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Abstract

A distributed neural network model called SPEC for processing sentences with recursive relative
clauses is described. The model is based on separating the tasks of segmenting the input word
sequence into clauses, forming the case-role representations, and keeping track of the recursive
embeddings into di�erent modules. The system needs to be trained only with the basic sentence
constructs, and it generalizes not only to new instances of familiar relative clause structures, but to
novel structures as well. SPEC exhibits plausible memory degradation as the depth of the center
embeddings increases, its memory is primed by earlier constituents, and its performance is aided by
semantic constraints between the constituents. The ability to process structure is largely due to a
central executive network that monitors and controls the execution of the entire system. This way,
in contrast to earlier subsymbolic systems, parsing is modeled as a controlled high-level process
rather than one based on automatic reex responses.

1 Introduction

Reading an input sentence into an internal representation is a most fundamental task in natural
language processing. Depending on the �eld of study and the goals involved, it has several alterna-
tive formulations. In Arti�cial Intelligence, parsing a sentence usually means mapping a sequence
of word representations into a shallow semantic interpretation, such as the case-role assignment
of the constituents. The subsymbolic (i.e. distributed neural network) approach to sentence pars-
ing o�ers several promises: it is possible to combine syntactic, semantic, and thematic constraints
in the interpretation, generate expectations automatically, generalize to new inputs, and process
noisy sentences robustly (Elman 1990, 1991a; McClelland and Kawamoto 1986; Miikkulainen 1993;
St. John and McClelland 1990). To a limited extent, it is even possible to train such networks to
process sentences with complex grammatical structure, such as embedded relative clauses (Berg
1992; Jain 1991; Miikkulainen 1990; Sharkey and Sharkey 1992; Stolcke 1990; Weckerly and Elman
1992).

However, it has been very di�cult to build subsymbolic systems that would generalize to new
sentence structures. Current network architectures can be trained to form a case-role representation
of each clause in a sentence like The girl, who liked the dog, saw the boy1, and they will
be able to generalize to di�erent versions of the same structure, such as The dog, who bit the
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girl, chased the cat (Miikkulainen 1990). However, such networks cannot parse sentences with
novel combinations of relative clauses, such as The girl, who liked the dog, saw the boy,

who chased the cat. The problem is that the current distributed neural network architectures
function simply as pattern transformers, and they generalize by interpolating between patterns
on which they were trained. They cannot make inferences by dynamically combining processing
knowledge that was previously associated to di�erent contexts, such as processing a relative clause
at a new place in an otherwise familiar sentence structure. This lack of generalization is a serious
problem, given how e�ortlessly people can understand sentences they have never seen before.

This paper describes SPEC (Subsymbolic Parser for Embedded Clauses), a subsymbolic sentence
parsing model that can generalize to new relative clause structures. The basic idea is to separate
the tasks of segmenting the input word sequence into clauses, forming the case-role representations,
and keeping track of the recursive embeddings into di�erent modules. Each module is trained with
only the most basic relative clause constructs, and the combined system is able to generalize to
novel sentences with remarkably complex structure. Importantly, SPEC is not a neural network
reimplementation of a symbol processor. It is a self-contained, purely distributed neural network
system, and exhibits the usual properties of such systems. For example, unlike symbolic parsers, the
network exhibits plausible memory degradation as the depth of the center embeddings increases,
its memory is primed by the earlier constituents in the sentence, and its performance is aided by
semantic constraints between the constituents.

A signi�cant new aspect of SPEC as a cognitive model is that it controls its own execution. One
of the modules (the Segmenter) monitors the state of the parse and the input word sequence, and
issues control signals to the other networks in the system. This network is responsible for abstracting
the \idea" of a relative clause from the raw training examples and enforcing generalization to novel
clause structures. Such high-level control networks could play a major role in future subsymbolic
cognitive models. Controlled models are not limited to straightforward pattern transformation and
reex behavior like the standard subsymbolic systems; they can potentially account for higher-level
controlled cognitive processes as well.

2 Overview of Subsymbolic Sentence Processing

Sentence processing has been an active area of connectionist research for about a decade. Sub-
symbolic models have been developed to address a variety of issues such as semantic interpreta-
tion, learning syntax and semantics, prepositional phrase attachment, anaphora resolution, active-
passive transformation, and translation (Allen 1987, 1989; Chalmers 1990; Chrisman 1992; Cosic
and Munro 1988; Lee et al. 1990; Munro et al. 1991; Touretzky 1991).

A good amount of work has been done showing that networks can capture grammatical struc-
ture. For example, Servan-Schreiber et al. (1989, 1991) showed how Simple Recurrent Networks
(SRNs; Elman 1990) can learn a �nite state grammar. In an SRN, the pattern in the hidden layer
is copied to the previous-hidden-layer assembly and serves as input to the hidden layer during the
next step in the sequence, thus implementing a sequence memory. The network is trained with ex-
amples of input/output sequences, adjusting all forward weights according to the backpropagation
algorithm (Rumelhart et al. 1986b). Servan-Schreiber et al. trained an SRN with sample strings
from a particular grammar, and it learned to indicate the possible next elements in the sequence.
For example, given a sequence of distributed representations for elements B, T, X, X, V, and V,
the network turns on two units representing X and S at its localist output layer, indicating that in
this grammar, the string can continue with either X or S.
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Elman (1991a, 1991b) used the same network architecture to predict a context-free language
with embedded clauses. The network could not learn the language completely, but its performance
was remarkably similar to human performance. It learned better when it was trained incrementally,
�rst with simple sentences and gradually including more and more complex examples. The network
could maintain contingencies over embeddings if the number of intervening elements was small.
However, deep center embeddings were di�cult for the network, as they are for humans. Weckerly
and Elman (1992) further showed that center embeddings were harder for this network than right-
branching structures, and that processing was aided by semantic constraints between the lexical
items. Such behavior matches human performance very well.

