA)Z’
with x denoting direct product and

and

Then V = Q[I + ZGSZ’]Q’ = Q[I + Z(A x TAS)Z’]Q’ = QHQ’ with

so that

is a scaled version of TA.
The terms in [1] can be written in terms of H, 0&dquo;;1’ Qe2 and Yc as follows:

and (y - X[3)’V-1(y - X#) = s’(Y! - X[3!)’H 1(Y! - X[3!)s
with s = 1/0’e,!! ! l /Ue2 

_ _

with !,, a matrix of effects for the 2 traits yi, y* and (Yc - X(3!)’H-1 (Y! - X#!)
a 2 x 2 matrix of sums of squares and cross-products of residuals for these 2 traits.

By using these relationships, and the formulae for log-likelihood of a model with
variance matrix H developed by Graser et al (1987), it can be shown that logL can
be written using

where dfi = n2 - ti (i = 1, 2), C is the coefficient matrix of mixed-model equations
with variance matrix I + ZG,,Z’ and P = H- 1 - H-1X(X’H-1X)-1X’H-1. The
terms in C and P can be calculated in an analogous way to Graser et al (1987) by
the formation of M, an augmented matrix of mixed-model coefficients and right-
hand sides of the form:



with log ICI associated with the pivots involved in the Gaussian elimination of the
terms associated with X and Z, and

is the (2 x 2) residual matrix after elimination of the term associated with X and
Z. The term log [Gs[ can be written, using properties of direct products (Seaxle,
1982), as m log I TAS + 2 log IAI, with the last term independent of the variance
parameters.

For given TAS, log L can be written as a function of terms of M, a el 2 and 0’;2 2

using

Differentiating this log-likelihood with respect to 0’;1 and Qe2, noting that Gs
and C are independent of 0’;1 and 0’;2’ and equating to zero gives

with the ratio r = Qei/Qe2 satisfying the equation

with df * = 1/df2 - 1 /dfi and so

and hence ufli and CT;2 can be found from [4] and [5] given the 3 parameters in TAS-
Substitution of the values for U2 e and CT;2 in [3] gives log L for given TAS.

Hence the ML estimates could be found with maximization over the 3 parameters
in TAS. Essentially the structure of the model has allowed the scaling of Yl and y2
by <7ei and CTe2 to be carried out independently of TAS.

Model 2

A natural extension of Model 1 is to allow a non-zero covariance matrix between
the residuals el and ez, BCTe12 with, for simplicity, the (nl x n2) matrix

so that the first n2 animals are measured on Yl and y2 and this will be denoted
Model 2. There are obviously several ways of writing this model. We give below



a form of this model that has 2 properties. Firstly, this form allows univariate
algorithms to be used to calculate likelihoods. This is achieved by introducing
uncorrelated effects, Ub, to help model covariance effects. Secondly, in order that
scaled versions of Yl and y2 have homogeneous contributions for el and e2, as in

model 1, but also for Ub, scaling factors, a and b for the contributions of Ub to yi
and y2 are introduced. This model has the general form:

with

It should be noted that the range of maximization of o, bi 2 is from minus infinity to
infinity rather than 0 to infinity in order to allow negative environmental variances.
This only needs minor changes to the algorithm. The term log ! G ! + log ! C ! is
normally found from, say, E log gi+log c7, where the terms gi and ci are positive. If
ufli is negative then the term log [ G + log [ C is still positive definite and therefore
there are an even number of negative terms in gi and ci . Therefore log G ! + log ! C ! I
can be calculated as E log 19i1+2: log I ci The equivalent residual variance structure
has 2 equivalent formulations

so the relationships between the parameters are:

Any non-zero value for a and b can be used but if a = 0-:1 and b 
= Qe2 then the

log-likelihood can be expressed in a form analogous to (2! using a matrix M given
by

with Zb # [ Zb21 ] and Gs = TAS and TA = C !l ! e2 / 1 TAS C Ol e J2WIt b21 an S = AS an A = <7!/ AS 0!/

Equations [4] - [6] allow estimation of u§f and Qe2 given T#! and Qbl. Hence a
6 parameter problem has been converted to a search over 4 parameters. Crump
(1992) has considered extensions of this model to allow estimation of genetic
covariances between growth and reproductive traits.



Model 3

Models 1 and 2 are models that allow different fixed effect models with 2 traits,
but there are interesting implications if a similar approach is applied to models
with p traits, where all traits are measured on all animals and the same fixed effect
structure is applied to all p traits. When there are 2 variance component matrices
to be estimated a canonical transformation to make the traits independent can be
useful in reducing p trait equations into p sets of univariate calculations (Thompson,
1977; Meyer, 1985; Taylor et al, 1985). Meyer (1991), for the case of additive and
residual matrices, has recently emphasized a 2-stage maximization procedure, using
S, a p x p transformation matrix, and 71, a p x p diagonal matrix of canonical
heritabilities. For a given value of 71, the log likelihood can be written in a form
analogous to !2!, with the use of p matrices of the form of M and with Y! an n x p
matrix Y with the ith column of Y the ith variate yi. Given 71, the log-likelihood
maximization in terms of S is computationally easier, and in fact when p = 2 there
is an explicit estimate of S in terms of the residual matrices (Juga and Thompson,
1992). On a small numerical example Meyer (1991) has reduced computation to a
half by such a technique and one would expect larger savings as p increased.

