
Expressive Query Specification through Form
Customization ∗

Magesh Jayapandian
Department of EECS
University of Michigan

jmagesh@umich.edu

H. V. Jagadish
Department of EECS
University of Michigan

jag@umich.edu

ABSTRACT
A form-based query interface is usually the preferred means to pro-
vide an unsophisticated user access to a database. Not only is such
an interface easy to use, requiring no technical training, but it also
requires little or no knowledge of how the data is structured in the
database. However, a typical form is static and can express only a
very limited set of queries. Without room for change, query speci-
fication is limited by the expertise and vision of the interface devel-
oper at the time the form was created. If an available form cannot
express a desired query, the user is stuck.

In this paper, we propose a mechanism to let a user modify an
existing form to express the desired query. These modifications are
themselves specified through filling forms to create an expression
in an underlying form manipulation expression language we define.
The technical sophistication required to modify forms is not much
greater than form filling.

We have developed a form editor that implements this form ma-
nipulation language. We have also developed a query generator that
modifies the form’s original query based on a user’s changes. We
show, by means of a controlled user study, that this tool provides
an effective means for specifying complex queries.

1. INTRODUCTION
Filling forms is easy. A user needs little training to learn how

to fill a form correctly. In contrast, traditional database querying
requires users to be able to write code in SQL (or XQuery) and to
also know the database schema. It is no wonder that form-based
query interfaces are so widely used by databases today.

The main drawback of a form-based query interface is that it is
restrictive. A typical form is designed to do one thing, and it does
not permit the user to express queries that differ from this one thing.
As rich as a data collection might be, it cannot be fully utilized if
its query interface is limiting. On the other hand, it is unreasonable
to expect the interface developer to be clairvoyant of every single
user query. Moreover, the more query types a form supports, the
more difficult it is for users to comprehend and use it. Complexity
and expressivity are conflicting goals for any forms-based interface
and a trade-off is usually made.

A second drawback of current forms is that few if any of them

∗Supported in part by NSF 0438909 and NIH 1-U54-DA021519.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’08,March 25–30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00.

provide users the option to specify the format and content of the
query’s result. Most forms, in our experience, only allow a user to
specify query conditions that the results must satisfy. For example
when the form in Fig. 1(a) is submitted, it produces a brief listing
shown in Fig. 1(b). Typically result display is handled at extremes:
either by displaying a result overview that contains multiple results
per page but limited information about each, or by displaying one
result per page (showing all the available information about that
result) with links to the other results. The former approach, while
concise, can be insufficient for users who then have to click on a
number of individuals before deciding which one is closest to what
they had in mind. On the other hand, the latter, which displays an
exhaustive dump of all the attributes of a result object (one at a
time), can be overwhelming. For example, if a person just wants to
know the price, duration, fare class and seating capacity of flights
from Memphis to Chicago within a specific date range, neither for-
mat is ideal. The overview display does not show all the required
information, while the exhaustive display shows too much informa-
tion about each result and does not show all the results together.

Often, an interface will provide an “advanced” form that pro-
vides a user with more choices than the “basic” form. However,
the above drawbacks still remain in spite of the additional form
complexity. To illustrate, consider the first drawback, that of lim-
ited expressivity, in the context of a database of flight listings at
the website of a popular airline, Northwest Airlines. Despite the
additional complexity, the advanced search form (Fig. 2) still only
supports conjunctive selection queries which might be insufficient
for some users. Consider the following queries to this database:

Q1. Display flights from Memphis to Chicago ordered by travel
time, shortest to longest.
Q2. Show me flights from Memphis to an airport in or around
Austin (within 30 miles) that depart in the next 3 days.
Q3.List all Memphis-Chicago flights today that cost less than $400.

None of these queries can be expressed using the form directly.
The form only allows result sorting by price and departure times
and nothing else. While nearby city alternatives and date ranges are
supported, the two cannot be used simultaneously. Finally, the in-
terface does not allow users to specify an upper bound on the price
of the ticket. Without the ability to change a form, the only option
a user has is to specify a query supported by the available form that
returns a superset of the desired results, and examine the results
manually to satisfy the unsupported query criteria. For example, in
the case ofQ1, while the advanced form does not sort the results
by departure time, it can find all flights from Memphis to Chicago.
A user can view the results of this partial query (which does con-
tain the duration for each flight), and sort them mentally to find

Figure 1: (a) Simple Search Form (b) Results (NWA.com)

the desired flight. This is a tedious process and can be error-prone,
especially if the results span multiple pages. We propose form cus-
tomization as an approach to allow users to modify the forms they
use to obtain precisely the results they seek. Of course, form cus-
tomization is not necessary if a form is available that supports the
desired query in its entirety. Moreover, if an advanced form is avail-
able, and is suited to the user’s needs, the cost of switching to it will
be less than that of modifying the basic form. The techniques de-
veloped in this paper are of value when the predefined (basic or
advanced) forms do not meet the user’s needs completely.

To draw an analogy, a user views forms in an interface as a cus-
tomer would view pizzas at a restaurant. Just as the restaurant may
offer several piazzas with predefined sets of toppings (based on ex-
pectations of customer preferences), each form has a predefined set
of query parameters decided by the data provider (based on expec-
tations of user needs). It is possible that a customer would like to
customize a pizza (by adding, removing or replacing one or more
toppings) as it is possible that a user would like to customize a
form (by adding, removing or replacing one or more form fields).
In either scenario, given the available list of options (toppings in a
menu or attributes in a schema), the range of possible combinations
(pizzas or forms) is extremely large. But with a reasonably good
set of starting points, the ability to customize helps satisfy all users
without knowing, in advance, exactly what they want.

In this paper, we introduce the concept of form customization.
The user starts with a form that approximates the desired query. He
or she then edits the form to obtain a modified form that precisely
captures the desired query. For this scheme to make sense, it is
necessary that form editing not require any special knowledge on
the part of the user, either about formal query specification or about
the database schema. Our proposal is that form editing itself also
be carried out as a form filling process. Specifically, we develop
a form manipulation language comprising a small set of operators
that take one or more forms as input, and produce corresponding
forms as output. The desired form edit can then be written as an
expression in this language. If we are able to provide a form filling
interface that supports construction of such form edit expressions,
then we will have the desired form editing process.

Tools that assist users in form creation have been around for over
a decade. QURSED [26] is a system that eases the burden of form
creators by effectively integrating the schema with the form editor
visually, and by automatically constructing the equivalent declara-
tive query template (incrementally) as the designer builds the form.
The first difference from our work is that it is intended to be used
by form developers, not users. Secondly, unlike this editor which
generates forms from scratch, the problem we aim to solve is that
of form customization, i.e., using existing “similar” forms as an ef-

Figure 2: Advanced Search Form (NWA.com)

fective starting point in query expression. Having chosen a form to
customize, it is reasonable to expect that a portion of the desired
query can already be expressed by the form prior to any modifi-
cation performed by the user. Thus we are leveraging pre-existing
complex queries, to support new complex queries with significantly
less cost and user-expertise (which is within the capabilites of ca-
sual users as we will show in this paper). For instance, it is easy
to imagine a very simple custom form for queryQ2 above even
though building it from scratch involves nesting, aggregation and
joins which are non-trivial. FoxQ [10] and EquiX [20], like our
system, are intended to be used by end-users. However, these tools
also require users to build forms incrementally from a null starting
point. Visual query builders that assist in query generation have
been studied extensively [11, 13] and implemented in commercial
products [4, 5, 6, 31]. These also require users to start from scratch
making the burden much higher than that of form modification.

