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We present a metaheuristic called the reactive guided tabu search (RGTS) to solve the heterogeneous fleet multicompartment
vehicle routing problem (MCVRP), where a single vehicle is required for cotransporting multiple customer orders. MCVRP is
commonly found in delivery of fashion apparel, petroleum distribution, food distribution, and waste collection. In searching
the optimum solution of MCVRP, we need to handle a large amount of local optima in the solution spaces. To overcome this
problem, we design three guiding mechanisms in which the search history is used to guide the search. The three mechanisms are
experimentally demonstrated to be more efficient than the ones which only apply the known distance information. Armed with
the guiding mechanisms and the well-known reactive mechanism, the RGTS can produce remarkable solutions in a reasonable
computation time.

1. Introduction

In areas such as delivery of fashion apparel, petroleum dis-
tribution, chemical transportation, food delivery, and waste
recycling, due to the characteristics of the products, vehicles
with multiple separated compartments are indispensable
for delivering to (or picking up from) clients who require
delivery (or pick-up) of more than one (incompatible) type
of product. Routing the vehicles in such multicompartments
environments has gained some attention in the vehicle
routing problem (VRP) circle [1–3] and it is called the
“multicompartment VRP” (MCVRP).

A fixed homogeneous fleet is often assumed in the classic
VRP, and also in the MCVRP. However, many researchers
(e.g., [4–9]) claim that the fleet should be assumed het-
erogeneous because of the following reasons. Firstly, even
though the fleet is very likely homogeneous in the inception
of a distribution company, after a long time in business, the
company tends to own heterogeneous vehicles as a result of
vehicle market changes (they would buy different vehicles
at different costs) and the different depreciation rates of

vehicles [10]. Secondly, it may be wiser for the company to
possess/operate a heterogeneous fleet for business flexibility
since it can meet different needs of clients.

Heterogeneous fleets are particularly common in mul-
ticommodity multicompartment transportation because the
physical structure of multicompartment vehicles is more
complex than ordinary ones. For example, in the trans-
portation of apparel products, products with different styles
and packaging are usually delivered at the same time in
one vehicle. Based on the product characteristics, some
products are hanged on flexible swing rods and some are
packed in boxes.Therefore, the vehicle is reorganized to form
multiple separated “compartments” for each type of product.
Moreover, products such as gas, chemical, and food require
not only separation in multiple compartments, but also
special treatments (e.g., temperature, pressure requirements,
etc.) during transportation, which imply potential technical
differences between vehicles. Therefore, it is natural to con-
sider multicompartment transportation under the setting of
heterogeneous fleet.
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We formalize the heterogeneous fixed fleet multi-
compartment vehicle routing problem (HFFMCVRP) in this
article and propose a tabu search-based algorithm called
the Reactive Guided Tabu Search (RGTS), which allows
a guiding mechanism to collaborate with the well-known
reactive mechanism [11], to tackle this problem. The guid-
ing mechanisms employ constantly-updated search history
of the appearance of arcs in solutions and the objective
values of those solutions in the search to overcome the
problem of a large amount of local optima and an induced
high diversification. We also change the ways of using the
information and compare the resulting different guiding
mechanisms to see the delicacy. Experiments on generated
HFFMCVRP instances show that (1) the collaboration of
guiding mechanism and reactive mechanism significantly
improves the efficiency of tabu search, (2) the guiding mech-
anisms utilizing search history in different ways have similar
efficiency, but they all overwhelm the guiding mechanisms
without utilizing history information.

In the rest of this paper, we review the literature on
two closely related topics, the MCVRP and the HFFVRP,
in Section 2. A formal description of the HFFMCVRP is
given in Section 3. The outline and details of our proposed
algorithm are provided in Section 4. In Section 5, we report
computational results and justify the algorithm. Section 6
gives conclusions.

2. Related Literature

Much of the literature regarding the MCVRP focuses on
dispatching different petroleum products using tank trucks
with isolated compartments (e.g., [12–15]). For environmen-
tal issues, multicompartment vehicles are also used in the
collection of source-separated waste streams (e.g., [16–18]).
Muyldermans and Pang [2] apply a guided local search
algorithm to evaluate the cost savings of cocollection over
single collection in waste collection. El-Fallahi et al. [1] point
out another application involving the distribution of cattle
food to farms, and they first use the term “multicompartment
VRP” to classify such problems. Believing that “the problem
is harder than the VRP and only very small instances can be
solved by commercial MIP solvers,” they develop a memetic
algorithm (MA) and a tabu search (TS) algorithm to tackle
the problem. The MA and TS are evaluated in instances
that were generated from the capacitated VRP benchmark
instances. We note that although very few MCVRP literature
directly focuses on the transportation of chemical and fashion
products, similar to other VRP, the MCVRP is a common
problem for these and many other areas (see, e.g., [19–
21]). Back to the MCVRP, Derigs et al. [3] comprehensively
introduce a solver suite of heuristic components covering a
broad range of alternative methods for construction, local
search, large neighborhood search, and metaheuristics to
solve the MCVRP. Comparisons between these components
are made in order to determine the best composition of
the solver suite. However, in the MCVRP instances gen-
erated by bisecting classic VRP instances, these heuristics
all failed to produce MCVRP solutions of negligible gaps