For more than 2 sets of components, there is a natural extension of Meyer’s
method and the method used for Models 1 and 2. To illustrate the method suppose
3 symmetric (2 x 2) matrices E, TA and TB require estimation and the variance
matrix is

With 2 components a transformation to simultaneously diagonalize the variance
matrices is available, but not generally for more than 2 components. However,
there is a transformation S(= Q-1) such that SES’ = I, STBS’ = TBS and

STAS’ = TAS with TBS a diagonal matrix. When p = 2, the 3 x 3 = 9 parameters
in E, TA and TB can therefore be written in terms of the 4 parameters in S, 2 in
TBS and 3 in TAS. The calculation of the log likelihood is now based on a composite
p x p2 matrix Yc. This matrix has p2 variates formed from the direct product of
the p x p identity matrix and Y, the n x p matrix of observations with each column
representing a trait. The log likelihood can be calculated using a formula similar
to !2!, and it can be seen that Yc includes the variates used in Models 1 and 2 and

expands the matrix Y used by Meyer (1991) when estimating 2 components.
The log likelihood in this case is similar to [2] of the form:

with Gs = A x TASBs = B x TBS and !C! found from [7] with I(1/Qb) replaced
by BS 1. The (1 x p2) vector s’ is found by stacking the rows of S into a vector,
ie s!i_1!P+! = Sij. The term Y’PY, = U can be found from the residual sum of
squares and cross-product residual matrix for the p2 variates in Yc after adjusting
for all the effects.



Differentiation of [10] with respect to S shows that the estimates of S that
maximize [8] for given values of TAS and TBS satisfy

with si! _ (S-’)ij.
The appendix shows that S can be found as the solution of an eigenvalue problem

if p = 2. Hence if p = 2 maximization can be reduced from considering 9 parameters
to a search over the 5 dimensional space of TAS and TBS.

Meyer (1991) illustrated her methods with data from a selection experiment of
Sharp et al (1984) and fitted a 3-component model to bivariate data. The likelihood
was maximised over a 9 dimensional space and required 722 iterations to reach con-
vergence. Using the same starting values and convergence criteria the 5 dimensional
strategy outlined in this section reached convergence in 89 evaluations.

DISCUSSION

It has been shown, for a variety of models, how scaling and transformation can
reduce the considerable effort in finding maximum likelihood estimates, especially
for multivariate models. Another advantage is that the transformation can suggest
more parsimonious models. For example, one could consider a constrained model
of the form:

SES’ = I, STBSS’ = TB and STASS’ = TA with TAS and TBS diagonal,

that is fitting a model with underlying uncorrelated traits that are transformed
using Q = S-’ to form the p measured traits. This model has the advantage of
having fewer parameters (p(p -E- 2)) and that the likelihood, for given TBS and

TAS, can be calculated in about (1/p2) of the time of the unconstrained model
because the likelihood of each underlying trait can be calculated separately. For
Meyer’s example an underlying uncorrelated model converged in 50 iterations.
The difference in 2 log L was 0.94 suggesting that an underlying independent
model would adequately fit the data. Lin and Smith (1990) have pointed out that
by transforming to these approximately uncorrelated traits, simpler best linear
unbiased predictors can be obtained. Villanueva et al (1993) have given examples
where this procedure has very high efficiency. The strategy outlined gives a logical
method for choosing the transformation S.

In the multivariate case S can be found, for given TAS and TBS, by derivative-
free methods but the explicit solution for p = 2 has advantages. In fact for the
numerical example above at the maximum likelihood estimates for TAS and TBS,
2 of the solutions of [8] for S correspond to local maxima and 2 to saddlepoints.
Explicit solutions for S if p > 2 were not obtained and the best computational
strategy in terms of derivative-free methods or iterative use of [8] or solutions for
p = 2 deserves further investigation.

The motivation has been to reduce the computation in derivative-free estimation
procedure, but the idea of scaling and transformation carries over to other methods
of estimation, for example, using first and/or second differentials of likelihoods.



Formulae for derivatives of the scaled parameters TAS, TBS, are easily derived if
not easily calculated, for a given transformation matrix S. The arguments in this
paper show how to calculate derivatives for any S. This allows for any TAS and

TBS, S to be found using the derivatives calculated at this optimal S. The efficiency
of this technique will depend on the structure of the data and the correlation of the
parameters and deserves further investigation.

If, after fitting this underlying model, there is interest in getting some infor-
mation on covariances between the underlying traits but full p trait evaluation is
impractical, then use of the Thompson and Hill (1990) procedure to estimate co-
variance parameters from analysis of sums of approximately independent traits is
an attractive option.
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APPENDIX

Solution of equation !11!
When p = 2 equation !11! can be written as

or

or

This equation is similar to equations relating the ith eigenvector xi and the ith

eigenvalue Ai of F and U, ie Fxi = AjUxi.
For a given eigenvector xz with eigenvalue Ai a scaled vector kixi will satisfy [Al]

if

so (xilx24 -xi2xi3)k2 = !2, and so a scaled vector of xi can be found to satisfy [Al]
as a function of xz and Aj .

Hence 4 vectors Si can be calculated to satisfy [11]. Each vector can be
substituted into !11! in order to find S to maximize !10!. This result can be thought
of as a generalization of result [3]-[5] for Model 1 and the result of Juga and
Thompson (1992) for 2 components. In the first case U is of the form:

and in the second:
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