The above architectures demonstrated that distributed networks build meaningful internal rep-
resentations when exposed to examples of strings in a language. They did not address how such
capabilities could be put to use in parsing and understanding language. McClelland and Kawamoto
(1986) identi�ed the sentence case-role assigment as a good approach. Case-role representation is a
common arti�cial intelligence technique for describing the shallow semantic meaning of a sentence.
The idea is loosely based on the theory of thematic case roles (Fillmore 1968; Cook 1989). Each
act is described by the main verb and a set of semantic cases such as agent, patient, instrument,
location, and recipient. The task is to decide which constituents �ll these roles in the sentence. The
approach is particularly well-suited for neural networks because the cases can be conveniently rep-
resented as assemblies of units that hold distributed representations, and the parsing task becomes
that of mapping between distributed representation patterns. McClelland and Kawamoto showed
that given the syntactic role assignment of the sentence as the input, the network could assign
the correct case roles for each constituent. The network also automatically performed semantic
enrichment on the word representations (which were hand-coded concatenations of binary semantic
features), and disambiguated between the di�erent senses of ambiguous words.

Miikkulainen and Dyer (1989, 1991) showed that essentially the same task can be performed
from sequential word-by-word input by a simple recurrent network, and, through a technique called
FGREP (Forming Global Representations with Extended backPropagation), meaningful distributed
representations for the words can be automatically developed at the same time. In FGREP, the
component values are assigned initially randomly within [0; 1] and modi�ed by backpropagation
as part of learning the task. The �nal representations reect how the words are used in the
examples, and in that sense, represent word meanings. Systems with FGREP representations
generally have a strong representation of context, which results in good generalization properties,
robustness against noise and damage, and automatic \�lling in" of missing information. The
FGREP representations can be augmented with ID information, which allows the system to process
a large vocabulary even after learning only a small number of distinct meanings. In this ID+content
approach, representations for e.g. John, Bill, and Mary are created from the FGREP representation
of human by concatenating unique ID patterns in front of it. All these words have the same meaning
for the system, and it knows how to process them even if it has never seen them before (Miikkulainen
and Dyer 1991; Miikkulainen 1993).

St. John and McClelland (1989, 1990) further explored the subsymbolic approach to sentence
interpretation in their Sentence Gestalt model. They aimed at explaining how syntactic, semantic,
and thematic constraints are combined in sentence comprehension, and how this knowledge can be
coded into the network by training it with queries. The gestalt is a hidden-layer representation of the
whole sentence, built gradually from a sequence of input words by a simple recurrent network. The
second part of the system (a three-layer backpropagation network) is trained to answer questions
about the sentence gestalt, and in the process, useful thematic knowledge can be injected into the
system.
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The above three parsing architectures each built a semantic interpretation of the sentence, but
they could not handle grammatically very complex sentences. Several extensions and some com-
pletely new architectures that could do that have been proposed. For example, the CLAUSES
system (Miikkulainen 1990) was an extension of the SRN+FGREP case-role assignment architec-
ture into sentences with multiple clauses. CLAUSES read clause fragments one at a time, brought
together the separated constituents, and concatenated the case-role representations into a compre-
hensive sentence representation in its output layer. CLAUSES was limited both by the rigid output
representation and also by a somewhat surprising lack of generalization into new sentence struc-
tures. On the other hand, Stolcke (1990) showed that if the output representation was made more
exible, the network was likely to forget earlier constituents. The conclusion from these two models
is that straightforward applications of simple recurrent networks are unlikely to be successful in
parsing and representing grammatical structure.

A number of researchers have proposed modular and more structured architectures. In Jain's
(1991) Structured Incremental Parser, one module was trained to assign words into phrases, and
another to assign phrases into case roles. These modules were then replicated multiple times so that
the recognition of each constituent was guaranteed independent of its position in the sentence. In
the �nal system, words were input one at a time, and the output consisted of local representations
for the possible assignments of words into phrases, phrases into clauses, phrases into roles in each
clause, and for the possible relationships of the clauses. A consistent activation of the output units
represented the interpretation of the sentence. The system could interpret complicated sentence
structures, and even ungrammatical and incomplete input. However, it did not build an explicit
representation for the sentence meaning. The parse result was a description of the semantic relations
of the constituents; the constituents themselves were not represented.

Berg's (1992) XERIC and Sharkey and Sharkey's (1992) parser were both based on the idea
of combining a simple recurrent network with a Recursive Auto-Associative Memory (RAAM;
Pollack 1990) that encodes and decodes parse trees. RAAM is a three-layer backpropagation
network trained to perform an identity mapping from input to output. As a side e�ect, the hidden
layer learns to form compressed representations of the network's input/output patterns. These
representations can then be recursively used as constituents in other input patterns. A potentially
in�nite hierarchical data structure, such as a parse tree, can this way be compressed into a �xed-size
representation. The structure can later be reconstructed by loading the compressed representations
into the hidden layer and reading o� the expanded representation at the output.

In Sharkey and Sharkey's model, �rst the RAAM network was trained to form compressed rep-
resentations of syntactic parse trees. Second, an SRN network was trained to predict the next word
in the sequence of words that make up the sentence. Third, a standard three-layer feedforward
network was trained to map the SRN hidden-layer patterns into the RAAM parse-tree represen-
tations. During performance, a sequence of words was �rst read into the SRN, its �nal hidden
layer transformed into a RAAM hidden layer, and then decoded into a parse tree with the RAAM
network. Berg's XERIC worked in a similar manner, except the SRN hidden layer representations
were directly decoded by the RAAM network.

All �ve of the above architectures can parse sentences with complex grammatical structure,
and they can generalize to new sentences where constituents have been substituted with other
familiar constituents. Unfortunately, generalization into new sentence structures is limited. For
example, due to its rigid output representation and excessive context-sensitivity, CLAUSES could
not parse The girl, who liked the dog, saw the boy, who chased the cat, even if it knew
how to process The girl, who liked the dog, saw the boy and The girl saw the boy, who
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Figure 1: The SPEC sentence processing architecture. The system consists of the Parser
(a simple recurrent network), the Stack (a RAAM network), and the Segmenter (a feedforward
network). The gray areas indicate propagation through weights, the solid lines stand for pat-
tern transport, and the dashed lines represent control outputs (with gates). The lines controlling
propagation within the Stack have been omitted.

chased the cat. Jain's architecture is similarly limited because of the �xed hardware constraints;
XERIC and Sharkey and Sharkey's parser because the RAAM architecture generalizes poorly to
new tree structures.