with respect to the corresponding best-known VRP solutions
(the instance-generating process guarantees that a feasible
VRP solution is also feasible to the MCVRP). This suggests
that the MCVRP is difficult and there is still room for
improvement. Besides, these papers are creditable in that
they are devoted to the problem commonly found in multi-
commodity distribution, but there is one thing missing, that
is, the heterogeneous fleet. Taillard [4] first addresses the
heterogeneous fleet routing issue; noticing that the feasibility
check and the cost evaluation of a move require more
additional effort in the HFFVRP than in the homogeneous
VPRs, he uses a column generation method combined with
adaptive memory programming (AMP) embedded in a TS,
called the heuristic column generation (HCG), to solve the
problem. Though coped with powerful solver CPLEX, the
HCG fails to produce most of the BKS (best-known solution)
unveiled later by other HFFVRP metaheuristics mentioned
below.

Tarantilis et al. [22] propose a list-based threshold
accepting algorithm (LBTA), and Tarantilis et al. [23]
develop a backtracking adaptive threshold accepting algo-
rithm (BATA). Both LBTA and BATA belong to the class
of threshold accepting (TA) algorithms [24]. TA explores
the solution search space by allowing uphill moves using a
threshold value in order to escape premature local optima.
In BATA, the threshold value is not only lowered, but it is
also raised—or backtracked—depending on failure to find
a new solution using the former value; while in LBTA,
a list of values is continually updated and the maximum
value is used to update the threshold during the search.
Tarantilis et al. [25] establish a guided TS (GTS) in which
“bone” (chain of nodes) operations rather than node or
edge operations are considered. The neighborhood search is
then guided by a mechanism that continually modifies the
objective function through penalty along undesired edges
chosen during iterations. Li et al. [5] propose a record-to-
record travel (RTR) algorithm, denoted as the HRTR, for the
HFFVRP. The HRTR alternately applies downhill moves and
record-to-record travel moves in the inner loop, while in the
outer loop the current solution is perturbed by a procedure
of removing and reinserting nodes in order to break through
the local traps. Li et al. [26] develop a heuristic in which a
multistart adaptive memory programming (MAMP) at each
iteration constructs multiple provisional solutions from the
elite pool. This pool is continuously upgraded by a modified
TS. Path relinking is also integrated as an intensification
strategy to enhance the performance of the MAMP. Brandão
[27] designs an elaborated TS that includes several techniques
such as shaking/perturbation, adaptive parameters updating,
postoptimization, and strategic oscillation in order to maxi-
mize the robustness.

Being the MCVRP or the HFFVRP, or other rich VRP,
the algorithms for them are designed to be more and
more complicated and specific to cope with the increasing
complexities of the rich VRP. Intrinsically, the HFFMCVRP
is more complex than the MCVRP and the HFFVRP since
it carries the characteristics of both of them, which leaves
one little choice but metaheuristics when trying to tackle the
HFFMCVRP. Therefore, we propose the RGTS for this task.
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3. Description of the HFFMCVRP

Before we present the algorithm, we describe the HFFM-
CVRP first.

The HFFMCVRP is defined on the undirected network
𝐺 = (𝐿, 𝐸). Vehicles of the same type share the same char-
acteristics. Customers may place several orders requesting
different products, and the orders can be served separately;
that is, the customers can be visited more than once. The
objective of the HFFMCVRP is to seek the routes with the
minimal total transportation cost to serve all the customer
orders by assigning the orders to compartments in different
vehicles such that all capacities and incompatibilities con-
straints are met. The HFFMCVRP can be formulated as an
integer program as follow:

min∑
V∈𝑉

∑

𝑖∈𝐿

∑

𝑗∈𝐿

costV𝑑
𝑖𝑗
𝑏
𝑖𝑗V (1)

s.t.

∑

𝑗∈𝐿
𝑐

𝑏
0𝑗V ⩽ 1, V ∈ 𝑉,

(2)

∑

𝑖∈𝐿

𝑏
𝑖𝑙V = ∑
𝑗∈𝐿

𝑏
𝑙𝑗V, V ∈ 𝑉, 𝑙 ∈ 𝐿, (3)

𝑢
0V = 1, V ∈ 𝑉, (4)

(𝑛 + 1)∑

𝑖∈𝐿

𝑏
𝑖𝑗V ⩾ 𝑢𝑗V, V ∈ 𝑉, 𝑗 ∈ 𝐿

𝑐
, (5)

𝑏
𝑖𝑗V (𝑢𝑖V − 𝑢𝑗V + 1) = 0, V ∈ 𝑉, 𝑖 ∈ 𝐿, 𝑗 ∈ 𝐿

𝑐
, (6)

