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This paper puts forward a novel particle swarm optimization algorithm with quantum behavior (QPSO) to solve reactive power
optimization in power system with distributed generation. Moreover, differential evolution (DE) operators are applied to enhance
the algorithm (DQPSO). This paper focuses on the minimization of active power loss, respectively, and uses QPSO and DQPSO
to determine terminal voltage of generators, and ratio of transformers, switching group number of capacitors to achieve optimal
reactive power flow.The proposed algorithms are validated through three IEEE standard examples. Comparing the results obtained
from QPSO and DQPSO with those obtained from PSO, we find that our algorithms are more likely to get the global optimal
solution and have a better convergence.What ismore,DQPSO is better thanQPSO. Furthermore, with the integration of distributed
generation, active power loss has decreased significantly. Specifically, PV distributed generations can suppress voltage fluctuation
better than PQ distributed generations.

1. Introduction

In power system, reactive power optimization scheduling can
reduce active power loss and control voltage level. Common
control methods include adjusting the terminal voltage of
generators and the tap positions of on-load voltage regulating
transformers as well as switching group number of shunt
capacitors, and so forth. From mathematical perspective,
reactive power optimization in power system is a nonlinear
mixed integer programming problem with multiple variables
and multiple constraints. Here, the terminal voltage of gen-
erator is continuous variable, and tap position of on-load
voltage regulating transformer and the number of sets of
shunt capacitor are discrete variable. So, it is difficult to solve
the problem using traditional mathematical programming
methods.

With the development of artificial intelligence technol-
ogy, a large number of evolutionary optimization algorithms
are used to solve reactive power optimization, for example,
genetic algorithm [1–3], particle swarm optimization algo-
rithm (PSO), seeker optimization algorithm [4], clustering

optimization algorithm [5], and so forth. Papers [1–3] all
used improved genetic algorithm. Zeng et al. [1] proposed
an improved genetic algorithm.When considering slow con-
vergence and premature convergence of the original genetic
algorithm, they made an improvement on decoding method,
genetic operators, crossover and mutation probability, and
iteration stopping criterion based on the theory of Catas-
trophism. Lee et al. [2] and Liao [3] proposed quantum
genetic algorithm. It has a good combination of global search
ability of quantum and local search capability of genetic
algorithm, which can find the optimal solution more quickly
and exactly. Tehzeeb-Ul-Hassan et al. [6] proposed fully
informed particle swarm optimization (FIPS).The difference
from PSO is that, in FIPS, a particle gets the information
from all its neighbors rather than just from the best one.
In addition, many researchers have proposed many hybrid
algorithms [7–12], such as chaotic PSO, differential PSO,
and fuzzy adaptive PSO. Hybrid algorithm inherits good
characteristics of original algorithm. At the same time, it
combines advantages of other algorithms, which can find
the optimal solution faster and more accurate. He et al. [7]
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proposed a chaos method which is used in population ini-
tialization of particle swarmoptimization.Whilemaintaining
the randomness of original initial population, diversity is also
increased. Ali and Raahemifar [8] proposed a hybrid particle
swarm optimization algorithm which integrates differential
algorithm with particle swarm optimization algorithm. The
introduction of differential algorithm has improved the local
search ability of particle swarm algorithm.

At present, most countriesmainly supply power centrally.
However, the distance of centralized power supply is long,
and it is vulnerable to external influence. Long distance
power supply will make active power loss increase, which will
lead to the increase of transmission cost. Also, long distance
power supply is susceptible to man-made interference or
natural disasters, which may cause the collapse of the power
system seriously. In addition, owing to shortage of fossil
fuel and aggravation of environmental pollution, people have
to consider using new sources. In recent years, with the
mature of new energy technology, distributed generation
(DG) develops rapidly.