The expressive power of a form modification language should
be measured not in terms of what the resulting forms can express,
but in terms of how much modification can be expressed using this
language. The actual query expressivity and specification process
depend on an external data manipulation algebra that is treated as
an argument to the form manipulation model that we propose. The
more expressive the operators in this data model are, the higher
the complexity of the queries that the forms can express. Since
the addition and deletion of any data manipulation operator in any

position are allowed, the form modification language can express
any desired change within the bounds of the expressive power of
the underlying data manipulation language. It is even possible to
“modify” an empty form to define a desired form from scratch.
However, the engineering design of this technique makes it best
suited for small changes to complex query forms.

To enable form customization, one needs to understand how forms
are structured and given this understanding, how this structure can
be altered ultimately by an end-user. Our first contribution is a care-
ful characterization of form components, and separation of form
structure and function in Sec. 2. We introduce a role-based sep-
aration of form fields that makes forms both more readable and
easier to modify by end-users. We introduce a form expression
language in Sec. 3, which describes the operations that can be per-
formed to modify forms. Based on this, we present, in Sec. 4, the
technique for dynamic form generation including how to design
form layout. We discuss briefly, in Sec. 5, the provision for ad-
vanced users to modify forms to a greater extent than typical form
users to demonstrate the expressivity of the interface. Given a filled
form, we can generate an equivalent declarative query expression
(since one cannot be hardcoded if the form is not static) which we
present in Sec. 6. The experimental section that follows (Sec. 7),
presents the results of a controlled user study we conducted to eval-
uate the system’s effectiveness. While the current implementation
is XML-based, we believe this technique can be easily adapted to
a relational environment and SQL-based querying, since the form
expression language, the form generation algorithm, and system
architecture are all independent of the data model.

2. FORM DEFINITION
Data providers have largely viewed forms just as user-friendly

wrappers over declarative queries. This is evident from the ab-
sence of any formal language or generic model capable of repre-
senting forms. Given a query, the corresponding form has various
components, each a collection of form controls, that correspond
to different parts of the query expression. The composition of a
form component depends on the query fragment it represents. For
a given type of query fragment, such as a selection predicate or a
result ordering attribute, different interface designers may design
the corresponding form component differently. Consider a selec-
tion predicate on adate field. In a form, this query condition can
be represented as a labeled text-box, a set of three drop-down lists
(for day, month and year) or even a calendar widget that allows
users to click on a date. Apart from form components themselves,
the form’s layout (the positioning of its components) is also arbi-
trary. While this heterogeneity among forms may not be of much
interest to interface designers (who are only concerned with the us-
ability of their own forms), in the interest of making forms easier to
create and manipulate, a well-defined, systematic approach to form
design is needed. Not only will such an infrastructure make forms
easier to evolve, but it will also make visual interfaces easier to cre-
ate, manage and troubleshoot. For such an approach to be feasible,
we must define a canonical form representation as well as a set of
form manipulation operators that allow the contents of a form to be
altered. In this section we define a logical form representation dis-
tinct from its appearance. Having such an abstraction allows each
form to have both an internal representation (which is machine-
readable thereby making it possible to develop form manipulation
tools) and an external representation (which is human-readable so
people can use it). Under this logical representation, a form is de-
fined as a collection ofform-elementslaid out according to their
purpose and relationships with one other.

Figure 3: Two-paned version of Search Form in Fig. 1(a).

2.1 Form Elements
A form-element is an object designed to translate a user’s input

into a query fragment. A simple example is a labeled text-box for a
search query that accepts a keyword from a user and creates a selec-
tion predicate for the corresponding table-column in the database.
For completeness, we have identified the most common query oper-
ations in a declarative query language and designed form-elements
for each of them. But this is not the complete set of form-element
types. It is extensible within the framework of the form manipula-
tion language (introduced in Sec. 3) to support querying needs.
Constraint Specification Element: A form-element that allows a
user to specify a value for a data attribute. This is mapped to a se-
lection predicate in the underlying query. For example, a text-box
labeledCar Model in a reservation form allowing a user to specify
the desired model is a constraint specification element.
Result Display Element:This form-element type enables a user to
choose which fields to display in the result of the query. For exam-
ple, a check-box labeledShow/Hide Pictures that can display or
hide photographs of listings in a real-estate search form is a result
display element. It allows users to customize the query’s result.
Result Ordering Element: A result-ordering form-element lets
users specify how the result of the form should be sorted. Flight
reservation forms provide a set of radio-buttons markedSort by
price, Sort by schedule, etc. to specify the order in which match-
ing flights are displayed. These are result ordering elements.
Aggregate Computation Element:This form-element denotes an
aggregation operation, either a selection or a projection, in the un-
derlying query. Some sports statistics query forms can be used to
find theHighest Score by anyteam in anygame at anyvenue.
The form-element that allows users to find this maximumscore is,
in effect, an aggregate computation element.
Disjunction Element: A disjunction element is a set of constraint
specification elements at least one of which must be satisfied. It is
mapped to a set of selection predicates separated byOR’s in the un-
derlying query. One use is to allow a user to specify a list oftrusted
sellers while searching for anitem in anauction database.
Join Specification Element:While most forms hide inter-relationships
between fields, the flexibility of a form can be increased by the
presence of form-elements that allow users to specify these rela-
tionships. Consider a biological database query form allow users to
find aprotein that eitherinteracts with a givenprotein (specified
using constraint elements in the same form) or ishomologous to
it. A join specification element can give the user a choice between
relating the two proteins byinteraction or by homology.

2.2 Form Element Organization
A form with multiple form-elements can display them in many

different ways, not all of which are meaningful. The arrangement
of elements in the form (along with individual labels) indicate to
a user what each element denotes and how it relates to other ele-
ments. The layout of these elements involves organizing them into
collections spatially within the form, and intuitively labeling them
to tell users what they represent. We term these collections asform-
groups. In Fig. 2, for example,’Where and When do you want to
travel?’, ‘Who is going on this trip?’and ‘Do you have any pref-
erences?’are form-groups,From, To, etc. are form-elements, and
the form controls shown include check-boxes (e.g.Nonstop flights
only), text-boxes (e.g.From) and drop-down menus (e.g.Search
for Cabin). Thus a form-element is just a set of form-controls, and
a form-group is simply a set of form-elements or in some cases,
other form-groups.

In the logical representation of a form, elements are grouped hi-
erarchically with the placement of elements governed by how they
are grouped. Grouping helps resolve ambiguities between like-
named elements that may co-occur in a query. In the form, related
form-elements, i.e., those belonging to a single group, are juxta-
posed, to the maximum extent possible, to help users infer what
they mean in the context of the query. Form-elements in a group
can also be related to one another in terms of the query as we will
discuss in Sec. 5. Multiple form-elements that contain attributes
of the same entity (based on the database schema) are placed in a
single group which represents the entity. In Fig. 2, form-groups are
separated by panels and the label for each group is prominently in-
dicated at the top left of the group. Our system uses labeled rectan-
gular boxes to denote form-groups. Grouping is recursive—form-
groups may be comprised of form-elements or other form-groups.

2.3 Canonical Structure
It is useful to think of a form as having three main components

namely inputs, outputs and relationships. The fields whose values
are filled in by a user can be thought of as the form’sinputs. The
fields whose values are returned to the user in the results of the
query can be considered theoutputsof the form (from a user’s per-
spective). Finally, the associations between the schema entities that
are queried are the entityrelationshipsunderlying the form. We
find it convenient to separate these three components in the logical
representation. Each of the three components can be represented
as a tree owing to the hierarchical nature of grouping. We name
these components as theinput tree, output treeand relationship
tree. These components are logically distinct and together form a
canonical representation that can be used to represent any form.

DEFINITION 1. (CANONICAL FORM)A form can be canon-
ically represented as a 3-tuple,F = 〈IT, OT, RT 〉, where:IT is
its input tree, OT is its output treeandRT is its relationship tree.