∑

V∈𝑉
∑

𝑗∈𝐿
𝑐

𝑏
0𝑗V𝑓𝑚 (V) ⩽

󵄨󵄨󵄨󵄨𝑉𝑚
󵄨󵄨󵄨󵄨 , 𝑚 ∈ 𝑀, (7)

∑

𝑜∈𝑂

𝑞
𝑜
𝑥
𝑜V𝑐 ⩽ 𝑄𝑐, V ∈ 𝑉, 𝑐 ∈ 𝐶V, (8)

∑

V∈𝑉
∑

𝑐∈𝐶V

𝑥
𝑜V𝑐 ⩽ 1, 𝑜 ∈ 𝑂, (9)

∑

𝑜∈𝑆
𝑜

𝑗

∑

𝑐∈𝐶V

𝑥
𝑜V𝑐 ⩽ |𝑂|∑

𝑖∈𝐿

𝑏
𝑖𝑗V, V ∈ 𝑉, 𝑗 ∈ 𝐿

𝑐
, (10)

∑

𝑜∈𝑆
𝑜

𝑝

𝑥
𝑜V𝑐 ⩽ |𝑂| 𝑦𝑝V𝑐, 𝑝 ∈ 𝑃, V ∈ 𝑉, 𝑐 ∈ 𝐶V, (11)

𝑦
𝑝V𝑐 = 0, (𝑝, 𝑐) ∈ 𝐼

2
, V ∈ 𝑉, 𝑐 ∈ 𝐶V, (12)

𝑦
𝑝V𝑐 + 𝑦𝑞V𝑐 ⩽ 1, (𝑝, 𝑞) ∈ 𝐼

1
, V ∈ 𝑉, 𝑐 ∈ 𝐶V, (13)

𝑏
𝑖𝑗V ∈ {0, 1} , 𝑖 ∈ 𝐿, 𝑗 ∈ 𝐿, V ∈ 𝑉, (14)

𝑢
𝑖V ∈ {0, 1, . . . , 𝑛 + 1} , 𝑖 ∈ 𝐿, V ∈ 𝑉, (15)

𝑥
𝑜V𝑐 ∈ 𝑗 {0, 1} , 𝑜 ∈ 𝑂, V ∈ 𝑉, 𝑐 ∈ 𝐶V, (16)

𝑦
𝑝V𝑐 ∈ {0, 1} , 𝑝 ∈ 𝑃, V ∈ 𝑉, 𝑐 ∈ 𝐶V. (17)

Objective (1) aims at minimizing the total travel cost.
Constraint (2) ensures that all vehicles depart at most once
from depot 0. Constraint (3) ensures that if a vehicle arrives
at a location, then it must leave from this location afterward.
Constraints (2)-(3) make sure that a vehicle tour must always
start and end at depot 0. Constraint (4) enforces the location
of depot 0 at position 1. Constraint (5) makes sure that if
node 𝑗 is never visited by vehicle V, its position will be
𝑢
𝑗V = 0. Constraint (6) imposes the condition that the

position of node 𝑗 is just higher than the position of node 𝑖,
if vehicle V travels from 𝑖 to 𝑗. Constraints (4)–(6) complete
the subtour elimination. Constraint (7) sets a limit on the
number of vehicles available, where 𝑓

𝑚
(V) = 1 if vehicle

V is of type 𝑚, otherwise 0. Constraint (8) states that the
goods loaded into compartment 𝑐 on vehicle V must not
exceed the compartment capacity 𝑄

𝑐
. Constraint (9) ensures

that each order is assigned to exactly one compartment
of a vehicle. Constraint (10) imposes the restriction that
a vehicle must visit customer 𝑗 if any orders from 𝑗 are
assigned to the vehicle. Constraint (11) makes sure that the
total order number of a product in a compartment cannot
exceed the total order number of a product. Constraints (12)-
(13) describe the incompatibilities and (14)–(17) indicate the
decision variables.

4. The Proposed RGTS Algorithm

In our RGTS algorithm, we first obtain an initial feasible
solution through a simple procedure. This solution is subse-
quently improved by a number of well-known operators in
the TS framework. In order to seek better quality solutions,
we applied a reactive mechanism and a guided mechanism to
strengthen the TS.

4.1. Constructing the Initial Solution. First, a void route is
generated for each vehicle in the fleet (e.g., for a fleet
consisting of three type-A vehicles and two type-B vehicles,
five dedicated routes denoted as “A, A, A, B, B” will be
generated). Then, following Procedure 1, a feasible initial
solution can be generated (not necessarily, but for all our tests,
it happened to be so) (see Figure 1).

Procedure 1. Construction of the initial solution is as follows.

(1) Sort all the orders in ascending order according to the
demand.

(2) While there are unserved orders, find the closest one
𝑜 to the depot. According to the relationship 𝐼

2
, find

𝑐 = arg min{𝑄
𝑐
− 𝑞
𝑜
| 𝑄
𝑐
⩾ 𝑞
𝑜
}, and assign 𝑜 to 𝑐 (i.e.,

add 𝑜 to the end of route 𝑙
𝑐
of 𝑐).