Currently, many scholars have carried out extensive
research on the effect that DGs have made on power grid.
Some make research on the effect that single type dis-
tributed power supply makes on power system. Liao [13]
proposed quantum chaos genetic algorithm to solve the
economic dispatch problem containing wind farms and
made discussions about the effect on total cost brought by
the access of wind farm. The majority analyze the access
of variety of DGs [14–20]. In papers [14–16], the authors
provide different methods to determine the optimal size and
location of multiple DGs. In addition, it is common that
multiple DGs are accessed under multiple power models
and multiple load models. Moradi and Abedini [17], four
kinds of DGs are considered which respectively includes
inject or absorb active power only, inject or absorb reactive
power only, inject active power and absorb reactive power,
inject both active power and reactive power. El-Zonkoly [18]
proposed different load type, under which particle swarm
algorithm is used to optimize the position and capacity of
multiple distributed power. Prenc et al. [20] have made an
important consideration on distributed power models which
generate power that rely on intermittent energy like solar and
wind. Daily average electricity production curves were given
corresponding to different models. Also, daily average power
consumption curves were given for different loads at different
points.

Aimed at reactive scheduling problem in power grid,
this paper proposed an enhanced quantum-behaved particle
swarm optimization (DQPSO). Based on PSO, quantum
theory and differential mutation are applied. The organi-
zation of the paper is as follows. Part 2 establishes the
distributed generator model and reactive power optimization
model. In part 3, quantum theory is applied to form QPSO,
where particles with quantum characteristics make up for
the shortage of global search ability and convergence in PSO.
Moreover, the differential mutation assisted QPSO (DQPSO)
improves the performance further. In part 4, effectiveness
of QPSO and DQPSO is verified through IEEE standard

examples. Moreover, advantages of DGs are analyzed when
installed to power grid.

2. Problem Formulation

2.1. Distributed Generation Model. In the near future, dis-
tributed generation combined with centralized power supply
systemwill be formed.The existing DGs include photovoltaic
power stations, wind power station, small thermal power sta-
tions, and garbage power station. According to power energy,
distributed power supply can be divided into continuous and
intermittent power supply substations. Like solar power, wind
power, due to the natural factors, is unstable power supply
that has great influence on the stability of grid. So, aimed at
different types of DGs, it is very important for model study.

From grid control characteristic, distributed generation
can be divided into two types: voltage control and reactive
power compensation.

(1) Voltage Control (PV).This kind of generation is equivalent
to PV node in power flow calculation. It controls generator
terminal voltage by adjusting exciting voltage. It usually
includes synchronous generators whose exciting voltage can
be adjusted or the DGs which adopt voltage-controlled
inverter to access grid, such asmicrogas turbine, photovoltaic
system adopting voltage-controlled inverter, and fuel cell.

(2) Reactive Power Compensation (PQ). This kind of gener-
ation is equivalent to PQ node in power flow calculation,
which can be regarded as the load node having a reverse
trend. The reactive power output from DG is generally
adjusted through controlling its power factor. This kind of
generation usually includes photovoltaic system adopting
current source inverter and doubly fed wind generator whose
power factor can be controlled.

2.2. The Objective Function. Reactive power optimization is
a reactive power regulation means that when the structural
parameters and loads of the system are given, it can make
one or more performances of power system achieve optimal
through optimizing some control variables. In the power
system, reactive power optimization can control voltage levels
and reduce power loss. The common means of regulation
include regulating the generator terminal voltage, adjusting
the tap position of on-load voltage regulating transformer,
and adjusting the sets of shunt capacitor. This paper solves
reactive power optimization byminimizing active power loss.
The objective function is shown in formula (1):

𝐹 = min𝑃loss (𝑋) . (1)

Among them, 𝑃loss is the total active power loss. Control
variable𝑋 is

𝑋 = [𝑈
𝑇

𝐶
,Tap𝑇, 𝑄𝑇] . (2)

𝑈
𝐶
is the terminal voltage of generator, Tap is the tap position

of on-load voltage regulation transformer, and𝑄 is the switch
group number of shunt capacitors.



Mathematical Problems in Engineering 3

2.3. Constraint Conditions. The power flow equation of the
equality constraints in the model is

𝑃
𝑖
= 𝑃
𝐺𝑖
− 𝑃
𝑙𝑖
− 𝑉
𝑖

𝑛

∑

𝑗=1

𝑉
𝑗
(𝐺
𝑖𝑗
cos 𝜃
𝑖𝑗
+ 𝐵
𝑖𝑗
sin 𝜃
𝑖𝑗
) ,

𝑄
𝑖
= 𝑄
𝐺𝑖
+ 𝑄
𝐶𝑖
− 𝑄
𝑙𝑖
= 𝑉
𝑖

𝑛

∑

𝑗=1

𝑉
𝑗
(𝐺
𝑖𝑗
sin 𝜃
𝑖𝑗
− 𝐵
𝑖𝑗
cos 𝜃
𝑖𝑗
) ,

(3)

where 𝑃
𝑖
, 𝑃
𝐺𝑖
, and 𝑃

𝑙𝑖
, respectively, represent injected active

power, active power output of generators, and active power
consumption of load at node 𝑖; 𝑄