The model described in this paper, SPEC, was especially designed to address the problem
of generalization into new sentence structures. SPEC is a descendant of CLAUSES. The central
component is the familiar simple recurrent network that reads distributed word representations as
its input and generates case-role representations as its output. SPEC's generalization capability is
based on simplifying the SRN's task through three architectural innovations: (1) training the SRN
to generate a sequence of clause case-role representations as its output (like Stolcke 1990) instead of
a single comprehensive representation, (2) introducing a segmenter network that breaks the input
sequence into smaller chunks, and (3) introducing a stack network that memorizes constituents
over intervening embedded clauses. Below, the SPEC architecture is described in detail, and its
performance is demonstrated on an arti�cially-generated corpus of sentences with complex relative
clause structures.

3 The SPEC Architecture

An overview of the architecture is shown in �gure 1. The system receives a sequence of word
representations as its input, and for each clause in the sentence, forms an output representation
indicating the assignment of words into case roles. The case-role representations are read o� the
system and placed in a short-term memory (currently outside SPEC) as soon as they are complete.
The collection of case-role representations constitutes the �nal result of the parse.

SPEC consists of three main components: the Parser, the Segmenter, and the Stack. Below, each
component is described in detail and the reasons for the main architectural choices are explained.
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Figure 2: The Parser network. The �gure depicts a snapshot of the network after it has read
the �rst two words The and girl. The activity patterns in the input and output assemblies consist
of word representations. The input layer holds the representation for the last word, girl, and
the activity pattern at the output represents the (currently incomplete) case-role assignment of
the clause. At this point, it is clear that girl is going to be the agent. The act and the patient
are not known; the patterns in these slots indicate expectations, that is, averages of all possible
alternatives.

3.1 The Parser

The Parser performs the actual transformation of the word sequence into the case-role represen-
tations, and like most of the other parsers described above, it is based on the simple recurrent
network architecture (�gure 2). Words are represented distributively as vectors of gray-scale val-
ues between 0 and 1. The component values are initially assigned randomly and modi�ed by the
FGREP method (Miikkulainen and Dyer 1989, 1991; Miikkulainen 1993) as part of the learning
process. FGREP is a convenient way to form distributed representations for input/output items,
but SPEC is not dependent on FGREP. The word representations could have been obtained through
semantic feature encoding as well (as was done by e.g. McClelland and Kawamoto 1986). SPEC
will even work with random word representations, although some of the advantages of distributed
representations (such as generalization, robustness, and context representation) would not be as
strong.

The case-role assignment is represented at the output of the Parser as a case-role vector (CRV),
that is, a concatenation of those three word representation vectors that �ll the roles of agent,
act, and patient2 in the sentence (�gure 2). For example, the word sequence the girl saw the

boy receives the case-role assignment agent=girl, act=saw, patient=boy, which is represented as
the vector |girl saw boy| at the output of the Parser network. When the sentence consists of
multiple clauses, the relative pronouns are replaced by their referents: The girl, who liked the

dog, saw the boy parses into two CRVs: |girl liked dog| and |girl saw boy|.

The obvious approach for representing multiple CRVs would be to concatenate them into a
single vector at the output of the Parser network. This was the approach taken in CLAUSES

2The representation was limited to three roles for simplicity. More roles could be included if a richer case-role

representation was needed.
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(Miikkulainen 1990). Such representation has two serious limitations:

1. The size of the output layer always poses a hard limit on the number of clauses in the
sentence. If there is space for three CRVs, sentences with four clauses (such as The girl

saw the boy, who chased the cat, who saw the girl, who liked the dog) could not
be parsed without changing the architecture and retraining the entire network.

2. Somewhat less obviously, such representation turns out to be detrimental to generalization.
The network always has to represent the entire sentence in its memory (in the hidden layer).
Every new item in the sequence is interpreted in the context of the entire sequence so far.
CLAUSES learned to recognize certain sequences of act fragments, and to associate a partic-
ular interpretation to each sequence. If there ever was a novel input, such as an additional
tail embedding in the end of an otherwise familiar sequence, the network did not know how
to combine it with its current hidden-layer representation. As a result, CLAUSES could only
process variations of those clause structures it was trained on.

The above problems can be overcome if the network is not required to form a complete sentence
representation at its output. Instead, the network generates the CRV for each clause as soon as the
information for the clause is complete. Another network (or even a symbolic system such as that
of Simmons and Yu 1990) then reads the sequence of complete act representations as its input and
builds a representation for the whole sentence using a exible-size representation technique, such
as tensor-product encoding (Dolan 1989; Smolensky 1990).

This is the approach taken in SPEC. The Parser receives a continuous sequence of input word
representations as its input, and its target pattern changes at each clause boundary. For exam-
ple, in reading The girl, who liked the dog, saw the boy, the target pattern representing
|girl saw boy| is maintained during the �rst two words, then switched to |girl liked dog|

during reading the embedded clause, and then back to |girl saw boy| for the rest of the sen-
tence. The CRV for the embedded clause is read o� the network after dog has been input, and the
CRV for the main clause after the entire sentence has been read.

When trained this way, the network does not have to maintain information about the entire past
input sequence in its memory, making it possible in principle to generalize to new clause structures.
The early words do in fact fade from the memory as more words are read in, but by itself this e�ect
is not strong enough, and needs to be enforced by an additional network (the Segmenter, discussed
in section 3.3). However, even such slight forgetting is strong enough to cause problems with the
center embeddings. After parsing who liked the dog, the network does not remember that it was
the girl who saw the boy. The system needs a memory component external to the parser so
that the top-level parse state can be restored before reading rest of the top-level constituents. This
is the task of the Stack network.

3.2 The Stack

The hidden layer of a simple recurrent network forms a compressed description of the sequence so
far. The Stack has the task of storing this representation at each center embedding, and restoring it
upon return from the embedding. For example, in parsing The girl, who liked the dog, saw

the boy, the hidden-layer representation is pushed onto the stack after The girl, and popped
back to the Parser's previous-hidden-layer assembly after who liked the dog. In e�ect, the SRN
can then parse the top-level clause as if the center embedding had not been there at all.
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Figure 3: The Stack network. This �gure simultaneously illustrates three situations that occur
at di�erent times during the training and the performance of the Stack: (1) A training situation
where the network learns to autoassociate an input pattern with itself, forming a compressed
representation at the hidden layer; (2) A push operation, where a representation in the \Push"
assembly is combined with the empty-stack representation (in the \Stack" assembly) to form a
compressed representation for the new stack in the hidden layer; (3) A pop operation, where the
current stack representation in the hidden layer generates an output pattern with the top element
of the stack in the \Pop" assembly and the representation for the remaining stack (currently empty)
in the \Stack" assembly.