(3) One by one, insert the sorted orders into route 𝑙
𝑐

using least-cost insertion while maintaining route
feasibility.

(4) Update𝑄
𝑐
and repeat steps (2)-(3) until all orders are

served.
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Using least-cost insertion to insert the ordered 

feasibility

Initial 

that is,

solutions Yes
No

ascending order according to qo

Update On

Sort all o ∈ On = O in

o = arg mino{d0j𝑜 | o ∈ On}

Assign o to c, route lc

On = On − {o}

orders o ∈ On into route lc while maintaining route

c = arg minc{Qc − qo | Qc ⩾ qo, (p
o, c) ∉ I2}

On = ∅

Figure 1: Flow chart of Procedure 1.

4.2. Operators and Neighborhood Reduction Strategy. Oper-
ators define the local search moves. We implement sev-
eral well-known operators. Specifically, for an interroute
operation, we use 2-opt∗, 1-0 move (interrelocate), 1-1 move
(interswap), and 2-1 move (three-point move), while for an
innerroute operation, we use swap, relocate, and 2-opt. Note
that the nodes in a route nowmean order nodes, not customer
nodes.

Due to the high complexity of theVRPs, evenmetaheuris-
tics may require a significant amount of computation when
solving medium/large-scale problems. Accordingly, there is
nearly a consensus (e.g., [5, 28]) that one should implement
the so-called neighborhood reduction strategy to focus on
desirable neighborhoods so as to reduce computation. In our
mechanism, a nontabu move is allowed only if it connects
edge (𝑜

𝑖
, 𝑜
𝑗
) such that the owner of 𝑜

𝑖
, customer 𝑖, is a

neighbor of the owner of 𝑜
𝑗
, customer 𝑗; that is,

𝑑
𝑖𝑗
⩽ 𝛿 ⋅ avg

𝑖
, 𝑑

𝑖𝑗
⩽ 𝛿 ⋅ avg

𝑗
, (18)

where 𝛿 is a small number used to define the limit of
neighborhoods and avg

𝑖
is the average distance of all edges

(of customer nodes) starting from 𝑖.

4.3. Guiding Mechanism. A guiding mechanism is a system-
atic method that continuously identifies low-quality features
and tries to reject them by penalizing them in the objective
function so as to guide the search into unexplored domains
of the solution space. In routing problems or shortest path
problems, it is common to define long edges as low-quality
features. A long edge is more likely to be selected according
to a utility function and then to be penalized by adding an
extra value to its original distance; as a result, this edge can
be highly possibly avoided in future search. Voudouris and
Tsang [29] first introduce a guiding mechanism into the local
search when solving the traveling salesman problem. Every
time the local search falls in a local optima 𝑆∗, the edge

𝜁 = (𝑖
∗
, 𝑗
∗
) in 𝑆

∗ corresponding to the maximum value
of utility function 𝑈(𝑖, 𝑗) = 𝑑

𝑖𝑗
/(1 + 𝑝

𝑖𝑗
) is penalized as

𝑑
󸀠

𝜁
= 𝑑
𝜁
+ 𝑝
𝜁
⋅ 𝜆, where 𝑝

𝜁
indicates the times that

edge 𝜁 has been penalized and 𝜆 is an experimentally valued
parameter that defines the strength of penalties. Tarantilis
et al. [25] introduce another guiding mechanism into the
tabu search (the guided tabu search, GTS) and successfully
applied it to the HFFVRP. A parameter 𝑔𝑢𝑖𝑑𝐹𝑟𝑒𝑞 is used
to switch on/off the guiding mechanism; that is, during
every 𝑔𝑢𝑖𝑑𝐹𝑟𝑒𝑞 iterations, an edge in the current solution
is selected according to utility function 𝑈(𝑖, 𝑗) = 𝑑

𝑖𝑗
/[(1 +

𝑝
𝑖𝑗
) ⋅ AVG

𝑖𝑗
] and penalized as 𝑑󸀠

𝜁
= 𝑑
𝜁
+ 𝑝
𝜁
⋅ 𝜆 ⋅ AVG

𝜁
,

where AVG
𝑖𝑗
is the average length of all edges beginning

from locations 𝑖 and 𝑗 in the edge set 𝐸 and 𝑑
󸀠

𝜁
is only

used for 2 × 𝑔𝑢𝑖𝑑𝐹𝑟𝑒𝑞 iterations, and the original one is
then substituted back.This allows some self-correction in the
algorithm because a “bad” edge can have a second chance to
become “good,” since “bad” and “good” are defined by the
somewhat näıve utility function. Tarantilis et al. [25] claim
that their utility function considers not only the distance 𝑑

𝑖𝑗
,

but also the relative positions of 𝑖 and 𝑗 according to the rest of
the customer population (i.e., AVG

