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Mice with disruption of adenylyl cyclase type 5 (AC5 knockout, KO) live a third longer than littermates. The mechanism, in part,
involves the MEK/ERK pathway, which in turn is related to protection against oxidative stress. The AC5 KO model also protects
against diabetes, obesity, and the cardiomyopathy induced by aging, diabetes, and cardiac stress and also demonstrates improved
exercise capacity. All of these salutary features are also mediated, in part, by oxidative stress protection. For example, chronic beta
adrenergic receptor stimulation induced cardiomyopathy was rescued by AC5 KO. Conversely, in AC5 transgenic (Tg) mice, where
AC5 is overexpressed in the heart, the cardiomyopathy was exacerbated and was rescued by enhancing oxidative stress resistance.
Thus, the AC5 KO model, which resists oxidative stress, is uniquely designed for clinical translation, since it not only increases
longevity and exercise, but also protects against diabetes, obesity, and cardiomyopathy. Importantly, inhibition of AC5’s action to
prolong longevity and enhance healthful aging, as well as its mechanism through resistance to oxidative stress, is unique among all
of the nine AC isoforms.

1. Introduction

Adenylyl cyclase (AC) is a ubiquitous enzymewhich regulates
all organs and catalyzes the conversion of ATP to cAMP.
There are nine major mammalian AC isoforms; types 5 and
6 are the major isoforms in the heart. Since our laboratory
has been primarily involved in cardiovascular regulation, our
interest was in disrupting one of the twomajor isoforms in the
heart, type 5 AC (AC5 knock out (KO)), to see how regulation
of cardiac function is altered. We found that the AC5 KO
heart was protected against the stresses of chronic pressure
overload [1] and chronic catecholamine stimulation [2, 3].
However, even more interesting and potentially important
were our other findings of the salutary effects of AC5 inhi-
bition, not necessarily related to the heart. We also studied
these mice for 3 years and found that they lived a third longer
than wild type (WT) [4]. Although longevity models are
important, the translational value for these studies is limited,
unless the model also improves healthful aging. In fact older
individuals often are not interested in expanding life span,

if it is accompanied by many of the limitations observed
in the elderly, for example, exercise intolerance, diabetes,
and obesity. Importantly the AC5 KO model also promotes
healthful aging, as it enhances exercise capacity, and protects
against diabetes and obesity and diabetic cardiomyopathy [5].
Indeed the AC5 KO model shares many of the same features
of themost commonly studiedmodel of longevity and protec-
tion against obesity, caloric restriction [6]. However, caloric
restriction does not improve exercise performance, but, on
the contrary, it actually diminishes exercise capacity [7].
There is also one major limitation to the translation of caloric
restriction to longevity and protection against diabetes and
obesity in patients, that is, compliance due to difficulty in
maintaining low calorie or low fat diets. Accordingly, there
is considerable need for a novel therapy that might mimic the
phenotype of caloric restriction, without the negative aspects
of limiting caloric intake. One such model is inhibition of
AC5, which has a similar phenotype to caloric restriction [6],
but the mice actually eat more than their wild type controls,
while weighing less.
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Figure 1: Mitochondrial dysfunction and oxidative stress. During the aging process, ROS accumulation and DNAmutation in mitochondria
induce oxidative stress, which results in themitochondrial permeability transition pore (PTP) opening and electron transport chain deficiency,
thereby leading to cell dysfunction and cell death. Inhibition of AC5 activates SIRT1/FoxO3a andRaf/MEK/ERKpathways, and both pathways
upregulate the antioxidant, MnSOD, resulting in resistance to oxidative stress during aging.

Table 1: Longevity and oxidative stress resistance.

Longevity models related to oxidative
stress resistance

Longevity models not related
to oxidative stress resistance

Longevity models with relationship to oxidative
stress resistance controversial or not studied

AC5 KO [3–6] Gpx4 +/− KO [28] Ames dwarf [29–31]
Caloric restriction [8, 32–35] GHR/BP KO [36, 37] FIRKO [38, 39]
Snell dwarf [40–42] MIF KO [43, 44] PAPPA−/− KO [45, 46]
GHR KO [9, 40] 𝛼MUPA OE [47, 48] RII𝛽−/− KO [49]
Igf-1r+/− KO [10, 50, 51] S6K1−/− KO [52, 53]
Klotho OE [11, 12, 54] Hct-UCP2 OE [55]
p66shc−/− [13, 56] PEPCK-C OE [57]
TRX OE [14, 58] PtenTg [59]
MCAT [15, 60–62] SIRT6 Tg [63]
MT OE [16]
Agtr1 𝛼−/− KO [17]
Irs1−/− KO [18]
R6/2 Irs2+/− IRS2 Btg KO [19]
Surf1−/− KO [21, 22, 64]
Mclk1+/− KO [65, 66]
Data are shown as mice models followed by the supporting bibliography in parenthesis [].