Each field in a form has a specific role with respect to the query
that the form evaluates. Typically a field is used to specify a search
criterion, making it aninput to the underlying query. If a field per-
tains to the content or sort-order of the query’s result, it is manipu-
lating theoutputof the query. Consider the form in Fig. 1. It allows
users to specify the origin, destination as well as departure and ar-
rival dates for a desired flight, but it does not let the user choose
what information about each flight he or she would like to see. A
modification of this form that expands its functionality by allowing
users to select the fields in the result display is shown in Fig. 3. This
form has two panes—one for search criteria and a second to specify
the content and order of search results. It is more flexible and intu-
itive, highlighting the benefits of logical separation. In this section,
we introduce theinput treeandoutput tree. These are the parts of

 Group

 Element

Constraint

(Origin)

Aggregate

(Seat)

FLIGHT

DEPARTURE

SEAT

Constraint

(Date)

Constraint

(Time)

Constraint

(FareClass)

Constraint

(Available)

Constraint

(Cabin)

root

Constraint

(Destination)

Figure 4: Logical Representation of a Form (Input Tree)

Result

(Duration)

Result

(Date)

Result

(Distance)

FLIGHT

Result

(Time)

DEPARTURE

Sort

(S.Price)

Sort

(F.Duration)

Result

(Destination)

Result

(Origin)

Result

(FlightNumber)

Result

(Aircraft)

Result

(Price)

Result

(FareClass)

SEAT

Result

(Cabin)

root

Sort

(F.Time)

Figure 5: Logical Representation of a Form (Output Tree)

the form most used by typical users. We introduce therelationship
tree in Sec. 5 in which we describe more complex query specifi-
cation intended only for advanced and database-savvy users. The
primary purpose of the relationship tree is to capture inter-entity
relationships and allow them to be modified if needed.

DEFINITION 2. (INPUT TREE)The input treeof a form is a
tree,IT = 〈ξ, Γ, ε〉,where:
– ξ is a finite set of form-elements that will serve as inputs to the
query of interest;
– Γ is a finite set of form-groups;
– ε, a subset of(ξ

S
Γ) × Γ, is a group membership relation be-

tween elements/groups and the groups to which they belong.

In this tree, form-elements are the leaves and groups make up
the intermediate nodes, including the root. Input form-elements
include constraint-specification and aggregate constraint elements
whose parameter values can be viewed asinputs from a user for
query evaluation. An example is shown in Fig. 4 where squares rep-
resent form-groups and circles correspond to form-elements. This
tree has several constraint-specification elements grouped by their
associated schema-entities such asFlight andSeat.

DEFINITION 3. (OUTPUT TREE)Theoutput treeof a form is
a tree,OT = 〈ξ, Γ, ε〉,where:
– ξ is a finite set of form-elements that will control the content and
format of the output of a user’s query, i.e., its result data;
– Γ is a finite set of form-groups;
– ε, a subset of(ξ

S
Γ) × Γ, is a group membership relation be-

tween elements/groups and the groups to which they belong.

In this tree as well, leaf nodes correspond to form-elements,
while internal nodes represent form-groups. Result specification
operators can beresult-displayor result-orderingelements (described
in Sec. 6.1). Fig. 5 shows an output tree. The trees in Fig. 4 & 5 are
manifested in the form shown in Figs. 6 & 7. In [24], we show that
this type of form can be generated efficiently given a query work-
load. In related work, the TQL language (used in QURSED [26,

Pane selection

A form group

A form element

Button to remove this

form element

Button to add a form element

to this form group (Departure)

Figure 6: Visual Representation of a Form (Criteria Pane)

27]) also logically separates each form into two sections – thecon-
dition tree) and theresult tree. Some visual query builders [20, 22]
also divide query specification this way, i.e., into a selection speci-
fication and a projection specification step.

Symbolic Representation: A form, given its logical representa-
tion, can be represented textually by a symbolic expression. Each
form-element type has a representative symbol and form-groups
are expressed using curly braces. A form-group is an unordered
comma-separated list of its component elements and sub-groups
placed within a pair of curly braces. For ease of reference, we
create a unique numeric identifier for each form-group and attach
this as a subscript to its closing curly brace. A form is denoted
with three pairs of curly braces representing the root-level form-
group in each of the form-trees. An empty form is represented as
F = {}I{}O{}R, where{}I , {}O and{}R denote the input, output
and relationship trees respectively. Brackets also mark the extents
of a form-group, but these have a subscript which uniquely identi-
fies them. In this scheme, the example form is expressed as follows
(only the input tree is shown in full).

{{c(Flight:Origin), c(Flight:Destination),
a(Flight:Seat,Northwest:Flight),
{c(Departure:Date), c(Departure:Time)}2}1,
{c(Seat:Cabin), c(Seat:FareClass),
c(Seat:Available)}3}I ,

{{r(Flight:Origin), r(Flight:Destination),}1,}O,
{{j(Flight:FlightNumber, Seat:FlightNumber),}1,}R

In the above expression, the functionsc(), r(), a(), s() andj()
denote constraint-specification, result-display, aggregate, result-ordering
and join-specification form-elements respectively (see Sec. 2 and
Sec. 6.1 for brief descriptions of these element types). We defer
discussion of the relationship tree to Sec. 5.

3. FORM MANIPULATION
In this section, we present the set of available form manipulation

operators that users can choose from to customize a form. The re-
sult of any operation is a new form. Hence the language is closed
with respect to any form operator. This form manipulation lan-
guage is independent of the data manipulation operators that cor-
respond to form elements. We present these operations in abstract
form here, and show how they are realized in Sec. 4. We use the
notationF t to denote thet tree of the formF , wheret ∈ {I , O, R}.

Figure 7: Visual Representation of a Form (Results Pane)

Initially, the input and output trees of the running example shown
in Figs. 4 and 5 are:

F I
0 = {{c(F.o), c(F.de), a(F.s, N.f), {c(D.d), c(D.t)}2}1, {c(S.c),

c(S.fc), c(S.a)}3}I

F O
0 = {{r(F.o), r(F.de), r(F.du), r(F.di), r(F.fn), r(F.a)}1, {r(S.c),

r(S.fc), r(S.p), s(S.p)}2, s(F.du), s(D.t)}O

We have used initials to identify elements in the above expres-
sions. For example, looking at Fig. 4, we can recognize thatF.o is
Flight:Origin, S.fc is Seat:FareClass, etc.

Form-element Insertion (λ): This operator is used to add a new
form-element to an existing form. It requires as input a reference to
the group under which the element is to be added and the element
itself. Symbolically we can express this operation asλ(e,g)(F

t).
F O

1 = λ(a(S,S.p),2)(F
O
0)

= {{r(F.o), r(F.de), r(F.du), r(F.di), r(F.fn), r(F.a)}1, r(S.c),
{r(S.fc), r(S.p), s(S.p), a(S, S.p)}2, s(F.du), s(D.t)}O

Form-element Deletion(φ): This operator is used to remove an
existing form-element from a given form. Unlike element inser-
tion, this does not require a group reference if the element can be
uniquely identified. This operation is written asφe(F

t).
F I

1 = φc(D.t)(F
I
0)

= {{c(F.o), c(F.de), a(F.s, N.f), {c(D.d)}2}1, {c(S.c),
c(S.fc), c(S.a)}3}I

Form-element Move(ψ): This operator moves an existing form-
element from one group to another. The element and the target
group must be specified and the operation is written asψe,g(F).

F I
2 = ψ(c(D.d),1)(F

I
1)

= {{c(F.o), c(F.de), a(F.s, N.f), c(D.d), {}2}1, {c(S.c),
c(S.fc), c(S.a)}3}I

Form-group Insertion (Λ): This operator inserts a form-group
into a given form. It requires the group and optionally its parent
group which must be present in the form. If the parent group is not
specified, the group is inserted into the root (outermost) group of
the form. For example, ifF t

0 = {{e1}g1}t, adding a new groupg2

(to the root group) would create the new form:

F t
1 = Λ(g2)(F

t
0) = {{e1}g1 , {}g2}t

Form-group Deletion (Φ): A form-group can be removed from a
form much like a form-element, but concern arises when the group

Figure 8: Criteria Pane of the Modified Form

is not empty. We choose to allow deletion of non-empty groups in
the language and let the implementation decide whether a group-
delete command automatically triggers element-delete commands
for each form-element in it or simply relocates them.