𝑖
, 𝑄
𝐺𝑖
, 𝑄
𝐶𝑖
, and 𝑄

𝑙𝑖
,

respectively, represent injected reactive power, reactive power
output of generators, reactive power compensation capacity
of shut capacitor 𝑖, and reactive power consumption of load
at node 𝑖.𝐺

𝑖𝑗
,𝐵
𝑖𝑗
, and 𝜃

𝑖𝑗
, respectively, represent conductance,

susceptance, and phase angle difference of voltage between
nodes 𝑖 and 𝑗.

The control variable inequality constraints is

𝑄
𝑘min ≤ 𝑄𝑘 ≤ 𝑄𝑘max,

𝑈
𝐶min ≤ 𝑈𝐶 ≤ 𝑈𝐶max,

Tapmin ≤ Tap ≤ Tapmax.

(4)

𝑄
𝑘min, 𝑄𝑘max, 𝑈𝐶min, 𝑈𝐶max, Tapmin, and Tapmax represent

the minimum and maximum capacity of capacitor, the limit
of generator voltage, and the range of transformer tap.

The state variable inequality constraints is

𝑈
𝑖min ≤ 𝑈𝑖 ≤ 𝑈𝑖max. (5)

𝑈
𝑖max, 𝑈𝑖min represent the upper and lower limits of node

voltage.

3. Enhanced Quantum-Behaved Particle
Swarm Optimization Algorithm

In the PSO algorithm, particle motion is described by
position and velocity. The particles’ trajectory is certain in
iterations. With the increase in the number of iterations, the
particle velocity decreases. So the particle search space is
a limited and decreasing area, which cannot guarantee the
global convergence.

Quantum algorithm is based on the background of
quantum mechanics and the aggregation of particles is
described by the bound state. The particles in the bound
state appear in arbitrary position of the space with a certain
probability. Therefore, the randomness of quantum model
can greatly enhance the global search ability of particle swarm
optimization algorithm. However, there is still a problem of
local convergence in it. In the search process, the diversity
of particle swarm decreases and it is likely to converge to
local. Therefore, applying differential mutation with a certain
probability can increase randomness of particles, which can
enhance search ability and improve performance of the
algorithm.

3.1. Particle Swarm Optimization Algorithm (PSO). Particle
swarm optimization algorithm is based on the theory of
swarm intelligence optimization algorithm. It is a simulation
of bird flock foraging which guide the optimization search
through cooperation and competition between individuals.
In PSO, each candidate solution is rated as a particle. A
number of candidate solutions make up the group of birds,
namely, population. Each particle has no weight and volume,
which determines its fitness with the objective function.
Motion mode of each particle in the space is decided by the
direction and size of the speed. Speed is mainly determined
by the individual optimal location and the global optimal
position; formula is as follows:

𝑉
𝑖𝑗 (𝑡 + 1) = 𝜔 ⋅ 𝑉𝑖𝑗 (𝑡) + 𝑐1 ⋅ 𝑟1,𝑖𝑗 (𝑡) ⋅ (𝑃𝑖𝑗 (𝑡) − 𝑋𝑖𝑗 (𝑡))

+ 𝑐
2
⋅ 𝑟
2,𝑖𝑗 (𝑡) ⋅ (𝐺𝑗 (𝑡) − 𝑋𝑖𝑗 (𝑡)) ,

(6)

where 𝑖 represents the number of particles, 𝑗 represents the
dimension of the particle, 𝜔 represents inertia weight factor,
𝑐
1
and 𝑐
2
represent accelerated factor, 𝑟

1
and 𝑟
2
are random

number sequences in (0, 1) which obey uniform distribution
and mutual independence, 𝑃

𝑖
(𝑡) represents individual opti-

mal position, and 𝐺(𝑡) represents global optimal position.
Particle velocity updating formula (6) consists of three

parts:

(1) previous evolution speed 𝑉
𝑖𝑗
: weighting factor 𝜔 can

be a positive number, and it can also be a linear or
nonlinear positive number varying with time;

(2) individual cognitive part: 𝑐
1
⋅ 𝑟
1,𝑖𝑗
⋅ (𝑃
𝑖𝑗
(𝑡) −𝑋

𝑖𝑗
(𝑡)) rep-

resents particles’ own thinking, making the particles
have global search ability;

(3) global cognitive part: 𝑐
2
⋅𝑟
2,𝑖𝑗
⋅(𝐺
𝑗
(𝑡)−𝑋

𝑖𝑗
(𝑡)) represents

particles’ global thinking, making particles have local
search ability. Location formula is as follows:

𝑋
𝑖𝑗 (𝑡 + 1) = 𝑋𝑖𝑗 (𝑡) + 𝑉𝑖𝑗 (𝑡 + 1) . (7)

3.2. Quantum Theory. Quantum mechanics is the theory of
studying microscopic particles properties and movement.
Newtonian mechanics can never be used to describe the
movement of microscopic particles. Therefore, Newtonian
mechanics is applied in macroscopic object whose speed is
low and movement track is certain, while the movement of
microscopic particles is uncertain and obeys statistical law.

In quantum space, the aggregation of particles is
expressed as bound state. The reason why bound state exists
is that there is attractive potential energy inmovement center.
The particle in bound state appears at any point in space at a
certain probability, which changes the concept of continuous
path in classical mechanics.

The attractor is denoted by formula (8):

𝑝
𝑖,𝑗 (𝑡) =

𝑐
1
𝑟
1,𝑖,𝑗 (𝑡) 𝑃𝑖,𝑗 (𝑡) + 𝑐2𝑟2,𝑖,𝑗 (𝑡) 𝐺𝑗 (𝑡)

𝑐
1
𝑟
1,𝑖,𝑗 (𝑡) + 𝑐2𝑟2,𝑖,𝑗 (𝑡)

, 𝑖 ≤ 𝑗 ≤ 𝑁

(8)
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or

𝑝
𝑖,𝑗 (𝑡) = 𝜑𝑖,𝑗 (𝑡) ⋅ 𝑃𝑖,𝑗 (𝑡) + [1 − 𝜑𝑖,𝑗 (𝑡)] ⋅ 𝐺𝑗 (𝑡) . (9)

𝜑
𝑖,𝑗
(𝑡) is a randomnumberwhich obeys uniformdistribution.
Now, we set the attractor of one particle 𝑝

𝑖
as 𝑝 and create

a 𝛿 potential well at point 𝑝. Particles move in 𝛿 potential well
around the center of 𝑝, and its position is determined by the
following stochastic equation:

𝑋 = 𝑝 ±
𝐿

2
ln(1

𝑢
) . (10)

𝐿 represents characteristic length of 𝛿 potential well. The
detailed position formula can be seen from Section 3.3.

In the process of convergence, with the decrease of char-
acteristic length, particle 𝑖 constantly close to 𝑝 finally falls
into 𝑝. This is the reason why particles keep collective in late
iteration.

3.3. Quantum-Behaved Particle Swarm Optimization Algo-
rithm. In PSO algorithm, the particle’s motion mode is
determined by speed. The particle trajectory is certain, and
the velocity of the particles is limited. The search space in
iteration is a limited area which cannot cover the whole
feasible region. In quantum space, there is an attractor in
particlemovement center.The particles in bound state appear
at any point in space at a certain probability which guarantee
the global search ability.

In quantum space, particle has no velocity vector and is
only expressed by position formula shown as

𝑝
𝑖𝑗 (𝑡) = 𝜑𝑗 (𝑡) ⋅ 𝑃𝑖𝑗 (𝑡) + [1 − 𝜑𝑗 (𝑡)] ⋅ 𝐺𝑗 (𝑡) ,

𝜑
𝑗 (𝑡) ∼ 𝑈 (0, 1) ,

𝑋
𝑖𝑗 (𝑡 + 1) = 𝑝𝑖𝑗 (𝑡) ± 𝛼

󵄨󵄨󵄨󵄨󵄨
𝐶
𝑗 (𝑡) − 𝑋𝑖𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨

⋅ ln[ 1

𝑢
𝑖𝑗 (𝑡)