One common mechanism that mediates longevity and
healthful aging is protection against oxidative stress [4,
6, 8–22]. Table 1 summarizes the most commonly studied
longevity models, showing that the majority of these models,
as well as the AC5 KO model, have one common theme,
that is, protection against oxidative stress. Accordingly, in
order to understand themechanismsmediating the beneficial
effects of the AC5 KO model, it is important to examine its
protection against oxidative stress.

2. Oxidative Stress in Aging and in
the AC5 KO (Figures 1 and 2)

The AC5 KO model of aging protects against oxidative stress
by reducing cAMP and protein kinase A (PKA), which in
turn activates the Raf/MEK/ERK pathway, which increases
MnSOD and protects against oxidative stress [4] (Figures 1
and 2). As noted above, protection against oxidative stress is a
commonmechanism in longevitymodels (Table 1). Oxidative
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Figure 2: ERK pathway and oxidative stress in aging AC5 KO. (a) Western blotting of MnSOD in the hearts of aging WT and AC5 KOmice.
The levels of MnSOD are significantly greater in AC5 KO mice compared to WT mice (∗𝑃 < 0.05). Data are expressed as mean ± SEM. (b)
Cell viability was tested in response to oxidative stress in neonatal cardiacmyocytes fromAC5KO andWT.Myocardial cells were treated with
H
2

O
2

(25 𝜇M) and evaluated for cell viability using Cell Titer-Blue Cell Viability Assay. AC5 neonatal myocytes showed resistance to oxidative
stress andDNAdamage (∗𝑃 < 0.05 versusWT). Data are presented asmean ± SEM. (c) By western blotting, the level of ERK phosphorylation
was significantly increased in AC5 KO mice compared with WT (∗𝑃 < 0.05). Data are expressed as mean ± SEM. (d) Signaling diagram for
AC5 regulation of oxidative stress through the ERK pathway is shown. Data is redrawn from Yan et al. [4].

stress is enhanced during the aging process; mitochondria
produce less energy (ATP) and also increase the production
of reactive oxygen species (ROS) as a product of aerobic
metabolism (Figure 1). Furthermore the activity of free-
radical scavenging enzymes changes with aging. One mecha-
nism by which oxidative stress is increased in the aging tissue
is through increased ROS induced apoptosis and necrosis
by opening of the mitochondrial membrane permeability
transition pore and release of apoptotic inducing factors, for

example, cytochrome c [23] (Figure 1). Oxidative stress has
been linked to aging and senescence through the tumor-
suppressor p53 and transcriptional responses, mediated by
p44/p53 and p66 [24]. There is also considerable support
for the regulation of oxidative stress by the Raf/MEK/ERK
pathway [25]. In summary, the mechanism of oxidative stress
induced aging seems to be multifactorial, where mitochon-
drial damage and impaired function play a significant role.
The final common pathway for premature cell death has been
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reported to be apoptosis, necrosis, and control of the cell cycle
[26, 27] (Figure 1), specifically an increase in the percentage
of cells stopped at the G0/G1 phase of the cell cycle [26].

To further understand the importance of oxidative stress
in aging, the extent to which the major diseases limit longe-
vity must be examined for their relation to oxidative stress.
Based on the statistics of the CDC in 2010, the leading causes
of death in humans in order of frequency are heart disease,
cancer, chronic lower respiratory diseases, stroke, accidents,
Alzheimer’s disease, diabetes, influenza and pneumonia,
nephritis, nephrotic syndrome, and nephrosis. It is important
to recognize that most of these diseases are related to oxida-
tive stress. Such is the case for heart disease [67], cancer [68],
COPD [69], stroke [70], Alzheimer’s [71], diabetes [72], and
chronic kidney disease [73]. In mice, the causes of mortality
also share oxidative stress mechanisms. The most common
cause of death in C57BL/6J mice is neoplasia, including
lymphoma and other hematological and nonhematological
cancers, followed by chronic kidney and heart diseases [74].
As previously described, these entities have been linked to
oxidative stress, further supporting the importance of oxida-
tive stress in limiting longevity.