F I
3 = Φ2(F

I
2)

= {{c(F.o), c(F.de), a(F.s, N.f), c(D.d)}1, {c(S.c), c(S.fc),
c(S.a)}3}I

Form-group Move (Ψ): A form-group can be moved from one
group to another like a form-element, but like deletion, if the group
is non-empty, all its elements must be moved with it. Only the tar-
get group and the group itself are specified. IfF t

1 = {{e1}g1 , {}g2}t,
moving groupg2 into groupg1 would create the new form:

F t
2 = Ψ(g2,g3)(F

t
1) = {{e1, {}g2}g1}t

Form Merge (./): Forms can be combined using the binary form-
merge operator. It performs a shallow merge that results is a single
form with all the elements and groups of the operand forms heaped
together. For example, ifF t

1 = {{e1}g1}t andF t
2 = {{e2}g2}t,

F t
1 ./ F t

2 = {{e1}g1 , {e2}g2}t

Having a merge operator allows existing forms to be combined.
This enhances reusability and minimizes duplication of effort.

Operator Composition: Form operators in the language may be
composed. For example, we could write

F I
3 = Φ2ψc(D.d),1φc(D.t),2(F

I
0)

obtaining the treeF I
3 obtained in three steps above. This compo-

sition property permits the user to make incremental changes to a
form, one operator at a time. The resultant form of the operations
we just performed is shown in Figs. 8 & 9.

4. FORM GENERATION
With any form as a starting point, a user can edit it using the form

editor in multiple iterations until the desired form is obtained. The
editor provides a canvas that holds the current form, and button-
activated operations to modify it. We discussed the supported op-
erations in Sec. 3. Here we describe how each operator is realized.

Form-Element Insertion: Inserting a form-element involves se-
lecting a form-pane, and one or two fields (element-dependent).
Pane Selection:The first choice is the type of query operation it
involves. As shown in Fig. 6, the criteria pane contains the simple
constraint elements and aggregate constraint elements. Fields to be

Figure 9: Results Pane of the Modified Form

returned in the result as well as the ordering of the result are dic-
tated by the contents of the results pane (Fig. 7). The desired pane
can be made active by clicking on its tab at the top of the form.
Field Selection:Having activated the pane of choice, a user must
then select a schema attribute associated with the form-element to
be inserted. If the form has been partially built (typically the case
in form customization), it can be examined to identify other ele-
ments whose schema attributes are related to the one to be added.
If two or more attributes belong to the same entity, they will be lo-
cated within the same group in the form. By simply clicking within
this group, the fragment of the schema centered at this entity is
presented to the user via a graphical schema browser to pick the
desired attribute. Thus the user need not examine the entire schema
to locate it. However, in the rare event that no similar attributes
can be found already in the form, the user must traverse the schema
from the root (or from an arbitrary entity) and drill down to the de-
sired attribute. Only nodes along the selected path are expanded
so as to not overwhelm the user if the schema is complex. Once a
new group is created for that entity, all subsequent additions only
require exploring the portion of the schema rooted at this entity.
Some predicates require a second field to be specified by the user:
the grouping basis (scope) of an aggregation and the right-hand-
side of a join-condition. In such cases, the user is prompted to
re-visit the schema or a fragment of it, and select the desired field.

Form-Element Deletion: If the form contains elements that are
irrelevant to a user’s query or if a user inserted one or more ele-
ments in error, these may be removed from the form. An element
can be deleted by clicking on its remove button (marked ‘X’).

Form-Group Insertion: While users can add or remove form-
elements themselves, only the system may add or remove form-
groups. This makes the interface simpler for the user and the forms
better organized. Grouping of two or more form-elements is based
on one of two properties: (1) schema closeness and (2) query-
imposed relationships. If two elements reference sibling attributes
of a single entity, they will be placed in a single group in the in-
put or output trees. Secondly, if two elements reference attributes
of two different entities that are joined in the query, they will be
placed in a single group in the relationship tree. When an element

is inserted into the form, a group is created in the input or output
panes if there is at least one other element on that pane that refer-
ences the same schema entity (this is the case if the threshold on
minimum size of a group is two; in reality, it is tunable).

Form-Group Deletion: After the deletion of one or more form-
elements, the associated form-groups might also need to be re-
moved. If the number of elements drops below the threshold, the
presence of the group is no longer necessary. Similarly, if a join
condition is removed, its group must also be deleted. This re-
organization of the form simplifies its appearance and maintains
its consistency and correctness. Like form-group insertion, this op-
eration is automatically performed by the system when needed.

Similar to this system, the QURSED Form Editor [26, 27] al-
lows form-elements to be added and removed using a WYSIWYG
editor that makes form manipulation easier than traditional form
design tools. The main difference from our work is that the QURSED
form editor is intended to be used by interface developers and forms
are typically created from scratch. Every form edit requires direct
interaction with the entire schema. While the schema display is
graphical and navigable, making it user-friendly, complex schemas
may still be difficult to browse, especially for end-users. Another
example is the iTunes Smart Playlist [1] used to query a user’s own
music database and place desired songs in a single playlist. It al-
lows the insertion of “form-elements” each of which specifies a
selection operation on the music metadata (other query operations
are not supported). Here too, selecting an attribute requires scan-
ning the complete list of recorded attributes, this time as a drop
down list. This is acceptable for simple schemas such as that used
by iTunes, but does not scale well to complex schemas.

5. ADVANCED MANIPULATION
Casual form users are not database experts. By keeping the task

of form-alteration as simple as possible, an interface can be made
more flexible without decreasing its usability significantly. How-
ever, a form can be made even more expressive if more complex
modifications are allowed. These are beyond the scope of casual
users and are intended only for experts. In this section, we describe
how experienced users can take advantage of form customization
tools to make complex modifications. These are presented purely
to illustrate the our system’s expressive power. We describe both
the operations themselves and how they can be used. But first, we
define the third component of the form model, therelationshiptree.

DEFINITION 4. (RELATIONSHIP TREE)Therelationship tree
of a form is a tree,RT = 〈ξ, ξj , Γ, ε〉,where:
– ξ is a finite set of form-elements which are also present in either
the inputor output trees;
– ξj is a finite set ofjoin form-elements that specify the relation-
ships between the entities of the form;
– Γ is a finite set of form-groups;
– ε, a subset of(ξ

S
ξj

S
Γ) × Γ, is a group membership relation

between elements/groups and the groups to which they belong.

The relationship tree captures the relationships between entities
in a form. An example of such a tree is shown in Fig. 10 where the
related entities areFlight andSeat. Relationship trees are similar
to inputandoutputtrees in that they contain form-elements at their
leaves and form-groups at intermediate nodes. Each form-group in
this tree indicates a relationship between two entities. If the rela-
tionship is ternary, it is captured by two form-groups, one within
the other. There will be two join elements in such a scenario each
within one of the two form-groups. Typically every form-group
contains a single join element. In cases where two entities have

Constraint

(F.Origin)

FLIGHT SEAT

Constraint

(S.Cabin)

Constraint

(S.FareClass)

Constraint

(S.Available)

root

Result

(F.Duration)

Result

(F.Date)

Result

(F.Distance)

Result

(F.Time)

Result

(S.Price)

Sort

(F.Duration)

Result

(F.Destination)

Result

(F.Origin)

Result

(F.FlightNumber)

Result

(F.Aircraft)

Result

(S.Cabin)

Sort

(S.Price)

Result

(S.FareClass)

Sort

(F.Time)

Join

(
F
.FlightNumber =
S
.FlightNumber*)

Constraint

(F.Date)

Constraint

(F.Time)

Constraint

(F.Destination)

Aggregate

(F.Seat)

 Group

 Element

Figure 10: Logical representation of a form’s Relationship Tree

more than one relationship between them, additional join elements
will be present within the form-group that relates the two entities.