The Stack is implemented as a RAAM network (Pollack 1990) trained to encode and decode
linear lists (�gure 3). The input/output of the Stack consists of the Stack's top element and the
compressed representation for the rest of the stack. Initially the stack is empty, which is represented
by setting all units in the \Stack" assembly to 0.5 (�gure 3). The �rst element, such as the hidden-
layer pattern of the Parser network after reading The girl, is loaded into the \Push" assembly,
and the activity is propagated to the hidden layer. The hidden-layer pattern is then loaded into
the \Stack" assembly at the input, and the Stack network is ready for another push operation.

When the Parser returns from the center embedding, the stored pattern needs to be popped
from the stack. The current stack representation is loaded into the hidden layer, and the activity
is propagated to the output layer. At the output, the \Pop" assembly contains the stored Parser-
hidden-layer pattern, which is then loaded into the previous-hidden-layer assembly of the Parser
network (�gure 1). The \Stack" assembly contains the compressed representation for the rest of
the stack, and it is loaded to the hidden layer of the Stack network, which is then ready for another
pop operation.

RAAM networks usually generalize well into encoding and decoding new instances of familiar
structures, but poorly into processing new structures (Blank et al. 1992; Chalmers 1990; Chrisman
1992; Sharkey and Sharkey 1992). The deeper the structure, the less accurate its representation,
because more and more information will be superimposed on the same �xed-width vector. Fortu-
nately, this is not a major problem for SPEC, because the RAAM network only needs to encode
one type of structure (a linear list), and there are very strong memory limitations in human pro-
cessing of deep embedded structures as well (section 4.3). It should be very easy to train the
RAAM network to model human memory for embedded clauses, and it should generalize well to
new instances.
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Figure 4: The Segmenter network. The Segmenter receives the Parser's hidden-layer pattern
as its input together with the next input word, which in this case is who. The control outputs are
1, 0, 0, indicating that the Parser's hidden-layer representation should be pushed onto the Stack,
the current case-role representation is incomplete and should not be passed on to the output of
the system, and the stack should not be popped at this point. In this case, the Segmenter output
is identical to its input, because the girl is the smallest context that the Parser needs to know
when entering a center embedding.

3.3 The Segmenter

The Parser+Stack architecture alone is not quite su�cient for generalization into novel relative
clause structures. For example, when trained with only examples of center embeddings (such as the
above) and tail embeddings (like The girl saw the boy, who chased the cat), the architecture
generalizes well to new sentences such as The girl, who liked the dog, saw the boy, who

chased the cat. However, the system still fails to generalize to sentences like The girl saw the

boy, who the dog, who chased the cat, bit. The problem is the same as with CLAUSES:
even though the Stack takes care of restoring the earlier state of the parse, the Parser has to learn
all the di�erent transitions into the relative clauses. If it has encountered center embeddings only
at the beginning of the sentence, it cannot generalize to a center embedding that occurs after an
entire full clause has already been read. Even though the Parser is free to \forget" the irrelevant
information in the early sequence, the hidden-layer patterns remain su�ciently di�erent so that its
processing knowledge does not carry over.

The solution is to train an additional network, the Segmenter, to divide the input sequence into
clauses. The segmenter receives the current hidden-layer pattern as its input, together with the
representation for the next input word, and it is trained to produce a modi�ed hidden-layer pattern
as its output (�gure 4). The output is then loaded into the previous-hidden-layer assembly of the
Parser. In the middle of reading a clause, the Segmenter passes the hidden-layer pattern through
without modi�cation. However, if the next word is a relative pronoun, the segmenter modi�es the
pattern so that only the relevant information remains. In the above example, after boy has been
read and who is next to come, the Segmenter generates a pattern similar to that of the Parser's
hidden layer after only The boy in the beginning of the sentence has been input.

In other words, the Segmenter (1) detects transitions to relative clauses, and (2) changes the
sequence memory so that the Parser only has to deal with one type of clause boundary. This
way, the Parser's task becomes su�ciently simple so that the entire system can generalize to new
structures. The Segmenter plays a central role in the architecture. The next section shows that it
is very natural to give the Segmenter a complete control over the entire parsing process.
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3.4 Control

At �rst glance, the control of execution in SPEC seems rather complicated. The activation patterns
propagate between networks in a very speci�c manner, and execution of each network needs to be
carefully timed with respect to what the other networks are doing. However, it is actually very
easy to train the Segmenter to control the parsing process. The Segmenter always sees the current
state of the parse (as encoded in the hidden layer of the Parser network) and the incoming word,
and based on this information, it can control the pathways of the system. There are �ve di�erent
control tasks in the SPEC system:

1. Detecting clause transitions and modifying the sequence memory to remove unnecessary pre-
vious context as described above.

2. Recognizing the end of the sentence, indicated by a blank (all-0) representation in the input
sequence, and subsequently clearing the previous hidden layer (which is all-0 at the beginning
of each sentence). This makes it possible for the system to parse multiple sentences without
an external \reset".

3. Deciding when to push the Parser's hidden-layer representation onto the stack. This requires
opening the pathway from the hidden layer to the \Push" assembly of the Stack, allowing
propagation to the Stack's hidden layer, and transporting the resulting pattern back to the
Stack's input assembly.

4. Deciding when to pop the previous hidden layer from the stack; this task involves allowing
propagation from the Stack's hidden layer to its output layer, transporting the output \Stack"
pattern back to its hidden layer, and opening the pathway from the \Pop" assembly to the
Parser's previous hidden layer.

5. Deciding when the Parser's output CRV is complete, and consequently, opening the output
pathway to the external short-term memory system.

Control is implemented through three additional units at the Segmenter's output (�gure 4).
These are called Push, Pop, and Output, corresponding to the tasks 3, 4, and 5 above. These
units gate the system pathways through multiplicative connections (Pollack 1987; Rumelhart et al.
1986a). The weights on the pathways are multiplied by the output values, so that propagation
only takes place when the output is high. The Segmenter is trained to output 1 for the desired
propagation, and 0 otherwise.

The control implementation in SPEC emphasizes an important point: although much of the
structure in the parsing task is programmed into the system architecture, SPEC is still a self-
contained distributed neural network. In many modular neural network architectures control is
due to a hidden symbolic supervisor. SPEC demonstrates that such external control mechanisms
are not necessary: even a rather complex subsymbolic architecture can take care of its own control
and operate independently of its environment.