Perhaps themost convincing evidence for oxidative stress
in aging is Progeria, a unique medical condition character-
ized by premature aging [75], such that teenagers often suffer
from atherosclerosis, cardiomyopathy, and coronary artery
disease and death. Interestingly, accumulation of oxidized
proteins causing DNA damage has been described as the
causative effect in this disease [76, 77]. One abnormally
formed protein is called laminA. It is an autosomal dominant
mutation involving (LMNA) gene and/or abnormal posttran-
slational processing (ZMPSTE24) [75, 78].

3. Oxidative Stress in Exercise

The AC5 KO model is one of the few aging models known
to also improve exercise performance [5]. This is important
for two reasons. First, maintained exercise performance is
common to longevity, as reduced exercise performance is
common to many of the diseases that limit longevity, for
example, cardiopulmonary diseases. Secondly, exercise train-
ing and conditioning is recognized to be therapeutic to most
diseases and is one intervention that can extend longevity
[79]. It is therefore important and well established that
both resting and contracting skeletal muscles produce ROS.
Exercise has been also related to induction of oxidative stress
when it is performed at high intensity. However, moderate
intensity aerobic exercise enhances endothelium dependent
vasodilation through the increased production of nitric oxide
[80]. This could be explained by the fact that while high
levels of free radicals can damage cellular components, low
tomoderate level of oxidants playmultiple regulatory roles in
cells such as the control of gene expression, regulation of cell
signaling pathways, and modulation of skeletal muscle force
production [80].

There are multiple cellular mechanisms mediating resist-
ance to oxidative stress, by regular moderate exercise. These
include reduction of basal formation of oxidants, improve-
ment of the antioxidant defense system, and increased

resistance of tissues against ROS damage [81]. Furthermore,
in a study using rats, exercise increased total serum antiox-
idant substances with an additional beneficial effect on lipid
profile [82]. More specifically, another study evaluating the
relationship of oxidative stress, endothelial dysfunction, and
atherosclerosis with physical inactivity in mice showed that
decreased physical activity increases vascular NADPH oxi-
dase activity and enhances vascular ROS production, which
contributes to endothelial dysfunction and atherosclerosis as
opposed to physically active animals [83].

4. Oxidative Stress in Diabetes and Obesity

As noted above the AC5 KO mouse shares a common phe-
notype and genotype with caloric restriction [6], a frequently
studiedmodel demonstrating protection against diabetes and
aging. The AC5 KO protection against glucose intolerance
and insulin resistance and obesity is observed in the animals
on a standard diet, but it is even more pronounced when
stressed with a high fat diet [84]. The AC5 KO mice weigh
less and have less obesity and better serum lipids as well as
glucose tolerance and insulin resistance compared to theWT
mice [84]. Glucose intolerance and reduced insulin sensi-
tivity have also been linked to oxidative stress mechanisms.
Chronic hyperglycemia leads to generation of ROS resulting
in increased oxidative stress and destruction of pancreatic
cells, critical to insulin secretion [72].

The AC5 KO is also protected from obesity [6], which
is also linked to oxidative stress mechanisms. There are
several mechanisms by which obesity produces oxidative
stress. First, adipose tissue produces certain bioactive sub-
stances called adipokines such as IL-6 and leptin, which
induce the production of ROS. A second mechanism is that
mitochondrial and peroxisomal oxidation of fatty acids can
produce ROS in oxidation reactions. And third, there is an
overconsumption of oxygen in the mitochondrial respiratory
chain [85]. Additionally, the pattern of food consumption in
obese patients can potentially exacerbate the cellular damage;
lipid rich diets also produce ROS due to modifications
in oxygen metabolism contributing to the cell dysfunction
induced by obesity [85]. Interestingly, the persistence of
obesity in humans has been shown to decrease the activity
of antioxidant enzymes in the adipose tissue such as catalase,
superoxide dismutase, and glutathionine peroxidase [85, 86].
This could represent another mechanism involved in the
progression of the disease and the development of obesity
related complications. Finally, a study in humans confirmed
the increased oxidative stress state seen in patients with
obesity and diabetes, measuring urinary creatinine-8-epi-
PGF2𝛼 as amarker of systemic oxidative stress [87]. Taking all
the previous evidence together, it is clear that oxidative stress
is a common factor in obese and diabetic patients.