A difference between the relationship tree and input or output
trees is that it includesall the form-elements in a form, not just
those of a specific type. The form-elements in a relationship tree
are thus a union of the form-elements found in the other two trees
and additionally contain the join elements. Secondly, the reason for
grouping form-elements is different in the relationship tree than it is
in the other two trees. Instead of semantic closeness between form-
elements, relationship trees group elements by how they relate to
one another in the query (based on value-joins).

The benefit of having a separate relationship tree for a form is
two-fold. First, it makes complex query relationships easy to ex-
amine. Simply by looking at the form-groups in this tree and how
they are placed in the tree hierarchy, one gets a sense of how the
various queried entities relate to each other. This representation
also makes relationships easier to modify if necessary. Second, this
tree provides the starting point for the evaluation of the query spec-
ified by an end-user using a particular form. Once the form is filled,
its relationship tree will contain all the form-elements actually used
to specify the desired query along with the actual values provided
by the user. In addition, with the relationships between the form’s
entities defined in this tree, the desired declarative query can be
generated. The query generation process is described in Sec. 6.

The relationship tree is also the basis of the third pane of the form
called theAdvancedpane. It is so named to discourage naïve users
from viewing or modifying the relationships between the form’s
entities. Although the relationship tree containsall the form’s el-
ements, only the join elements are displayed (since the other ele-
ments are already displayed in either of the first two panes). The
form-group containing each join element is also displayed, and is
manifested as a labeled box (with the join element within it).

Form Customization: Customizations of a form typically involve
adding, deleting or modifying atomic query parameters in the first
two panes of the form. If however, the relationships between queried
entities require changing, the third pane of the form allows users to
change them. We describe how these changes can be made in this
section. It bears noting, however, that changes like these funda-
mentally alter the structure of the query and are not typical. Rela-
tionships between entities in a form are captured by ajoin element.
By adding and/or removing these form-elements, relationships can
be added, removed or modified (deletion followed by insertion).
Inserting a join element requires specifying the entities to be joined
and the exact fields within each entity that participate in the rela-
tionship. Internally, form groups are created, removed or modified
to reflect the new relationships. A form-group in the relationship
tree is defined by the join element it contains. All other form-

elements that involve the entities related by this join relationship
are contained in the same group. The group is named to reflect this
relationship. If a join element is removed, the group is deleted, but
the remaining form-elements are reassigned to other groups, typ-
ically the parent group according to the hierarchy of the relation-
ship tree1. If a user wishes to add a new relationship to a form, the
system prompts the user to specify the entities (two-at-a-time) that
participate in this relationship. If a schema is available and it con-
tains natural relationships between the chosen entities (defined by
primary-foreign key pairs (relational) or key-keyref pairs (XML))
these are shown to the user who can then chose from among them.
A user can also specify a relationship outside of these, if desired. In
the example, the related entities areFlight andSeat. The relation-
ship between them is the flight having the same flight number as the
seat which means that the seat corresponds to a particular flight.
A perceivable customization would be to query only those seats
whose fare-class matches the highest class available on a flight.
This change would require creating a new join element between
these two entities and adding it to the relationship tree (Fig. 11).

A more complex modification could involve adding a new en-
tity to the form that can be related either toFlight or Seat. For
instance, if the airline database also had information about part-
ner car rental companies, an advanced user could in fact extend the
query to search for all such companies at the destination airport for
each matching flight. This modification could be performed by first
adding a new form-element in the relationship pane that relates the
entity Flight with CarRental, which would be new to this form.
Once this relationship is established, the user can modify the out-
put tree to display details of rental companies for each flight.

6. QUERY GENERATION
A traditional form is static and has a hard-coded query built into

it. While the query generated can vary depending on what a user
fills in, the variation is predefined and hence limited. In contrast
the modifiable forms proposed in this paper permit the user to alter
even the structure of a form making it impossible for the system
to predetermine the query to be generated. Hence the query must
be formulated dynamically, when the form is submitted. In this
section, we describe the translation scheme that we use to generate
queries from filled forms, based on a systematic conversion of the
form representation formula into a query statement. Our implemen-
tation is based on an XML data environment, hence the declarative
language we use is XQuery. We use XML Schema Definitions to
define data structure and preserve element and attribute names as
well as their structural relationships in the forms generated. The
actual constructs in the query generated depend on the actual data
manipulation operators in the form. We first present a set of prim-
itive data manipulation operators in Sec. 6.1 and assume that we
have available a translation scheme for each. In Sec. 6.2, we con-
sider query generation for simple as well as complex queries and
explain how their corresponding forms can be mapped to query lan-
guage expressions and subsequently evaluated.

6.1 Form Elements
As defined in Sec. 2, a form-element represents a single data

manipulation operation and it contains references to one or more
entities in the schema. We now present a few common types of
form-elements and the data manipulation operations they perform.

1If the join element is part of an n-ary relationship (n > 2) then each
form-element is moved to the lowest ancestor group that contains
the entity of the form-element. If no such ancestor groups exist, the
element is placed in the root form-group.

Figure 11: Advanced Pane of the Modified Form

This is the set that we implemented and is presented for concrete-
ness. It is not an exhaustive list but it directly impacts the query
expressivity of a form in our system. We briefly mentioned these
element types in Sec. 2.1 and they are sufficient to express rela-
tional algebra with aggregates, but without negations, set opera-
tions or quantification. They are also enough to express XQuery
core [9] excluding output structuring, set operations and quantified
or negated predicates. We emphasize that the form manipulation
mechanisms, which are the main contribution of this paper, do not
depend on, and are not limited by, this particular set of operators.
By choosing an appropriately rich set of form-elements, one can
make generated forms arbitrarily expressive.
Data Manipulation Operators:
Constraint Specification:A constraint specification operator de-
notes a selection predicate and is represented asc(E : n), n being
the qualified name of the schema attribute involved relative toE,
the associated entity. Multiple such operators can be combined con-
junctively or disjunctively to construct complex query predicates.
Result Display:A result display operator corresponds to a query
projection and is represented asr(E : n), whereE andn are the
same as in a constraint specification operator.
Result Ordering:A result ordering operator is expressed ass(E :
n, o) which in addition to the name of the attribute, specifies the
sort order,o which can be eitherascendingor descending. The re-
sult of a query can be sorted using one or more such operators.
Aggregate Computation:An aggregate computation operator is rep-
resented asa(En : n, Eb : b), wheren denotes the name of the
aggregated schema element (or attribute) andb corresponds to the
qualified name of the grouping basis or scope (of the aggregation).
En andEb are their associated schema entities respectively. As its
name suggests, the aggregate computation operator corresponds to
an aggregation operation at the query processing level.
Disjunction:A disjunction operator combines two or more constraint-
specification operators into a single group from which at least one
needs to be satisfied. It can be expressed asd(c1, c2, ..., cn) where
eachci denotes a constraint specification operator.
Join Specification:A join specification operator is expressed as
j(E1 : n1, E2 : n2). n1 andn2 correspond to attributes involved
in the join condition, i.e., the relationship betweenE1 andE2.
Operator Translation: Each of the above data manipulation oper-
ators can be used to construct a corresponding form-element on an
actual query form using a specific set of form controls.
Constraint Specification:The constraint specification operator is
manifested using the following set of form controls: a static form-
label denoting the schema attribute, a drop-down list of comparison
operators (<,≤, =,≥, > and 6=), and a text-box for the user to fill
in the attribute value. The6= comparison operator allows users to
specify negative conditions in the form.
Result Display:The result display operator is shown in a form as
a set containing a static label and a check-box to indicate whether
the result includes or excludes the attribute.