4 Experiments

A prototype implementation of SPEC was tested with an arti�cially-generated corpus of relative
clause sentences. The purpose was to evaluate the soundness of the basic ideas, test the cognitive
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S ! NP VP
NP ! DET N | DET N RC
VP ! V NP
RC ! who VP | who NP V
N ! boy | girl | dog | cat
V ! chased | liked | saw | bit
DET ! the

Table 1: The sentence grammar.

Verb Case-role Possible �llers

chased Agent: boy,girl,dog,cat
Patient: cat

liked Agent: boy,girl
Patient: boy,girl,dog

saw Agent: boy,girl,cat
Patient: boy,girl

bit Agent: dog
Patient: boy,girl,dog,cat

Table 2: Semantic restrictions.

plausibility of the model, and get a feeling for the scale-up possibilities of the approach. The
experiments are described below, and some general conclusions drawn from them are presented in
the Discussion section.

4.1 Data

The training and testing corpus was generated from a simple phrase structure grammar depicted
in table 1. This grammar generates sentences where each clause consists of three constituents: the
agent, the verb and the patient. A relative who-clause could be attached to the agent or to the
patient of the parent clause, and who could �ll the role of either the agent or the patient in the
relative clause. In addition to who and the, the vocabulary consisted of the verbs chased, liked,

saw and bit, and the nouns boy, girl, dog and cat.

A number of semantic restrictions were imposed on the sentences. A verb could have only
certain nouns as its agent and patient (see table 2). These restrictions are not necessary to train
SPEC, but they create enough di�erences in the word usage so that their FGREP representations
do not become identical (Miikkulainen and Dyer 1991; Miikkulainen 1993). The main motivation
for the restrictions, however, was to determine whether SPEC would be able to use the semantics
to aid parsing under di�cult conditions. The grammar was used to generate all sentences with
up to four clauses, and those that did not match the semantic restrictions were discarded. The
�nal corpus consists of 49 di�erent sentence structures, with a total of 98,100 di�erent sentences
(table 3).

Since the SPEC architecture divides the sentence parsing task into low-level pattern transfor-
mation, segmentation, and memory, each component needs to see only its own basic constructs
during training. The combined architecture then forces generalization into novel combinations of
these structures. The Parser and the Segmenter need to be able to process the following three types
of sequences:

(1) The girl saw the boy... (top level clause)
(2) ...the girl, who saw the boy,... (who as the agent)
(3) ...the girl, who the boy saw,... (who as the patient).

The Segmenter also needs to see four di�erent types of clause transitions, such as

(1) The girl, who... (top-level center embedding)
(2) ...the girl, who the boy, who... (embedded center embedding)
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Tmpl. #-of-s. Example sentence
1. 20 The girl saw the boy
2. 102 The girl saw the boy, who chased the cat
3. 528 The girl saw the boy, who chased the cat, who saw the girl
4. 2738 The girl saw the boy, who chased the cat, who saw the girl, who liked the dog
5. 2814 The girl saw the boy, who chased the cat, who saw the girl, who the dog bit

* 6. 544 The girl saw the boy, who chased the cat, who the dog bit
7. 2878 The girl saw the boy, who chased the cat, who the dog, who bit the girl, bit
8. 2802 The girl saw the boy, who chased the cat, who the dog, who the girl liked, bit
9. 106 The girl saw the boy, who the dog bit
10. 560 The girl saw the boy, who the dog, who chased the cat, bit
11. 2878 The girl saw the boy, who the dog, who chased the cat, who saw the girl, bit
12. 2962 The girl saw the boy, who the dog, who chased the cat, who the girl chased, bit
13. 544 The girl saw the boy, who the dog, who the girl liked, bit
14. 2898 The girl saw the boy, who the dog, who the girl, who chased the cat, liked, bit
15. 2814 The girl saw the boy, who the dog, who the girl, who the cat saw, liked, bit
16. 106 The girl, who liked the dog, saw the boy
17. 544 The girl, who liked the dog, saw the boy, who chased the cat
18. 2814 The girl, who liked the dog, saw the boy, who chased the cat, who saw the girl
19. 2898 The girl, who liked the dog, saw the boy, who chased the cat, who the dog bit
20. 560 The girl, who liked the dog, saw the boy, who the dog bit
21. 2962 The girl, who liked the dog, saw the boy, who the dog, who chased the cat, bit
22. 2878 The girl, who liked the dog, saw the boy, who the dog, who the boy liked, bit
23. 544 The girl, who liked the dog, who bit the cat, saw the boy
24. 2802 The girl, who liked the dog, who bit the cat, saw the boy, who chased the cat
25. 2878 The girl, who liked the dog, who bit the cat, saw the boy, who the dog bit
26. 2814 The girl, who liked the dog, who bit the cat, who saw the girl, saw the boy
27. 2898 The girl, who liked the dog, who bit the cat, who the boy chased, saw the boy
28. 560 The girl, who liked the dog, who the dog bit, saw the boy
29. 2878 The girl, who liked the dog, who the dog bit, saw the boy, who chased the cat
30. 2962 The girl, who liked the dog, who the dog bit, saw the boy, who the dog bit
31. 2962 The girl, who liked the dog, who the dog, who chased the cat, bit, saw the boy
32. 2878 The girl, who liked the dog, who the dog, who the boy liked, bit, saw the boy
33. 102 The girl, who the dog bit, saw the boy
34. 528 The girl, who the dog bit, saw the boy, who chased the cat
35. 2738 The girl, who the dog bit, saw the boy, who chased the cat, who saw the girl
36. 2814 The girl, who the dog bit, saw the boy, who chased the cat, who the dog bit
37. 544 The girl, who the dog bit, saw the boy, who the dog bit
38. 2878 The girl, who the dog bit, saw the boy, who the dog, who chased the cat, bit
39. 2802 The girl, who the dog bit, saw the boy, who the dog, who the girl liked, bit
*40. 544 The girl, who the dog, who chased the cat, bit, saw the boy
41. 2814 The girl, who the dog, who chased the cat, bit, saw the boy, who liked the girl
42. 2898 The girl, who the dog, who chased the cat, bit, saw the boy, who the girl liked
43. 2802 The girl, who the dog, who chased the cat, who saw the boy, bit, saw the boy
44. 2878 The girl, who the dog, who chased the cat, who the boy chased, bit, saw the boy
45. 528 The girl, who the dog, who the boy liked, bit, saw the boy
46. 2738 The girl, who the dog, who the boy liked, bit, saw the boy, who chased the cat
47. 2814 The girl, who the dog, who the boy liked, bit, saw the boy, who the dog bit
48. 2814 The girl, who the dog, who the boy, who chased the cat, liked, bit, saw the boy
49. 2738 The girl, who the dog, who the boy, who the cat saw, liked, bit, saw the boy

Total 98100

Table 3: The sentence structures. The total number of sentences for each di�erent clause
structure is given together with an example sentence. The di�erent clause structures are referred
to as \sentence templates" below. SPEC was trained with 100 sentences from templates 6 and 40
each (with complete training of the Stack to up to three levels) and it generalized correctly to all
others. Commas are inserted in the examples to help discern the clause boundaries; they were not
part of the actual input.