𝑖𝑗
), which leads to a more

balanced edge selection.
Edge selection determined by utility function plays a

key role in the guiding mechanism because a poor selection
would turn guiding intomisleading. In the above two guiding
mechanisms, such misleading may be avoided by decreasing
the utility function values of edges that have been penalized
many times before. That is, the edges of higher values
of 𝑝
𝑖𝑗
have smaller values of 𝑈(𝑖, 𝑗), so the selection will

not be restricted on a small set of edges. However, except
for 𝑝
𝑖𝑗
, other factors in those utility functions (viz., AVG

𝑖𝑗

and 𝑑
𝑖𝑗
) are predetermined characteristics of the problems,

thus containing no information about the evolution of the
search that might serve as useful memories. To utilize such
renewable information about the evolution of the search, we
introduce a matrix 𝐴𝑝𝑝𝑟

(𝑛
󸀠
+1)×(𝑛

󸀠
+1)

to collect information
about the appearance of edges in sound solutions. At the
beginning, every𝐴𝑝𝑝𝑟

𝑖𝑗
is set to one and is updated each time

an operator returns a local optima 𝑠∗; that is, for every edge in
𝑠
∗, if𝑓(𝑠

𝑏
) < 𝑓(𝑠

∗
), renew𝐴𝑝𝑝𝑟

𝑖𝑗
= 𝐴𝑝𝑝𝑟

𝑖𝑗
+𝑓(𝑠
𝑏
)/𝑓(𝑠
∗
), oth-

erwise𝐴𝑝𝑝𝑟
𝑖𝑗
= min{𝐴𝑝𝑝𝑟

𝑖𝑗
−𝑓(𝑠
𝑏
)/𝑓(𝑠
∗
), 1}, where 𝑠

𝑏
is the

incumbent best-found solution. By applying𝐴𝑝𝑝𝑟
(𝑛
󸀠
+1)×(𝑛

󸀠
+1)

,
we are able to propose amore “just” utility functionwhich uti-
lizes historic search information to evaluate the edges better.
Note that in step (2) of Procedure 2, we reset𝐴𝑝𝑝𝑟

(𝑛
󸀠
+1)×(𝑛

󸀠
+1)

to its default state, a unit matrix, if the search is considered
to be in the chaos. Thus, it allows further self-correcting
opportunity. It also serves as an important link between the
guiding mechanism and the reactive mechanism.

Three utility functions are given in (19). They all contain
the matrix 𝐴𝑝𝑝𝑟 but differ in using other predetermined
characteristics of the problems, 𝑑

𝑖𝑗
and AVG

𝑖𝑗
(note that

distance between two orders is distance between their corre-
sponding customers). Function 𝑈

1
can be considered as the

most comprehensive function, while 𝑈
2
as the purest and 𝑈

3

as the modest. In all utility functions, the more often the edge
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(𝑖, 𝑗) appears in good solutions, the higher the value of𝐴𝑝𝑝𝑟
𝑖𝑗

is, leading to a smaller value of𝑈(𝑖, 𝑗), hence a less possibility
of edge (𝑖, 𝑗) being selected and penalized;

𝑈
1
(𝑖, 𝑗) =

𝑑
𝑖𝑗

(1 + 𝑝
𝑖𝑗
) ⋅ AVG

𝑖𝑗
⋅ 𝐴𝑝𝑝𝑟

𝑖𝑗

,

𝑈
2
(𝑖, 𝑗) =

1

(1 + 𝑝
𝑖𝑗
) ⋅ 𝐴𝑝𝑝𝑟

𝑖𝑗

,

𝑈
3
(𝑖, 𝑗) =

𝑑
𝑖𝑗

(1 + 𝑝
𝑖𝑗
) ⋅ 𝐴𝑝𝑝𝑟

𝑖𝑗

.

(19)

Note that we use the standard penalty term 𝑑
󸀠

𝜁
= 𝑑
𝜁
+ 𝑝
𝜁
⋅ 𝜆

for all utility functions. Our proposed guiding mechanism is
sketched out in Procedure 2 (see Figure 2).

Procedure 2. The guiding mechanism is as follows.

𝑠
∗ is the local optima returned by an operator
(1) Update 𝐴𝑝𝑝𝑟

𝑛×𝑛

(2) If 𝑔𝑢𝑖𝑑 = 𝑔𝑢𝑖𝑑𝐹𝑟𝑒𝑞
select edge 𝜁 = (𝑖∗, 𝑗∗) = arg max

(𝑖,𝑗)∈𝑠
∗𝑈(𝑖, 𝑗),

penalize edge by 𝑑󸀠
𝜁
= 𝑑
𝜁
+ 𝑝
𝜁
⋅ 𝜆 for 2 × 𝑔𝑢𝑖𝑑𝐹𝑟𝑒𝑞

iterations
𝑔𝑢𝑖𝑑 = 0;
else
𝑔𝑢𝑖𝑑 = 𝑔𝑢𝑖𝑑 + 1.