] , 𝑢
𝑖𝑗 (𝑡) ∼ 𝑈 (0, 1) ,

𝐶
𝑗 (𝑡) =

1

𝑀

𝑀

∑

𝑖=1

𝑃
𝑖𝑗 (𝑡) ,

(11)

where 𝑖 represents the number of particles, 𝑗 represents the
dimension of particles, 𝑝

𝑖𝑗
(𝑡) is a attractor of a particle, 𝛼

is called as contraction-expansion factor, which decreases
linearly from 1.0 to 0.5 with the increase of iterations, and
𝐶
𝑗
(𝑡) is the average optimal position of all particles in one

iteration.
Steps of quantum particle swarm optimization algorithm

are as follows.

Step 1. Set 𝑡 = 0, and initialize the current position 𝑋
𝑖
(𝑡) of

each particle.

Step 2. Calculate the fitness of current location 𝑋
𝑖
(𝑡) of each

particle and then calculate the particle’s individual optimal
position “pbest” and global optimal position “gbest.”

Step 3. According to formula (11), calculate the average
optimal position of all particles.

Step 4. According to formula (11), update the particle’s posi-
tion.

Step 5. Compare the fitness of the current position𝑋
𝑖
(𝑡)with

the fitness of individual optimal position 𝑃
𝑖
(𝑡), and if it is

better than 𝑃
𝑖
(𝑡), then 𝑃

𝑖
(𝑡) = 𝑋

𝑖
(𝑡).

Step 6. Compare the fitness of the current position𝑋
𝑖
(𝑡)with

the fitness of global optimal position 𝐺(𝑡), and if it is better
than 𝐺(𝑡), then 𝐺(𝑡) = 𝑋

𝑖
(𝑡).

Step 7. If the end condition (fitness value is good enough or
has achieved the maximum iteration) is not achieved, set 𝑡 =
𝑡 + 1, and go to Step 3.

3.4. Enhanced Quantum-Behaved Particle Swarm Optimiza-
tion Algorithm (DQPSO). As we all know, algorithms based
on swarm intelligence optimization all have the same prob-
lem; that is, when the swarm converges into a smaller range,
the diversity will decrease. To solve the problem, we propose
differential evolution to enhance the diversity. Quantum-
behaved particle swarm optimization is applied with dif-
ferential evolution with a probability. In earlier evolution,
the probability is high in order to increase the diversity of
swarm, while it is low in later evolution so as to ensure the
convergence of population. Probability formula is as (12).
Differential evolution method includes three parts, such as
mutation, crossover, and selection:

Probability = (1.0 − 0.1) ∗ (IterMax − 𝑡)
IterMax

+ 0.1. (12)

Part 1 (mutation). For each individual 𝑥
𝑖
, 𝑖 = 1, 2, . . . , 𝑁,

mutation vector is generated as

V
𝑖
= 𝑥
𝑟
1

+ 𝐹 ⋅ (𝑥
𝑟
2

− 𝑥
𝑟
3

) , (13)

where random selection numbers 𝑟
1
, 𝑟
2
, and 𝑟

3
are all not

identical with each other and they are all different from
individual number 𝑖. Mutation operator 𝐹 ∈ [0, 1] is a real
constant factor, which is used for controlling deviation.

Part 2 (crossover). In order to increase the diversity of popu-
lation, crossover is introduced. Formula is as

𝑢
𝑖
= (𝑢
𝑖1
, 𝑢
𝑖2
, . . . , 𝑢

𝑖𝐷
) ,

𝑢
𝑖𝑗
=

{

{

{

V
𝑖𝑗

if (rand ≤ CR) or 𝑗 = rand

𝑥
𝑖𝑗

if (rand > CR) and 𝑗 ̸= rand

(𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . , 𝐷) .

(14)

In the formula, CR is a crossover operator whose range is
[0, 1].