(3) The girl saw the boy, who... (top-level tail embedding)
(4) ...the girl, who saw the boy, who... (embedded tail embedding),

and examples of the two di�erent types of popping operations:

(1) ...the girl, who saw the boy, liked... (after who as agent)
(2) ...the girl, who the boy saw, liked... (after who as patient).

The Stack needs to handle only a very small number of di�erent types of patterns for pushing and
popping. Either it receives a center embedding at the top level, followed by a number of center
embeddings at deeper levels, such as

(1) The girl, (top-level center embedding)
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who the dog, (�rst deeper center embedding)
who the boy, (second deeper center embedding)
...,

or it receives a number of deeper center embeddings without a preceding top-level embedding:

(2) The girl saw the boy, who the cat, (�rst deeper embedding)
who the dog, (second deeper embedding)
...

Because the Segmenter makes all the clause transitions look the same for the Parser, the rep-
resentations that are pushed on the stack are similar at all levels of embeddings. Therefore, if the
Stack is trained to encode, say, a stack of 15 elements, it should generalize to the 16th push without
any problems. However, three levels of center embeddings is about the most that would occur in
a natural language, and as a result, the architecture cannot really make use of the generalization
capabilities of the Stack. The Stack will not generalize to encoding and decoding a 3-element stack
after it has been trained only up to 2-element stacks, and there is little point in doing that anyway.
It is quite easy to train the Stack to up to 3 levels of embeddings and thereby guarantee that the
Stack is not going to be limiting the generalization capabilities of the system.

The modular structure of SPEC makes it possible to train it e�ciently with a minimal set of
training examples as described above. On the other hand, it is unclear how such training would
map to human learning of language. While the case-role targets could correspond to e.g. visual
images associated with the sentence input, it is not easy to see how the targets for the segmenter,
for example, could be generated by the language acquisition system. Therefore, as it currently
stands, SPEC should be seen primarily as a model of human performance rather than learning.
Learning is essential for putting the model together, and the current implementation shows one
way of doing it e�ciently. Other, cognitively more valid learning mechanisms may be possible, and
will be studied in future research.

4.2 Training Methodology

There is a variety of strategies for training a modular system such as SPEC. They usually lead to
comparable results, but vary in amount of computational and programming e�ort involved, �nal
accuracy, and robustness of the trained system.

One possibility is to train the entire SPEC as a whole, propagating the patterns between modules
as during normal performance. For example, the output of the Stack would be propagated into the
previous-hidden-layer assembly of the Parser as it is, even if it is highly inaccurate during early
training. The advantage is that the modules learn to compensate for each other's errors, and �nal
accuracy may be better. On the other hand, convergence is often slower, because the modules have
to continuously adjust to each other's changing output representations.

If SPEC is to be trained as a whole, a set of templates from table 3 must be selected so that
all the basic constructs are included in the set of sentences. One such set consists of templates 3,
15, and 49. Indeed, trained with 100 randomly chosen examples from each template, the network
correctly generalized to all other sentences in the entire corpus.

On the other hand, each component can be trained separately, with compatible training data
from the same set of examples but without propagating the actual output to the input of the next
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network. For example, after the previous-hidden-layer representation is obtained from the stack, it
is cleaned up (i.e. replaced by the correct representation) before actually loading it into the previous
hidden layer. This way the modules learn more independently, and converge faster. If the Parser
is trained �rst, the Segmenter and the Stack can be trained very e�ciently with the Parser's �nal
hidden-layer patterns. The total training time in CPU cycles is minimized this way. It is also
possible to train the di�erent networks simultaneously on separate machines, thereby minimizing
the wallclock training time. In the end, after the networks have learned to produce output close to
their targets, they can be connected and they will work well together, even �lter out each other's
noise (Miikkulainen 1993).

Training SPEC is not computationally very intensive with this particular corpus, and therefore,
the most convenient training strategy was selected for the experiments reported below. All modules
were trained separately and simultaneously on a single machine, sharing the gradually evolving
word and hidden-layer representations. With this strategy, it is enough to train SPEC only with
templates 6 and 40, because they contain all the basic constructs for the Parser and the Segmenter.
Complete training data for the Stack can be obtained from Parser's hidden layer during the course
of processing sentences 6 and 40.

4.3 Results

The word representations consisted of 12 units. Parser's hidden layer was 75 units wide, that of the
Segmenter 50 units, and that of the Stack 50 units. All networks were trained with plain on-line
backpropagation with 0.1 learning rate and without momentum. The training set consisted of 100
randomly-selected sentences from templates 6 and 40 each. Both the Parser and the Segmenter
developed word representations at their input layers (with a learning rate of 0.001). The Stack was
trained to encode and decode up to three levels of center embeddings.

The convergence was very strong. After 400 epochs, the average error per output unit was 0.019
for the Parser, 0.008 for the Segmenter (0.002 for the control outputs), and 0.003 for the Stack,
while an error level of 0.020 usually results in acceptable performance in similar assembly-based
systems (Miikkulainen 1993). The training took approximately three hours on an IBM RS6000
workstation. The �nal representations, developed by FGREP, reected the word categories very
well.

SPEC's performance was then tested on the entire corpus of 98,100 sentences. The patterns in
the Parser's output assemblies were labeled according to the nearest representation in the lexicon.
The control output was taken to be correct if those control units that should have been active at
1 had an activation level greater than 0.7, and those that should have been 0 had activation less
than 0.3. Measured this way, the performance was excellent: SPEC did not make a single mistake
in the entire corpus, neither in the output words or in control. The average unit error was 0.019
for the Parser, 0.009 for the Segmenter (0.002 for control), and 0.005 for the Stack. There was very
little variation between templates and words within each sentence, indicating that the system was
operating within a safe margin.