4.4. Reactive Mechanism. The reactive TS (RTS) is first
proposed by Battiti and Tecchiolli [11]. The primary feature
of their RTS is the reactive mechanism for adapting the
tabu tenure, or tabu list size 𝑇𝐿, to the evolution of the
search in order to free the search trajectory from a limited
part of the search space, instead of entirely avoiding closed
search cycles or repetitions. The RTS has been successfully
applied to the VRP, with a few modifications (e.g., [30–32]).
They demonstrate the robustness of the RTS and the limiting
effect of parameter changes.Therefore, we apply the standard
routine of the RTS with an additional modification: turning
on/off the neighborhood reduction strategy and resetting a
matrix used in the guiding mechanism (step (2) of Procedure
3) to default state. The reactive mechanism is described in
Procedure 3 and the parameters are described in parameters
section (see Figure 3).

Procedure 3. The reactive mechanism is as follows.

𝑠
∗ is the local optima returned by an operator.
(1) 𝑇𝐿𝐿𝑎𝑠𝑡𝐶ℎ = 𝑇𝐿𝐿𝑎𝑠𝑡𝐶ℎ + 1; 𝑖𝑡𝑟 = 𝑖𝑡𝑟 + 1.

If 𝑓(𝑠∗) ∈ 𝐿𝑇𝐿,

𝑅𝑒𝑝𝑡𝑃 = 𝑖𝑡𝑟; 𝑖𝑡𝑟 = 0; 𝑅𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑅𝐶𝑜𝑢𝑛𝑡𝑒𝑟 + 1;

else

Update Apprn×n

guid = guidFreq

𝜁 = (i∗, j∗) = arg max(i,j)∈s∗U(i, j)
For the next 2×guidFreq iterations,

use d󳰀𝜁 = d𝜁 + p𝜁 · 𝜆 instead;

guid = 0

guid = guid + 1

Yes
No

Figure 2: Flow chart of Procedure 2.

TLLastCh = TLLastCh + 1
itr = itr + 1

f(s∗) ∈ LTL
No

No

Yes

Yes

No
Yes

No
Yes

Yes

ReptP = itr, itr = 0

RCounter = RCounter + 1

RCounter > REP

Chaotic = Chaotic + 1, RCounter = 0

Chaotic > Chaos

Chaotic = 0, Turn𝛿 = false

Turn𝛿 = true

Appr(n󳰀+1)×(n󳰀+1) = 1(n󳰀+1)×(n󳰀+1)

ReptP < MaxP

TL = TL × Inc, TLLastCh = 0
Mo
eA
g = 0.1 × ReptP + 0.9 × Mo
eA
g

TLLastCh > Mo
eA
g

TL = TL × Dec, TLLastCh = 0

Figure 3: Flow chart of Procedure 3.

𝑇𝑢𝑟𝑛𝛿 = 𝑡𝑟𝑢𝑒; go to (4).

(2) If 𝑅𝐶𝑜𝑢𝑛𝑡𝑒𝑟 > 𝑅𝐸𝑃,

𝐶ℎ𝑎𝑜𝑡𝑖𝑐 = 𝐶ℎ𝑎𝑜𝑡𝑖𝑐 + 1; 𝑅𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 0;

if 𝐶ℎ𝑎𝑜𝑡𝑖𝑐 > 𝐶ℎ𝑎𝑜𝑠,
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𝐶ℎ𝑎𝑜𝑡𝑖𝑐 = 0; 𝑇𝑢𝑟𝑛𝛿 = 𝑓𝑎𝑙𝑠𝑒; 𝐴𝑝𝑝𝑟
(𝑛
󸀠
+1)×(𝑛

󸀠
+1)

=

1
(𝑛
󸀠
+1)×(𝑛

󸀠
+1)

.
(3) If 𝑅𝑒𝑝𝑡𝑃 < 𝑀𝑎𝑥𝑃,
𝑇𝐿 = 𝑇𝐿 × 𝐼𝑛𝑐; 𝑇𝐿𝐿𝑎𝑠𝑡𝐶ℎ = 0;
𝑀𝑜V𝑒𝐴V𝑔 = 0.1 × 𝑅𝑒𝑝𝑡𝑃 + 0.9 ×𝑀𝑜V𝑒𝐴V𝑔.
(4) If 𝑇𝐿𝐿𝑎𝑠𝑡𝐶ℎ > 𝑀𝑜V𝑒𝐴V𝑔,
𝑇𝐿 = 𝑇𝐿 × 𝐷𝑒𝑐; 𝑇𝐿𝐿𝑎𝑠𝑡𝐶ℎ = 0.