Part 3 (selection). Compare the new vector 𝑢
𝑖
obtained from

the above formula with the one before variation. Select the
better one as the next generation. In this way, all the individ-
uals in next generation are no worse than the corresponding
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Start

(1) Initial position for each particle

(2) Calculate pbest and gbest for each
iteration

(3) Calculate the best average value for
particle swarm

(4) Update the position for each particle
according to formula (11)

(5) According to probability (12), select some particles to do
DE as formulas (13), (14) and select the better ones

(6) Calculate the fitness for current particles, and
compare it with pbest and gbest

Achieve end conditions or not

Yes

End

No

Figure 1: Flowchart of DQPSO.

individual in current generation. By the way, it not only
increases the diversity of swarm but also is conducive to
develop to a better direction.

The flowchart of enhanced quantum-behaved particle
optimization algorithm can be seen from Figure 1. The
difference between DQPSO and QPSO is that Step 5 does not
exist in QPSO.

3.5. Algorithm Implementation. For population initialization,
generator terminal voltage uses real number coding and
on-load voltage regulating transformer and shunt capacitor
group number uses integer coding. In iterative process, in
order to reduce the probability that particles fly away search
space, particle velocity is limited in a range; that is, −0.3 ∗
𝑉max ≤ 𝑉 ≤ 0.3 ∗ 𝑉max. When particles fly away the search
scope, in order to keep the population number, the particles
which fly out will be set anywhere in the search scope at a
certain probability.

4. Simulation and Result

In order to verify the effectiveness of QPSO and the improved
ability of DQPSO compared with QPSO, we apply the pro-
posed algorithms in IEEE14-bus system, IEEE 57-bus system,
and IEEE 118-bus system. Table 1 shows some basic data in
IEEE14-bus system, 57-bus system, and 118-bus system. Given
the limited space, not all parameters are listed.Themaximum
voltage of power generator is 1.1, and the minimum is 0.9.

Table 1: Basic data of IEEE bus system.

Number of
generators

Number of
transformers

Number of
compensators

IEEE 14-bus 5 3 1
IEEE 57-bus 7 17 3
IEEE 118-bus 54 9 15

G

G

G

G

G

13 14

6
11 10 9

8
7

4
1

5

2 3

12

Figure 2: IEEE 14-bus test system.

The tap in per on-load voltage regulating transformer can be
expressed as 1.0 ± 0.025 × 8; we set the maximum capacity
of each capacitor 50MVar and the step is 10MVar, including
5 sets. In all experiments about PSO, the parameters are set
as follows: 𝜔 is 0.6, 𝑐

1
and 𝑐
2
are 2, and 𝑟

1
and 𝑟
2
are random

variables which obey uniform distribution in the range (0, 1).
The parameter in QPSO is

𝛼 =
(1.0 − 0.5) ∗ (MAXITER − 𝑡)

MAXITER
+ 0.5, (15)

where MAXITER is the maximum number of iterations and
𝑡 is the current number of iteration.

In the paper, parameters of DE are set as follows: 𝐹 = 0.5,
CR = 0.8.

4.1. Case 1. As we can see from Figure 2, there are five
generators and 20 branches in this system. Node 1 is the slack
node (balance node), nodes 2, 3, 4, 6, and 8 are PV nodes, and
others are PQ node. Among them, control variables include
generator voltage of nodes 1, 2, 3, 6, and 8, transformers on the
branches 4–7, 4–9, and 5-6, and capacitor at node 9. In the
algorithm, population size is 40 and the maximum number
of iterations is 300. Ten times of experiments are done for
each algorithm. The optimization results of power loss are
shown in Table 2. As we can see, the best values of without
optimization of PSO,QPSO, andDQPSOare 13.3933, 12.2908,
12.2648, and 12.2646, respectively. The worst are 13.3933,
12.3279, 12.2708, and 12.2694. The mean is 13.3933, 12.3119,
12.2676, and 12.2662. Whether from the best, the worst, or
the mean, QPSO is better than PSO. Also, results of DQPSO
are enhanced than those of QPSO. Chung et al. [21] proposed
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Table 2: Comparison of the optimization results among above algo-
rithms (MW).

Best Worst Mean
Without optimization 13.3933 13.3933 13.3933
PSO 12.2908 12.3279 12.3119
QPSO 12.2648 12.2708 12.2676
DQPSO 12.2646 12.2694 12.2662

0 50 100 150 200 250 300
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9

13
13.1
13.2

Iterations

Ac
tiv

e p
ow

er
 lo

ss
 (M

W
)

PSO
QPSO
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Figure 3: Comparison on convergence (IEEE 14-bus).

a hybrid algorithm of differential evolution and evolutionary
programming (DEEP). The best, worst, and mean results
of IEEE 14-bus are 12.4486, 12.4564, and 12.4497, while our
results are 12.2646, 12.2694, and 12.2662.