ascending
COUNT > 2

= “Economy”
 = “Chicago”
= “01/01/2008”
 = “Memphis”

FLIGHT SEAT

root

Join

(
F
.FlightNumber =
S
.FlightNumber*)

Constraint

(S.Cabin)

Constraint

(F.Origin)

Constraint

(F.Date)

Constraint

(F.Destination)

Sort

(F.Time)

Aggregate

(F.Seat)

Result

(F.Time)

Result

(F.Duration)

Result

(F.FlightNumber)

Result

(S.Price)

 Group

 Element

 Value

Figure 12: A Filled Form

Result Ordering:The result ordering operator is translated to a set
containing a static label, a drop-down list for the sort-order (as-
cending or descending) and a check-box.
Aggregate Computation:In a form, aggregate computation is rep-
resented by a single label followed by a drop-down list of com-
parison operators, a text-box similar to the constraint specification
element, and a check-box similar to the result display element. The
label contains the qualified name of the entity (or attribute) whose
value or occurrence is aggregated, with the grouping basis high-
lighted (or hidden if it matches the label of the group containing it).
Disjunction: A disjunction operator is displayed as a set of con-
straint specification elements, each on a separate line within the
form. These elements are placed together in the form within a la-
beled rectangular box (similar in appearance to a form-group). If
all of them denote conditions on attributes belonging to the same
schema entity, the name of the entity is used as the box’s label.
Join Specification:A join specification operator maps to a set of
controls that includes the labels of the two elements (attributes) that
constitute the join condition, and a drop-down list of comparison
operators (as in constraint specification) for the join relationship.

6.2 Translation Procedure
The algorithm for operator translation is shown in Fig. 13. We

discuss the generation of declarative expressions for two query types.
Simple Queries: We define simple queries as those that do not
have a join relationship. In simple queries, there is only one group
(the root group) and no query-specified relationships between the
fields selected. In such cases, the main entity is discovered by find-
ing the lowest common ancestor of the attributes selected and as-
signing a binding variable to it. This forms thefor-clause of the
XQuery. All constraint specification elements are used to generate
predicates in thewhere-clause and finally, all result-display ele-
ments are mapped to projected elements or attributes in thereturn-
clause. If there is an aggregate-computation element, it provides
both the attribute to be grouped and the scope of grouping. In-
stead of the attribute itself, its scope is used to generate the binding
variable, and the scope also forms thelet-clause in the query ex-
pression. The aggregated attribute is now treated like a simple con-
straint specification or a result-display and enters either thewhere-
clause or thereturn-clause of the query.
Complex Queries: Unlike simple queries, forms corresponding
to complex queries such as join queries and queries with nested
sub-queries have more than one group in their relationship trees.
In each group, the join condition is examined and all descendent
elements are partitioned into two groups, one corresponding to the
left-hand side of the join condition and the other, its right-hand side.
Following this partitioning the lowest common ancestor of all ele-
ments within each partition becomes the binding variable and the

Figure 13: AlgorithmGenerateQuery

Input : A filled form F
Output : An XQuery expressionX

foreach join-elementj ∈ T , the relationship tree ofF do
Create a new binding variablev1 for the entity referenced by the
left-hand side of the join condition (if it does not already exist);
Create a binding variablev2 for the entity referenced by the
right-hand side of the join condition (if it does not already exist);
Assignv1, v2 to the group containingj;
if j denotes a nested relationshipthen

Construct a new query blockb and record the current query
block as its parent;
Add b to B, the set of query blocks;

if no join-element foundthen
Create a single binding variablev and assign it to the root group;

foreach form-groupg ∈ T do
Partition the form-elements ing between the two binding
variables by schematic similarity;

foreachbinding variablev do
Assignv to the lowest common ancestor of schema entities
(referenced by elements) that are assigned to it;

foreachquery blockb ∈ B do
Assign a unique variable name tob and denote its associated
schematic entity as its scope;
Create afor clauseusing the variable name and scope;
Create a predicate for each constraint-specification or
join-specification element and add it to thewhere clause;
Create a projection for each result element and add it to the
return clause;
Create an orderby attribute for each sort element and add it to the
orderby clause;

foreachquery blockb ∈ B do
Construct alet-clausethat connectsb to its parent block;

Construct the XQuery expressionX recursively using a DFS traversal
of the query blocks;

rest of the elements in that partition become selections, projections
or aggregations associated with that partition. The join condition is
added to thewhere-clause of the query. If multiple query blocks
are created (for nested queries), the nesting condition ties the query
blocks together and is added as a condition in thewhere-clause of
the final query. As an example of a nested query, consider the filled
form in Fig. 12 which generates the following XQuery:

for $f in doc(“northwest.xml”)//Flight
let $s :=for $st in doc(“northwest.xml”)//Seat

where $st/FlightNumber= $f/FlightNumber
and $st/Cabin= “Economy”

return $st
where $f/Origin = “Memphis” and $f/Destination= “Chicago”

and $f/Departure/Date= “01/01/2008”
and COUNT($s)> 2

return {$f/FlightNumber} {$f/Departure/Time} {$f/Duration}
{$s/Price}

order by $f/Departure/Time

In related work, TQL (basis of the QURSED Editor [26, 27]) is
a query language designed specifically for form design. It automat-
ically generates query fragments corresponding to form-elements
chosen by the form creator based on their type. While TQL cov-
ers a majority of query types, it is not as expressive as traditional
declarative query languages like SQL or XQuery (although TQL
queries can be translated to XQuery for evaluation). In comparison,
the system we propose can be made as expressive as needed. Form
generation tools like Ariba, Caspio Bridge, Microsoft Visual Web

0

50

100

150

200

250

300

350

400

1
 2
 3
 4
 5
 6
 7
 8

Form Modification Task

T
im

e
 (

s
e

c
.)

Figure 14: Time spent on each query task in lay user study

Developer, WUFOO [7] and Microsoft InfoPath also automatically
generate query templates corresponding to forms created, but these
only create data-entry forms for which query generation is trivial.

7. EVALUATION
We implemented the form construction and customization ideas

described above as a front end to TIMBER [23], an XML database
system. Since the ultimate measure of an interface is its usabil-
ity, we conducted usability studies to evaluate the effectiveness and
usefulness of form modification. The purpose of a customizable
form is to enable a user to change a form from one that does not
support a desired query to one that does. A traditional static form
is of little use if the desired query is unsupported. This is why a
one-on-one comparison between static and customizable forms for
unsupported queries is of little use. But what is the cost of form
customization to a user? Is it realistic to expect casual users to cus-
tomize forms? These are the questions we aimed to answer with
our system evaluation. First, we created a set of forms and a set
of queries not fully supported by them. We measured how long
and how correctly casual users were able to perform the required
modifications. Secondly, we evaluated the system’s usability for
expert users as well. Since the experts were, by definition, familiar
with declarative query languages, this allowed us to perform a di-
rect comparison between form modification and query re-writing to
satisfy a set of information needs that the original forms and queries
could not. We present our results and our inferences in this section.
Computing Environment: The study was taken over the internet
by the subjects at their homes / labs. The server used was Apache’s
Tomcat 4.1 and the interface was coded in Java/JSP. The server ran
on a Windows XP workstation with a 3.1 GHz Pentium 4 processor,
1 GB of memory and a 120 GB disk. On the client side, since the
study was taken remotely, multiple browser types were used which
included: Microsoft Internet Explorer, Mozilla Firefox and Opera.