In Procedure 3, note that 𝑓(𝑠) ∈ 𝐿𝑇𝐿 implies that we use
another list 𝐿𝑇𝐿 containing the objective values of former
best-found solutions to help detect repetition; namely, a
repetition is detected if 𝑓(𝑠∗) has been reached before, even
if 𝑠∗ is a new solutionwith different structure. In other words,
the “repetition” is a harsh one here. In addition to the dynamic
change of tabu tenure, the second feature of RTS is the “escape
procedure,” which is activated when the search is considered
to be drowning in chaos, that is, when 𝐶ℎ𝑎𝑜𝑡𝑖𝑐 > 𝐶ℎ𝑎𝑜𝑠.
Unlike the escape procedure of Battiti and Tecchiolli [11],
which consists of a series of random moves, we use 𝑇𝑢𝑟𝑛𝛿
as a switch to turn off the neighborhood reduction strategy
in order to free the search from a restricted area of solution
space; the neighborhood reduction strategy is turned back
on itself if the repetition is not detected in the next iteration.
Moreover, the matrix used in the guiding mechanism is set to
the default state; that is, 𝐴𝑝𝑝𝑟

(𝑛
󸀠
+1)×(𝑛

󸀠
+1)

= 1
(𝑛
󸀠
+1)×(𝑛

󸀠
+1)

, so as
to provide more opportunities of self-correction mentioned
in last subsection. Now we present the framework of our
algorithm in Figure 4.

5. Computational Results

Our proposed algorithm was programmed in Visual Studio
2008 C# and executed on a laptop with Intel (R) Pentium
(R) Dual CPU at 1.32GHz, 1 GB of RAM in Windows XP. To
the best of our knowledge, no instances are publicly available
for the HFFMCVRP; therefore, we generate test instances
based on the existing HFFVRP instances, which themselves
are generated from classic VRP instances.

5.1. The HFFMCVRP Instances Sets. The well-known
HFFVRP benchmark instances set, the “T-8” set, in Taillard
[4], numbered from 13 to 20, is modified to generate our
instances. The generating procedure is basically the same
as the ones used in El-Fallahi et al. [1] and Muyldermans
and Pang [2], which can be summarized as creating two
compartments of same capacity or bisecting the capacity
of each vehicle and the demand of each customer. As
a result, there are two products; each client orders the
same amounts of them (consider complementary or
correlated products, e.g., two types of petroleum); each
vehicle has two compartments; product 𝑖 = 1, 2 must be
delivered in compartment 𝑖 = 1, 2 of whichever vehicle. The
characteristics of the generated instances (called TC-8) are
summarized in Table 1.

The benefit of such generating procedure is that the
BKSs of T-8 can serve as benchmarks or target solutions for
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2-1 move
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2-opt

Yes
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Itr ⩽ MaxNoImp

i

Go to next operator
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moves of operator

1

2

3

4

5

6

7

Output sb

si initial solution

sc current solution

sb best-found solution

sc = si; sb = si

sb

Figure 4: Framework of the RGTS.

algorithms solving TC-8 since feasible T-8 solutions are also
feasible TC-8 solutions (the two orders of every customer
are shipped together). Besides, the TC-8, though not real
life instances, may be representative of them to some extent.
For example, in medium sized cities such as Dalian in
China, a major oil company typically has around 100 regular
customers and 10–20 vehicles, which may be represented by
instances 17–20, while the number of customers and number
of vehicles in apparel products delivery, food delivery, and
waste recycling can be small or big, dependent on the size
of the related company/sector (e.g., supermarket or store,
common solid waste, or toxic waste). In such cases, instances
13–16 are somewhat representative.

Intuitively, the bisection of a T-8 instance with 𝑛 customer
nodes results in a TC-8 instance with 𝑛󸀠 = 2𝑛 order nodes—
in other words, 2𝑛2 + 𝑛 edges in its corresponding graph
while there are only (𝑛2 + 𝑛)/2 edges in the graph of the T-
8 instance. This fact indicates that a TC-8 instance should
have a much larger search space and more local traps than
its corresponding T-8 instance.

5.2. Parameter Tuning. Like many other metaheuristics, the
RGTS employs a variety of parameters that require a tuning
procedure in order to achieve the optimum balance between
computational effort and solution quality. Observing the
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Table 1: Characteristics of TC-8 derived from T-8.

TC-8 𝑛
󸀠 Type A Type B Type C Type D Type E Type F

Property A Property B Property C Property D Property E Property F
13 100 10, 1.0, 4 15, 1.1, 2 20, 1.2, 4 35, 1.7, 4 120, 2.5, 2 200, 3.2, 1
14 100 60, 1.0, 4 80, 1.1, 2 150, 1.4, 1 — — —
15 100 25, 1.0, 4 50, 1.6, 3 80, 2, 2 — — —
16 100 20, 1.0, 2 40, 1.6, 4 70, 2.1, 3 — — —
17 150 25, 1.0, 4 60, 1.2, 4 100, 1.5, 2 175, 1.8, 1 — —
18 150 10, 1.0, 4 25, 1.3, 4 50, 1.9, 2 75, 2.4, 2 250, 2.9, 1 400, 3.2, 1
19 200 50, 1.0, 4 100, 1.4, 3 150, 1.7, 3 — — —
20 200 30, 1.0, 6 70, 1.7, 4 100, 2, 3 — — —
𝑛
󸀠: number of orders; Type A–F: vehicle types; Property A–F: capacity of each compartment, variable cost per unit of vehicles, and number of vehicles available.