5. Oxidative Stress in Cardiomyopathy and
Heart Failure

There is accumulating evidence that increased oxidative stress
is involved in the pathogenesis of various types of cardio-
myopathy [88], including dilated [89, 90], diabetic [91, 92],
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ischemic [93, 94], hypertensive [95], adriamycin-induced
[96], and pressure overload-induced cardiomyopathy [97–
99], as well as beta adrenergic receptor overexpression
induced cardiomyopathy [3, 100]. It is important to note that
oxidative stress affects different cell types involved in cardio-
myopathy, not just cardiac myocytes. Dysfunction in other
cells, such as endothelial cells and fibroblasts, plays an
important role in the development of cardiomyopathies, as
well.

The AC5 KO model is also protected against cardiomy-
opathy and heart failure through oxidative stressmechanisms
[3] (Figures 3–5). For example, chronic beta adrenergic
receptor (𝛽-AR) stimulation induces cardiomyopathy and
heart failure by increasingmarkers of oxidative stress damage
including myocyte necrosis and apoptosis [100]. We found
that augmenting oxidative stress by mating the AC5 KOmice
with MnSOD KO mice resulted in loss of the protection
against the decreased cardiac function and increased cardiac
fibrosis in response to chronic catecholamine stimulation in
the double knockouts (Figure 5) [3, 5]. Conversely, when
AC5 is overexpressed in the heart, as occurs in the cardiac
specific AC5 Tg mouse, the cardiomyopathy induced by
chronic catecholamine stimulation is exacerbated (Figure 5).
In this model mating the AC5 Tgmice withMnSODTgmice
rescues the cardiomyopathy (Figure 5). Furthermore, AC5
KO can also prevent the cardiomyopathy induced by chron-
ically enhanced 𝛽-AR signaling in mice with overexpressed
𝛽2-AR also, potentially, through enhancing resistance to
oxidative stress [100].These findings confirm the importance
of oxidative stress in the pathogenesis of heart failure in
general and in the protection afforded by the AC5 KOmodel
in particular. The AC5 KO model is also protected against
cardiomyopathies induced by chronic pressure overload [1],
diabetes [5], and aging [4].

6. Mechanisms of AC5 KO Induced Longevity
and Oxidative Stress Resistance

6.1. ERK Signaling Pathway Related to AC5 KO and Oxida-
tive Stress (Figure 2). We previously found that AC5 KO
increases longevity and stress resistance via activation of the
Raf/MEK/ERK signaling pathway [4]. This finding, based on
the reduction in cAMP byAC5, is supported by studies show-
ing that the AC/cAMP/PKA pathway negatively regulates the
MEK-ERK signaling pathway [101]. TheMEK/ERK signaling
pathway is also one of the main stress signaling pathways and
central mediators activated in response to oxidative damage
[102, 103]. Previous findings suggested that a decrease in the
activation of the Raf/MEK/ERK pathway is associated with
aging [104–109]. For example, decreased levels of ERK phos-
phorylation were observed in senescent fibroblasts [104, 110]
and hepatocytes from aging rats [111], whereas caloric restric-
tion, a well-recognized mechanism mediating longevity and
stress resistance, significantly reduced the age-related decline
in ERK activation [111]. The long-lived Snell dwarf mice
also exhibits an elevated level of ERK phosphorylation [112].
We have shown an activation of the MEK/ERK signaling
pathway in various tissues from long-lived AC-5 KO mice,
which is consistent with that found in caloric restricted mice

and long-lived Snell dwarf mice. Interestingly, recent studies
demonstrated a slower and more prolonged activation of
ERK with longevity [113]. Furthermore, the activation of the
ERK pathway in response to oxidative stress is reduced with
age, while loss of oxidative stress resistance with aging is
associated with decreased ERK activity, implying that ERK
activation exerts a prosurvival signal against aging induced
oxidative stress [111].