7.1 Casual User Study
To evaluate the general case, we ran an experiment with 10 tech-

nically unsophisticated users, knowledgeable neither in formal query-
ing techniques nor in the data domain. After a short tutorial to gain
familiarity with the tools at their disposal, we presented 8 query-
ing tasks on two different schemas, and measured their response
times for the customizations that each task entailed. Responses
were stored in files and evaluated offline.
Query Tasks: The queries were posed to two schemas, both best-
effort replications of real-world online databases: the popular Ya-
hoo! Movies database (http://movies.yahoo.com) and the well-known
real-estate site, Realtor.com. The respective starting forms in in-
dividual tasks were fragments of the advanced search form pro-

Task Schema Query Modification
Complexity Complexity Complexity

1 Simple Simple Simple
2 Simple Complex Simple
3 Simple Simple Complex
4 Simple Complex Complex
5 Complex Simple Simple
6 Complex Complex Simple
7 Complex Simple Complex
8 Complex Complex Complex

Table 1: Task complexities in lay user study

vided at the websites. The tasks included both simple and complex
queries, where complexity was defined in multiple ways (Table 1).
Independent Variables:There are three complexity factors affect-
ing the performance measures of the subjects:
Schema Complexity:This denotes the schema of the database to
which each query was posed. Half the tasks were to a schema that
was simple while the other half were to a more complex schema.
We define schema complexity as the number of schema elements
— the Realtor schema (simple) had 33 elements, while the Ya-
hoo! Movies schema (complex) consisted of 63 elements.
Query Complexity:This is the difficulty level of each query in the
task set. We define query complexity in terms of the number of
form-elements needed by the query — a simple query requires less
than 10 elements (lowest was 3, highest was 8), while a complex
query needs 10 or more elements to be specified for it to be gener-
ated (actual range was between 11 and 15).
Modification Complexity:Each task requires that a form be mod-
ified and the extent of modification is certainly a factor affecting
user response time. Again the tasks were divided evenly between
simple and complex modifications which we define again in terms
of the form-elements involved. If a modification involves several
simple form-elements or one or more complex form-elements (a
join-specification or an aggregate-computation, each of which re-
quire either multiple fields in the schema to be specified or require
the use of the “Advanced” pane of a form) then, the modification is
said to be complex. If not, it is a simple modification.
Dependent Variables: There is only one measure of interest that
we use to evaluate the form-based interface:
Efficiency: This denotes the amount of time taken to solve each
querying task using the interface. If a correct solution could not be
obtained, a constant time of 600 seconds (10 minutes) was assigned
as the time taken for that task. Incorrect responses were penalized
appropriately. The subjects were first instructed on how to use the
form interface, to do one sample task whose solution was provided.
Users were strongly urged to take the tutorial at the very beginning
for response time measurements to be accurate. However, this tu-
torial could also be returned to at any point during the study, if the
subject needed to. For each task, subjects were asked to submit
their solutions (by clicking a button) and proceed to the next.
Results & Discussion:Efficiency:We observed that, on average,
a user took just under 4 minutes per task, while individual task
times ranged from a low as 1 minute to as high as 6 minutes for
tasks that were completed correctly. We find these to be reasonable
compared given that the alternative is to use (non-customizable)
forms that force the user to pose an incomplete query and then
spend time manually analyzing the results which is both tedious
and error prone. 8 of the 10 subjects completed all 8 tasks suc-
cessfully, while the remaining two erred on 3 tasks each. We also
compared the average response time (over all tasks and subjects)
for simple schemas vs. complex schemas and similarly for query
and modification complexity (Fig. 15). Response times for tasks in-

0

50

100

150

200

250

300

Schema
 Query
 Modification

T
im

e
 (

s
e
c
.)

Simple
 Complex

Figure 15: Factors affecting response time in lay user study

volving complex schema show an increase of only 28% over those
involving simple schema if other dimensions stay the same. The in-
crease from simple to complex queries brought about a 40% rise in
task times. Finally, with query and schema complexity unchanged,
users took 42% more time on tasks where the modification itself
was complex than for forms needing minor changes. These rela-
tively moderate increases in response time verify the system’s ro-
bustness to increased complexity of schema, query or modification.
Impact: It is very encouraging that our interface allowed non-experts
the level of flexibility in query specification required by the tasks
in our study (regardless of schema and query complexity).

7.2 Expert User Study
To put these response times in perspective, we ran an experiment

with 10 technically sophisticated users, each of whom would con-
sider themselves proficient in XQuery and knowledgeable about
the domain underlying the experimental databases. In this study we
compared the ease of modification of declarative query statements
versus forms. We chose to use datasets that were different from
those used in the lay user study, but were from a domain that these
expert users were intimately familiar with. In any case, the schemas
were provided for reference. The study had 10 tasks each of which
started with a query and a form, both of which needed to be mod-
ified to pose the same new query. In other words, the user neither
had to design a form nor write an XQuery from scratch — only
modify an existing form and query. The first two tasks were purely
instructional and had the correct answers revealed (these were to a
separate database so no schema familiarity was gained).
Independent Variables: There is only one factor affecting how
well a subject performed each task:
Interface: Each user had to attempt each querying task using two
different querying mechanisms (XQuery and a form) one after the
other, in random order, one task at a time.
Dependent Variables:There are two measures of interest:
Efficiency: This refers to the amount of time taken to solve each
querying task using either interface. If a correct solution could not
be obtained, a constant time of 600 seconds (10 minutes) was as-
signed as the time taken for that task.
Correctness:We qualitatively assess the two interfaces, and iden-
tify strengths and weaknesses in terms of the types of errors.
Subjects:Subjects were 10 students who volunteered to participate
in the research. These are specifically students who are taking or
have taken the advanced database systems course at our university
which qualifies them as conversant in the XQuery language.
Data Collection: We recorded the time taken by each subject to
solve each task and also recorded their responses to the queries.
Procedure: The subjects were first instructed on how to use the
form interface, via two sample queries that were solved. More help

Figure 16: Time spent on each query task expert-user study

was made available on a separate webpage that could be accessed at
any time during the study. For each task, the subjects were simply
asked to enter their solution and proceed to the next task. For the
part of the tasks involving XQuery, the subjects had access to sam-
ple data and an XML schema definition to help them write queries.
Query Tasks: The queries were posed to the XMark [8, 29] dataset
and a biological database, MiMI [3], and were equally distributed
(4 each). The required modifications ranged from simple element
insertions, to introducing new entities and relationships via joins.
Results & Discussion:Efficiency:We recorded the time taken for
each task by each subject and charted the average time taken per
task for each querying mechanism (see Fig. 16). We observe that
the efficiency of the form-based interface is higher in all but one of
the querying tasks, task 3. This was probably because the task was
so simple that even in XQuery it required little time. We also ob-
serve a slight downward trend in form modification time from one
task to the next. We attribute this to increased familiarity with the
interface. In contrast, XQuery specification shows no such trend.
Impact: We compared the performance of subjects familiar with
one querying mechanism (XQuery) and unfamiliar with the other
(customizable forms). Still, it is the latter that shows better usabil-
ity and fewer errors. The results of the two user studies suggest that
customizable forms are effective regardless of querying expertise.

7.3 Query Builder Comparison
Visual query builders are tools that allow a user to visually con-

struct a declarative query iteratively. One such tool is the DB2
Visual XQuery Builder packaged with the IBM DB2 Developer
Workbench [2]. Since forms and query builders are both approaches
to visual query specification, we conducted an experiment to com-
pare our system with the DB2 VXB. In this experiment, an XQuery-
proficient subject was asked to use this query builder to specify the
same 8 queries as that of our expert-user study, but this time with a
null starting point. A time limit of 20 minutes was set for each task,
and we found that the subject was unable to finish any of the tasks
in that time. Since this subject was a senior graduate student at the
university with intimate knowledge of XQuery, we did not continue
this study with other subjects. While we expect that there may be
other such query builders that perform differently, we believe that
query building is not as easy as form customization.