The main result, therefore, is that the SPEC architecture successfully generalizes not only
to new instances of the familiar sentence templates, but to new templates as well, which the
earlier sentence processing architectures such as CLAUSES could not do. However, SPEC is not a
mere reimplementation of a symbol processor. As SPEC's Stack becomes increasingly loaded, its
output becomes less and less accurate; symbolic systems do not have any such inherent memory
degradation. An important question is, does SPEC's performance degrade in a cognitively plausible
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manner, that is, does the system have similar di�culties in processing recursive structures as people
do?

There are two ways to elicit enough errors from SPEC to analyze its limitations: (1) it can
be tested during early training, or (2) its memory can be disturbed by noise. In a sense, testing
during training illustrates developmental e�ects, whereas adding noise can be claimed to simulate
overload, stress, cognitive impairment, and lack of concentration situations. Both methods produce
similar results; ones obtained with noise are reported below.

The Stack's performance was degraded by adding 30% noise in its propagation. During encod-
ing, the �nal value hi of the hidden unit i was obtained from ri, the value after correct propagation,
by the transformation

hi = 0:70ri + 0:30X; (1)

where X is a random variable uniformly distributed within [0, 1]. Similarly during decoding, the
output values oi were degraded by

oi = 0:70ci + 0:30X; (2)

where ci is the correct value of unit i. The SPEC system turned out to be remarkably robust
against such degradation. The average Parser error rose to 0.058, but the system still got 94% of
its output words right, with very few errors in control.

As expected, most of the errors occurred as a direct result of popping back from center embed-
dings with an inaccurate previous-hidden-layer representation. For example, in parsing The girl,

who the dog, who the boy, who chased the cat, liked, bit, saw the boy (template 48),
SPEC would have trouble remembering the agents of liked, bit and saw, and patients of liked
and bit. The performance depends on the level of the embedding in an interesting manner. It
is harder for the network to remember the earlier constituents of shallower clauses than those of
deeper clauses (�gure 5). For example, SPEC could usually connect boy with liked, but it was
harder for it to remember that it was the dog who bit and the girl who saw in the above example.

Such behavior seems plausible in terms of human performance. Sentences with deep center
embeddings are harder for people to remember than shallow ones (Blaubergs and Braine 1974;
Blumenthal and Boakes 1967; Foss and Cairns 1970; Larkin and Burns 1977; Miller and Isard
1964; Schlesinger 1968). It is easier to remember a constituent that occurred just recently in the
sentence than one that occurred several embeddings ago. Interestingly, even though SPEC was
especially designed to overcome such memory e�ects in the Parser's sequence memory, the same
e�ect is generated by the Stack architecture. The latest embedding has noise added to it only
once, whereas the earlier elements in the stack have been degraded multiple times. Therefore, the
accuracy is a function of the number of pop operations instead of a function of the absolute level
of the embedding. With the example data, the percentage of correct agents after the �rst pop is
always around 80%, whether that pop occurs after a single embedding (as in template 16), two
embeddings (as in 40), or three (as in 48/49, �gure 5).

When the SPEC output is analyzed word by word, several other interesting e�ects are revealed.
Virtually in every case where SPEC made an error in popping an earlier agent or patient from
the stack it confused it with another noun (54,556 times out of 54,603; random choice would yield
13,650). In other words, SPEC performs plausible role bindings: even if the exact agent or patient
is obscured in the memory, it \knows" that it has to be a noun. The weights of the Parser network
have learned to encode this constraint. Moreover, SPEC does not generate the noun at random.
Out of all nouns it output incorrectly, 75% had occurred earlier in the sentence, whereas a random
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Figure 5: Memory accuracy after return from center embeddings (with 30% noise degra-
dation). The percentage of correctly-remembered agents is plotted after the �rst, second, and the
third pop in sentence templates 48 and 49 (represented by the words boy, dog and girl in the
example sentences of table 3). Each successive pop is harder and harder to do correctly (with
statistical signi�cance t=9:7; df=11; 102; p=10�22, and t=13:1; df=11; 102; p=10�39). Similarly,
SPEC remembers about 84% of the patients correctly after the �rst pop, and 67% after the second
pop.

choice would give only 54%3. It seems that traces for the earlier nouns are discernible in the
previous-hidden-layer pattern, and consequently, they are slightly favored at the output. Such
priming e�ect is rather surprising, but it is very plausible in terms of human performance.

The semantic constraints (table 2) also have a marked e�ect on the performance. If the agent or
patient that needs to be popped from the stack is strongly correlated with the verb, it is easier for
the network to remember it correctly (�gure 6). The e�ect depends on the strength of the semantic
coupling. For example, girl is easier to remember in The girl, who the dog bit, liked the

boy, than in The girl, who the dog bit, saw the boy, which is in turn easier than The girl,

who the dog bit, chased the cat. The reason is that there are only two possible agents for
liked, whereas there are three for saw and four for chased.

A similar e�ect has been observed in human processing of relative clause structures. About
half the subjects in Stolz's (1967) study could not decode complex center embeddings without
semantic constraints. Huang (1983) showed that young children understand embedded clauses
better when the constituents are semantically strongly coupled, and Caramazza and Zurif (1976)
observed similar behavior in aphasics. This e�ect is often attributed to limited capability for
processing syntax. The SPEC experiment indicates that it could be at least partly due to impaired
memory as well. When the memory representation is impaired with noise, the Parser has to
clean it up. In propagation through the Parser's weights, noise that does not coincide with the
known alternatives cancels out. Apparently, when the verb is strongly correlated with some of the
alternatives, more of the noise appears coincidental and is �ltered out.

3The di�erence is statistically signi�cant with t=8:1;df=48; p=10�10.
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Figure 6: E�ect of the semantic restrictions on the memory accuracy (with 30% noise
degradation). The percentage of correctly-remembered agents and patients over the entire corpus
is plotted against how strongly they were semantically associated with the verb. When there was
only one alternative (such as dog as an agent for bit or cat as the patient of chased), SPEC
remembered 95% of them correctly. There was a marked drop in accuracy with two, three and
four alternatives (with signi�cance t=878:3; df=106; 982; p� 0, t=75:3; df=151; 334; p� 0, and
t=28:9; df=106; 982; p�0).