In addition, superoxide dismutase (SOD) has been
reported as the downstream target of the Cyr1 (AC)/cAMP/
PKA pathway in yeast, which induces protection [114]. We
have shown that MnSOD, which is a major molecule protect-
ing against oxidative stress, is upregulated in AC5 KO mice
(Figure 2(a)) [4] but downregulated, when AC5 is upregu-
lated, as in the AC5 Tg heart (Figure 3(c)) [3]. A deficiency of
SOD is able to induce senescence; for example, homozygous
SOD2−/− mice show significant damage to mitochondrial
DNA in lung and liver compared toWTmice or heterozygous
mice, resulting in a survival rate of only up to seven days
after birth due to cardiomyopathy and liver disease [115]. The
linkage between SOD and ERK activation is controversial,
however. Although EGF-induced phosphorylation of ERK1/2
is attenuated by overexpression of Cu/ZnSOD in vascular
smooth muscle cells, several other studies have shown that
the ERK signaling cascade plays a positive role in overex-
pression of MnSOD, which protects murine fibrosarcoma
cells from apoptosis [116] and suppresses tumor growth in
themac25/IGFBP-rP1-transfected human breast and prostate
cancer cell lines [117]. Our findings have proven that MnSOD
is the downstream enzyme involved in the ERK signaling
cascades [3, 4] mediating longevity and stress resistance in
AC5 KO mice.

6.2. AC5, SIRT1, FoxO3a, and MnSOD (Figures 3 and 4).
As noted above, we found that AC5 KO increases life span
and protects against oxidative stress though upregulating
the antioxidant, MnSOD [4], whereas MnSOD regulated the
cardiomyopathy induced by chronic catecholamine stimula-
tion through the AC5, SIRT1, FoxO3a, and MnSOD pathway
[3]. MnSOD is regulated transcriptionally by several tran-
scription factors, such as NF-𝜅B, p53, and FoxO3a [118–120].
Among them, FoxO3a is most closely related to the antiaging
effects of MnSOD. It is known that FoxO3a is essential for the
participation of MnSOD in antiaging mechanisms of various
species. In C. elegans, FoxO3a transcriptionally upregulated
MnSOD, which induced life span extension [121]. In rats,
aging induced downregulation of MnSOD is due to the inac-
tivation of FoxO3a [122]. In human quiescent cells, FoxO3a
binds directly to the promoter of MnSOD and protects the
cells from oxidative stress [123]. The transcriptional activity
of FoxO factor could be activated by deacetylation. SIRT1
is a deacetylase which is able to activate FoxO3a (Figure 4)
[118]. Interestingly, we found that the SIRT1/FoxO3/MnSOD
pathway is only activated by AC5 and not by AC6 (another
major AC isoform in the heart and brain), indicating a unique
regulation of this pathway by AC5 (Figure 3(e)) [3]. The
Puigserver lab reported a new short-term SIRT1 activation
pathway that involved𝛽-AR/AC/cAMP/PKA [124]. However,
the AC5 KOmodel is quite different, since it increases NAD+
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Figure 3: SIRT1/FoxO3a/MnSOD pathway in AC5 KO, AC5 Tg, and AC6 KO. (a) and (b) AC activity at baseline and in response to forskolin
stimulation was enhanced in AC5 Tg mice compared to WT. (c) AC5 regulated MnSOD expression. Downregulation of MnSOD in AC5
Tg mice hearts is shown (𝑛: 6 per group) (∗𝑃 < 0.05). (d) Expression of SIRT1 by western blotting in the AC5 myocardial cells. SIRT1 was
highly expressed compared to WT. (∗𝑃 < 0.05). Expression of FoxO3a by western blotting in AC5 KO mouse hearts is shown. More FoxO3a
was expressed in the nucleus of AC5 KO myocytes compared to WT. MnSOD expression increased in AC5 KO hearts (∗𝑃 < 0.05). Data are
expressed as mean ± SEM. (e) SIRT1 andMnSOD expression levels in AC6 KO did not show any difference compared toWT. Data is redrawn
from Lai et al. [3].
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Table 2: Adenylyl cyclase (AC) isoforms, which protect against
oxidative stress using the SIRT1/FoxO3/MnSOD pathway.

AC 1 AC 2 AC 3 AC 4 AC 5 AC 6 AC 7 AC 8 AC 9
Oxidative
stress
protection

+ ? ? ? + ? ? ? ?