8. RELATED WORK
Regarded as the simplest mode of machine-readable query input,

forms see very wide use in databases today. Early work on form-
based querying mechanisms include [18, 21] which provided users
visual tools to frame their queries as well as to perform other opera-
tions such as database design [19] and view definition. The GRIDS

system [28] generated forms that allowed users to pose queries in
a semi-IR, semi-declarative fashion. In the relational world, visual
querying began with QBE [33] as early as 1975. A survey of early
visual languages, both iconic and form-based can be found in [14].
Query-By-Diagram (QBD*) [16] was a visual querying language
based on the ER model that allowed users to manipulate diagrams
instead of having to write SQL statements. The SEWASIE project
includes an intelligent query interface [15] that improves the us-
ability of a visual query language by using ontology to overcome
vocabulary ignorance of users. Standard form design tools such as
Microsoft Visual Basic, Visual Studio and Java Swing are used by
interface developers to create forms from scratch. More recently,
user interface languages such as XAML, JavaServer Faces, XForms
and XUL were developed specifically for UI design and these dras-
tically reduce the amount of code needed to create forms. If only
data-entry forms are required (these only allow insertion of data,
not querying), there are more user-friendly tools like Ariba, WU-
FOO [7] and Microsoft InfoPath that automate lower-level tasks
and greatly simplify the form design process. Caspio Bridge is a
simple search from creation tool that helps users design data-entry
as well as very simple search forms. In the area of business intel-
ligence, sophisticated solutions such as SAP eRFx, SAP BW, SAS
and Microstrategy are available that that help database experts gen-
erate forms and reports especially for OLAP-style queries.

In querying XML data, much work has been done to shield users
from details of the XQuery syntax, as well as from the textual rep-
resentation of XML. FoXQ [10] is a system that helps users build
queries incrementally by navigating through layers of forms, and
helps them view results in the same way. EquiX [20] is another
such language that helps users build queries in steps using a GUI.
Both these approaches require users to start from scratch making
the cost of querying much higher than simply customizing existing
forms. In the area of data integration, systems such as MetaQue-
rier [17, 32] build integrated query interfaces from multiple similar
source interfaces to provide a single query point for users. There
are also form editing tools such as the QURSED editor [26, 27] that
simplify the task of form construction (and report building) for in-
terface developers by automatically generating form-elements for a
schema entities based on their types. Other visual languages such
as XQBE [13], Xing [22], MIX [25] and QBT (Query By Tem-
plates [30]) adopt different approaches to visual query specifica-
tion, though these are not form-based. Among commercial tools,
IBM DB2 provides a Visual XQuery Builder with its Developer
Workbench [2]. This tool allows developers to specify queries vi-
sually which are then translated into XQuery.

9. CONCLUSION
Query interfaces play a vital role in determining the usefulness

of a database. A form-based interface is widely regarded as the
most user-friendly querying method. Form-based interfaces are an
important part of databases in the real world [12]. In this paper, we
presented mechanisms to overcome the challenges that limit the
usefulness of forms: their restrictive nature and the tedious manual
effort required to construct them well. We introduced a form ma-
nipulation language that we implemented in a visual editor which
allows users to customize an existing form to support a previously
unsupported query. Large-scale modifications can be made itera-
tively one simple step at a time. Finally, we conducted experiments
on real users that validated the system’s usefulness. Using the ed-
itor, users of databases who have little or no knowledge of sophis-
ticated query languages and tools can still formulate queries giving
them virtually unbridled access to their data of interest. We pre-
sented our approach to form building in the context of XML data-

bases. However, the bulk of the ideas described in this paper are
equally applicable to SQL-based databases. While the technolo-
gies suggested in this paper can be used to make major changes to
existing forms and even to define new forms from scratch, they are
of greatest value when the modifications required are small.

10. REFERENCES
[1] Apple - iLife - iTunes - Smart Playlists:

http://www.apple.com/lae/itunes/smartplaylists.html.
[2] IBM DB2 Developer Workbench:

http://www-306.ibm.com/software/data/db2/ad/dwb.html.
[3] MiMI: Michigan Molecular Interactions Database –

http://mimi.ncibi.org.
[4] Rapid SQL: http://www.embarcadero.com/products/rapidsql/.
[5] SQL Manager Advanced Query Builder:

http://www.sqlmanager.net/products/tools/querybuilder.
[6] Stylus Studio XQuery Editor:

http://www.stylusstudio.com/xquery_editor.html.
[7] WUFOO: http://www.wufoo.com/.
[8] XMark: http://www.xml-benchmark.org/.
[9] XQuery 1.0: http://www.w3.org/tr/xquery/.

[10] R. Abraham. FoxQ–XQuery by Forms. InHCC, 2003.
[11] E. Augurusa et al. Design and Implementation of a Graphical

Interface to XQuery. InSAC, 2003.
[12] P. Bernstein et al. The Asilomar Report, 1998.
[13] D. Braga, A. Campi, and S. Ceri.XQBE: A visual interface to the

standard XML query language.TODS, 30(2), 2005.
[14] T. Catarci, M. F. Costabile, S. Levialdi, and C. Batini. Visual Query

Systems for Databases: A Survey.Journal of Visual Languages and
Computing, 8(2), 1997.

[15] T. Catarci et al. An Ontology Based Visual Tool for Query
Formulation Support. InECAI, 2004.

[16] T. Catarci and G. Santucci. Query by Diagram: A Graphical
Environment for Querying Databases. InSIGMOD, 1994.

[17] K. Chang, B. He, and Z. Zhang. Toward Large Scale Integration:
Building a MetaQuerier over Databases on the Web. InCIDR, 2005.

[18] J. Choobineh. Formflex: A User Interface Tool for Forms Definition
and Management.Human Factors in Management Information
Systems, 1988.

[19] J. Choobineh et al. A Form-Based Approach for Database Analysis
and Design.CACM, 35(2), 1992.

[20] S. Cohen et al. EquiX–A search and query language for XML.
JASIST, 53(6), 2002.

[21] D. W. Embley. The Natural Forms Query Language.TODS, 1989.
[22] M. Erwig. A Visual Language for XML. InVL, 2000.
[23] H. V. Jagadish et al. TIMBER: A Native-XML Database.VLDB

Journal, 11(4), 2002.
[24] M. Jayapandian and H. V. Jagadish. Automating the Design and

Construction of Query Forms. InICDE, 2006.
[25] P. Mukhopadhyay and Y. Papakonstantinou. Mixing Querying and

Navigation in MIX. In ICDE, 2002.
[26] Y. Papakonstantinou, M. Petropoulos, and V. Vassalos. QURSED:

Querying and Reporting Semistructured Data. InSIGMOD, 2002.
[27] M. Petropoulos, Y. Papakonstantinou, and V. Vassalos. Graphical

query interfaces for semistructured data: the QURSED system.
TOIT, 5(2), 2005.

[28] R. E. Sabin and T. K. Yap. Integrating Information Retrieval
Techniques with Traditional DB Methods in a Web-Based Database
Browser. InSAC, 1998.

[29] A. R. Schmidt et al. The XML Benchmark Project. Technical Report
INS-R0103, CWI, 2001.

[30] A. Sengupta and A. Dillon. Query by Templates: A Generalized
Approach for Visual Query Formulation for Text Dominated
Databases. InADL, 1997.

[31] J. L. Viescas.Microsoft Office Access 2003 Inside Out. 2004.
[32] Z. Zhang, B. He, and K. Chang. Light-weight Domain-based Form

Assistant: Querying Web Databases On the Fly. InVLDB, 2005.
[33] M. M. Zloof. Query-by-Example: the Invocation and Definition of

Tables and Forms. InVLDB, 1975.