In Figure 3, the green line and the red line tend to be stable
after 250 and 150 iterations, respectively, while the blue line
tends to converge after 50 iterations. So we can conclude that
the convergence ability of QPSO is higher than that of PSO
and DQPSO is the best.

4.2. Case 2. In order to verify the generality of the algorithm,
this paper performs reactive power optimization experiments
using IEEE 57-bus test system. As shown in Figure 4, there
are 7 generators and 80 branches. Node 1 is a slack node
(balance node), nodes 2, 3, 6, 8, 9, and 12 are PV nodes,
and the rest are PQ nodes. As case 1, all the generators,
transformers, and capacitor compensation devices are used
as control variables. In this experiment, the size of population
is set to 40, the maximum number of iterations is set to 300,
and each algorithm is tested 10 times.Theoptimization results
of active power loss are shown in Table 3. The best values of
without optimization of PSO,QPSO, andDQPSOare 27.8638,
22.5018, 21.9230, and 21.6547. The worst are 27.8638, 24.1729,
22.3840, and 21.9254. The mean is 27.8638, 23.0419, 22.1203,
and 21.7670. The convergence curves of PSO, QPSO, and
DQPSO are shown in Figure 5. In paper [21], the best, worst,
and mean results of IEEE 57-bus are 23.9555, 24.0928, and
23.9955, while our results are 21.6547, 21.9254, and 21.7670.

4.3. Case 3. Due to complexity of IEEE 118-bus test system,
electrical connection diagram will not be provided.The same
as the above two cases, all the generators, transformers,
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Figure 4: IEEE 57-bus test system.

Table 3: Optimization results comparison among above algorithms
(MW).

Best Worst Mean
Without optimization 27.8638 27.8638 27.8638
PSO 22.5018 24.1729 23.0419
QPSO 21.9230 22.3840 22.1203
DQPSO 21.6547 21.9254 21.7670

Table 4: Optimization results comparison among above algorithms
(MW).

Best Worst Mean
Without optimization 132.8630 132.8630 132.8630
PSO 120.3153 126.0460 123.4233
QPSO 112.0771 114.1884 112.8061
DQPSO 110.7368 113.0413 111.9606

and capacitor compensation devices are used as control
variables. The optimization results of active power loss are
given in Table 4. The best values of without optimization
of PSO, QPSO, and DQPSO are 132.8630, 120.3153, 112.0771,
and 110.7368. The worst are 132.8630, 126.0460, 114.1884,
and 113.0413. The mean is 132.8630, 123.4233, 112.8061, and
111.9606.The convergence curves of PSO,QPSO, andDQPSO
are shown in Figure 6. Ayan and Kiliç [22] proposed artificial
bee colony algorithm (ABC) for optimal reactive power. For
IEEE 118-bus system, the result of the paper is 119.6923. Our
result achieved by DQPSO is 111.9606, which is better than it.

4.4. DG Integration. The integration of DGs not only reduces
power loss but also improves voltage, improving stability of
power grid. In the following former two examples, three
DGs are installed to improve the voltage of power grid.
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Figure 6: Comparison on convergence (IEEE 118-bus).

The installed position of the first DG is determined by the
following method. The DG can be installed at any node,
and therefore there are many schemes. For each scheme, the
average voltage deviation of all nodes is calculated. Among all
schemes, the onewith the smallest valuemeans that installing
one DG at the node can improve the voltage of grid best.
Other DGs are installed to power system in a similar way
mentioned above.

4.4.1. Case 1 with DG Integration. Red line is the voltages
results of power flow in modified IEEE 14-bus, where all
PV power supplies are removed (Figure 7). According to
the above integration method, three PQ DGs (P = 10MW,
Q = 2MVar) are installed at nodes 14, 13, and 10. The
voltage distribution is described as blue line. For green line,
it indicates that a PQ DG at node 10 is replaced by a PV DG
(P = 10MW, V = 1.0). As we can see, voltage of blue line has
a great improvement compared with red line. The green line
is better than the blue line, which shows PV DG can improve
voltage better.