SIRT 1 ? ? ? ? + − ? ? ?
FoxO3 ? ? ? ? + ? ? ? ?

MnSOD ? ? ? ? + − ? ? ?

+ Positive, − negative, and ? unknown.

content and SIRT1 protein expression, which chronically
maintains NAD+/SIRT1 levels and mitochondrial activity
to meet energy requirements. Importantly, the AC5/SIRT1
regulation is unique to AC5, since our data show that AC5
KO is resistant to obesity [6], but AC6 KO did not affect
body weight and SIRT1 expression [3] (Figure 3), and AC3
KO actually induced obesity [125].

6.3. AC5 Is Unique among the 9 AC Isoforms (Table 2). It is
interesting that there are 9 major mammalian isoforms of
AC and many share regulation of the same tissue or organ
in the body [126, 127]; yet they regulate in radically different
ways. One example relates to the two major isoforms of AC
in the heart, AC5 and AC6. Inhibiting AC6 shares none
of the salutary features of inhibiting AC5, as summarized
in this review, with one exception; that is, there are two
divergent reports on the regulation of cardiomyopathy by the
AC6 KO model: one which claims it is protective [128], as
we demonstrated for the AC5 KO [1, 2], and another with
the opposite conclusions; that is, AC6 KO results in more
severe cardiomyopathy [129]. The results for cardiac specific
AC 6 transgenic models are also controversial, with some

demonstrating protection [130–133] and another showing the
reverse [134]. It is even more interesting and pertinent to
the topic of oxidative stress that so little is known about
AC isoforms and regulation of oxidative stress. Almost none
of the other 8 AC isoforms have been shown to regulate
oxidative stress (Table 2), with the tangential exception that
AC1 can affect glutamate induced toxicity, which is related to
oxidative stress, in cortical neurons. Although little is known
about regulation of oxidative stress by the other AC isoforms,
the reverse has been shown, that is, oxidative stress regulation
of AC isoforms [135, 136]. In addition, the major mechanisms
mediating oxidative stress in the AC5 KO, the SIRT1/FoxO3/
MnSOD pathway, have also not been observed with the other
AC isoforms (Table 2). It couldwell be that other AC isoforms
do regulate oxidative stress but that this just has not been
studied as of yet and would be an important future direction
for AC research.

7. Summary

It has been recognized for some time that protection against
oxidative stress is a commonmechanismmediating longevity
(Table 1). This mechanism is also critical in understanding
why inhibition of AC5, as in the AC5 KO model, extends
longevity. But more importantly, the lesson from the AC5
KO model is how oxidative stress is important in mediating
healthful aging, which when coupled to longevity provides
a blueprint for clinical translation. Inhibition of AC5 also
protects against diabetes and obesity and cardiomyopathy,
while improving exercise performance. Resistance to oxida-
tive stress plays a role in mediating all of these salutary
features of the AC5 KO. Importantly, AC5 is the only one
of the 9 AC isoforms to demonstrate longevity and healthful
aging through resistance to oxidative stress.

8. Clinical Translation

Since inhibition of AC5 extends longevity and protects
against diabetes, obesity, and cardiomyopathy, while improv-
ing exercise tolerance, it naturally becomes an important
mechanism for clinical translation. There have been recent
clinical studies supporting our findings in theAC5KOmodel.
The clinical genome wide association studies have identified
single nucleotide polymorphisms (SNPs) in the ADCY5 gene
associated with increased type 2 diabetes risk [137], which is
the inverse of AC5 inhibition and therefore consistent with
our findings. However, it is difficult to isolate the specific
action of one gene in human genome studies, as we have done
by disrupting theAC5 gene inmice. Unfortunately disrupting
the AC5 gene in patients is not feasible and therefore it
becomes necessary to identify a pharmacological inhibitor
of AC5. One example of a pharmacological compound that
replicates many of the features of AC5 inhibition is an FDA
approved antiviral drug, Vidarabine [138], which protects
against the development of cardiomyopathy in mice [139].
However, this drug is not purely an AC5 inhibitor and has the
disadvantage that it cannot be administered orally. Accord-
ingly, further work is required to develop a nontoxic AC5
inhibitor that is soluble and can be given to patients orally.
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