5 Discussion

SPEC is quite insensitive to con�guration and simulation parameters. Many variations were tried
in the experiments, such as hidden layers with 10{75 units, training sets with 200{4,000 sentences,
di�erent templates for training, modifying word representations in the Parser only, not modifying
them at all, �xed learning rates 0.1{0.001 for weights and representations, gradually reducing the
learning rates, training the modules together, and training them separately. All these variations led
to comparable results. Such exibility suggests that the approach is very strong, and there should
be plenty of room for adapting it to more challenging experiments.

Several other observations also indicate that the approach should scale up well. First, as long
as SPEC can be trained with the basic constructs, it will generalize to a very large set of new com-
binations of these constructs. Combinatorial training (St. John 1992) of structure is not necessary.
In other words, SPEC is capable of dynamic inferencing, previously postulated as very di�cult for
subsymbolic systems to achieve (Touretzky 1991). Second, like most subsymbolic systems, SPEC
does not need to be trained with a complete set of all combinations of constituents for the basic
constructs; a representative sample, like the 200 out of 1088 possible training sentences above,
is enough. Finally, with the FGREP mechanism and the ID+content technique (section 2), it is
possible to automatically form meaningful distributed representations for a large number of words,
even to acquire them incrementally, and the network will know how to process them in new situ-
ations (Miikkulainen and Dyer 1991; Miikkulainen 1993). Taken together, the above three points
suggest that strong systematicity in the sense of Hadley (1992; see also Fodor and Pylyshyn 1988)
is possible in distributed connectionist networks. SPEC with the ID+content technique would be
able to parse new sentence structures, new combinations of familiar words, and also new words in
a systematic manner similar to human language users.
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The most immediate direction for future work is to apply the SPEC architecture to a wider
variety of grammatical constructs and to larger vocabularies. Two main issues need to be addressed
in this work:

1. It will be necessary to develop methods for representing the �nal parse result. Currently,
SPEC passes the output CRVs to an unspeci�ed short-term memory system. This system
needs to be made an explicit part of SPEC, preferably in such a way that the sentence
representation can be used by other subsymbolic networks in processing multi-sentential text
and in various reasoning tasks.

2. It might be possible to utilize the interpolation capability and context sensitivity of dis-
tributed neural networks at the level of processing structure. The current SPEC architecture
generalizes to new instances of basic constructs, but generalization to new sentence structures
is built in into the architecture. Perhaps a way can be found to generalize also at the level of
control and segmentation. This way, the system could perform more robustly when the input
is irregular (or ungrammatical), and contains novel basic constructs.

The Segmenter is perhaps the most signi�cant new feature of the SPEC architecture. Most
connectionist systems to date are based on simple propagation through homogenous networks or
between networks of a modular system. As we have seen above, such systems are very good at
dealing with regularities and integrating large amounts of small pieces of evidence, but they do not
easily lend themselves to processing complex knowledge structures and unusual and novel situations.
Such systems are not \conscious" of what they are doing, that is, they do not have representations
concerning the nature of their internal representations and processes. As a result, they cannot
employ high-level strategies in controlling the execution; their behavior is limited to a series of
reex responses.

With a comprehensive high-level monitor and control system, it would be possible to build much
more powerful subsymbolic models. Current systems try to process every input in exactly the same
way, regardless of whether the input makes sense or not. A high-level controller could monitor the
feasibility of the task and the quality of the output, and initiate exception processing when the usual
mechanisms fail. For example, unusual events or ungrammatical input could be detected and then
processed by special mechanisms. The monitor could also clean up internal inaccuracies and keep
the system execution on a stable path. Sequential high-level procedures and reasoning mechanisms
could be implemented, such as comparing alternative interpretations and applying high-level rules
to conclude new information. Equipped with such mechanisms, subsymbolic models would be
able to perform much more robustly in the real world. Eventually, the goal would be to develop a
distributed control system that would act as a high-level \conscious" monitor, similar to the central
executive system in psychological and neuropsychological theories of controlled processes (Baddeley
1986; Cowan 1988; Logan and Cowan 1984; Norman and Shallice 1980; Posner and Snyder 1975;
Schneider and Shi�rin 1977; Shallice 1982, 1988; Shi�rin and Schneider 1977, 1984).

The Segmenter is a �rst step toward implementing such a control system in the connectionist
framework (see also Jacobs et al. 1991; Jain 1991; Schneider and Detweiler 1987; Sumida 1991).
This module monitors the input sequence and the state of the parsing network, and issues I/O
control signals for the Stack memory and the Parser itself at appropriate times. The Segmenter has
a high-level view of the parsing process, and uses it to assign simpler tasks to the other modules.
In that sense, the Segmenter implements a strategy for parsing sentences with relative clauses.
Further developing such control mechanisms in parsing and in other cognitive tasks constitutes a
most exciting direction for future research.
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6 Conclusion

Much of the motivation for SPEC comes from the arti�cial intelligence point of view, that is, by
the desire to build a system that (1) is able to process nontrivial input like symbolic systems,
and (2) makes use of the unique properties of distributed neural networks such as learning from
examples, spontaneous generalization, robustness, context sensitivity, and integrating statistical
evidence. While SPEC does not address several fundamental issues in connectionist natural lan-
guage processing (such as processing exceptions and representing exible structure), it goes a long
way in showing that learning and applying grammatical structure for parsing is possible with pure
distributed networks.

However, even more than an AI system aiming at best possible performance, SPEC is an
implementation of a particular Cognitive Science philosophy. The architecture is decidedly not
a reimplementation of a symbol processor, or even a hybrid system consisting of subsymbolic
components in an otherwise symbolic framework. SPEC aims to model biological information
processing at a speci�c, uniform level of abstraction, namely that of distributed representation on
modular networks. SPEC should be evaluated according to how well its behavior matches that
produced by the brain at the cognitive level. The memory degradation experiments indicate that
SPEC is probably on the right track, and the success of the �rst implementation of a central
executive in generating high-level behavior opens exciting possibilities for future work.

Note

The code and data for the SPEC experiments described in this paper are available through the
World Wide Web at URL http://www.cs.utexas.edu/users/nn, and also by anonymous ftp from
cs.utexas.edu:pub/neural-nets/spec.
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