Moreover, the active power loss of power grid is reduced
obviously by introducing the distributed generation, and DG
plays a regulatory role at voltage stability. The 14-bus system
integrated with three PQ distributed generations (P = 10MW,
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Figure 7: Voltage comparison with or without DG (modified IEEE
14-bus).

Table 5: Comparison on active power loss (optimized by DQPSO)
(MW).

Best Worst Mean
Without DG 12.2646 12.2694 12.2662
With DG 9.2770 9.2884 9.2832

Table 6: Power loss comparison (optimized by DQPSO) (MW).

Best Worst Mean
Without DG 21.6547 21.9254 21.7670
With DG 19.5425 19.9162 19.7052

Q = 2Mvar) is compared with the one without DGs, and the
results are shown in Table 5. From the table we can know
that active power loss reduces significantly with distributed
generation, and the average decrease is 24.3%.

4.4.2. Case 2 with DG Integration. In Figure 8, red line is the
voltage of power flow in IEEE 57-bus. Blue line is the voltage
of power flow after integrating three PQ DGs at nodes 33 (P
= 10MW, Q = 2MVar), 56 (P = 10MW, Q = 2MVar), and 50
(P = 0MW, Q = −10MVar), and reactive power at node 50 is
negative which means the DG absorbs reactive power only.
For green line, a PQ DG at node 50 is replaced with a PV DG
(P = 0MW, V = 1.0). The obvious improvement on voltage
can be seen from node 28 to node 43 by integrating DGs. It
should be noted that adding PV DG at node 50 gains the best
improvement.

In Table 6, when considering adding the above three DGs
in the model, the power loss considering distributed power is
reduced significantly than before.

4.4.3. Case 3 with DG Integration. Because there are 53 PV
gens in IEEE 118-bus system, voltages of these nodes are
never changed. In order to improve voltage level obviously,
we install more DGs in this case than the above two. For blue
line, all the P and Q are the same (P = 10MW, Q = 2Mvar).
For green line, we replace PV DGs (P = 10MW, V = 1.0) with
PQ DGs at nodes 21, 53, 58, 84, and 95. As can be seen from
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Table 7: Power loss comparison (optimized by DQPSO) (MW).

Best Worst Mean
Without DG 110.7368 113.0413 111.9606
With DG 109.2186 111.5583 110.1452

Figure 9, from node 10 to node 25, node 40 to node 60, and
node 80 to node 100, the blue line is better, and green line
is the best. Owing to large number of PV nodes, voltages of
other nodes are not well improved.

In order to verify the effect of DGs on the active power
loss, we install four PQ DGs on the test system, which,
respectively, are nodes 21, 53, 84, and 95 (P = 10MW, Q =
2Mvar). Power loss difference can be seen from Table 7.

5. Conclusion

This paper proposes an enhanced quantum-behaved particle
swarm optimization algorithm based on PSO, quantum
theory, and differential mutation to solve reactive power opti-
mization in power grid. Compared with the standard particle
swarm optimization algorithm, the proposed algorithm has
a better balance in the global search and local search. We
made optimization experiments with IEEE 14-bus system,

IEEE 57-bus system, and IEEE 118-bus system. The power
loss optimized by PSO decreased by 7.67%, 15.17%, and 7.10%
for three cases. However, it decreased by 8.35%, 18.38%,
and 15.10% optimized by QPSO and decreased by 8.42%,
21.88%, and 15.73% optimized by DQPSO. The results show
that QPSO has stronger ability to search for optimization.
Moreover, results of DQPSO are better than those of QPSO.
In addition, distributed generation integrated with grid can
not only greatly improve grid power loss but also effectively
regulate voltage level to prevent voltage fluctuation. For case
one, the voltage deviations before and after adding DGs are
6.14% and 2.35%. For case two, the voltage deviations before
and after adding DGs are 2.38% and 1.75%. In particular, in
terms of improving voltage, DG based on PV is better than
DG based on PQ.

Because the distributed generation is equivalent to a
stable output power, this hypothesis is difficult to meet in
reality. So we will consider the subsequent changes of the
power output fromdistributed generation and study dynamic
reactive power optimization strategies in the future.
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