success of RTS in several cases [30–33], we boldly follow the
similar parameter settings regarding the reactive mechanism
as found in literature. To be prudent, we also carried out
extensive tests and finally reached the ones in Table 2. Note
that the initial value of 𝑇𝐿 is set to be 𝑛󸀠/2 rather than “1”
in standard RTS to avoid meaningless adjustment of tabu
list size during early-stage iterations. As for the parameters
regarding the guiding mechanism, we varied them within
relatively wide ranges and tested RGTS’s performance on
five randomly generated instances. More specifically, the
candidate values of 𝑔𝑢𝑖𝑑𝐹𝑟𝑒𝑞 are {1, 2, . . . , 10}, and the can-
didate values of 𝜆 are {0.1, 0.2, . . . , 1}. Other parameters, after
intensive tests, are summarized in Table 2.

5.3. Results on TC-8. We have defined three different utility
functions above, and now we want to see how they affect
the efficiency of the guiding mechanism before we test the
RGTS. We conduct comparisons between algorithms with
different guiding mechanisms (i.e., different utility functions
and penalty terms) and without reactive mechanisms, and
the results are shown in Table 3. The first row lists different
guidingmechanisms,where “VT” represents themechanisms
using the utility function and penalty term proposed by
Voudouris and Tsang [29] and “T” represents the one
proposed by Tarantilis et al. [25], while “U1,” “U2,” and
“U3” are mechanisms with utility functions 𝑈

1
, 𝑈
2
, and 𝑈

3
,

respectively, and the standard penalty term. Other aspects
such as the construction procedure, the operators, and the
algorithmic routines are defined in Section 4. “OV” stands
for the best objective values reached by the algorithms and
“CPU” indicates the required running times in seconds.

Table 3 shows that mechanisms “VT” and “T” are out-
performed by “U1,” “U2,” and “U3,” which all take 𝐴𝑝𝑝𝑟
into account. This suggests that utilizing the search history
information does improve a guiding mechanism’s efficiency.
However, the results obtained by “U1,” “U2,” and“U3” are
quite close, indicating that once search history information
is used to help select undesired edges, edge distance does
not matter that much. In fact, it is the “U2” without taking
account of any distance information but only search history
information returns the best results. After all, edges with long
distance are not necessarily undesirable. Fromnowon,we use
“U2” without further statements.

Table 2: Parameter settings of RGTS.

Parameters Value
REP 3
Chaos 3
Inc 1.1
Dec 0.9
Max𝑃 50
𝛿 1.0
MaxNoImp 50
GuidFreq 5
𝜆 0.1
TL 𝑛

󸀠/2

To visualize the diversification effect and the effectiveness
of the guiding mechanism, we provide Figure 5 to demon-
strate the progress of TS with (black line) and without (grey
line) the use of the guidingmechanism for Problem 19 of TC-
8. It is obvious that without the guidingmechanism, the basic
TS (to keep it running longer, the𝑀𝑎𝑥𝑁𝑜𝐼𝑚𝑝 is set to 100)
is trapped after a few iterations and is unable to escape. In
contrast, with the guiding mechanism the algorithm seems
to be skillful in avoiding local optima and finally leads to a
better solution. Similar results are observed in tests of other
problems.

The HFFMCVRP is so complex that even the algorithm
with “U2” is unable to unveil TC-8 solutions very close to
the best-known solutions of the HFFVRP benchmark T-8.
So we allow the guiding mechanisms to collaborate with
the well-known reactive mechanism (RGTS) and see if such
collaboration results in repulse or intimacy between these
two mechanisms. In Table 4, we compare RGTS with its
reduced versions, that is, TSwithout either guiding or reactive
mechanisms (TS), TS with only reactive mechanism (TS-R),
and TS with only guiding mechanism (TS-G).

Table 4 clearly supports that the two mechanisms can
coexist and supplement each other. The collaboration of two
mechanisms yields the most (average 4.86%) improvement
over the basic TS. Note that compared to the BKS of T-8
(see Table 5), the RGTS produces solutions to TC-8 with an
average gap 4.06%. Though it is not a small gap, we content
with it since TC-8 has quite different structure from T-8
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Table 3: Comparisons of guiding mechanisms on TC-8.

TC-8 VT T U1 U2 U3
OV CPU OV CPU OV CPU OV CPU OV CPU

13 1711.68 44 1637.85 58 1588.97 93 1588.97 99 1588.97 85
14 735.16 52 650.91 77 713.75 95 718.90 73 713.75 106
15 1059.11 62 1054.19 65 1043.57 89 1076.14 95 1043.57 91
16 1248.98 41 1207.07 56 1175.01 64 1173.31 82 1263.66 41
17 1170.58 255 1145.69 572 1169.44 166 1169.44 241 1169.44 237
18 2033.98 538 2085.99 452 2036.12 248 1972.22 612 2007.50 610
19 1220.33 1018 1224.31 1170 1197.53 2167 1200.56 1095 1197.53 1746
20 1675.80 359 1711.13 837 1711.00 573 1651.32 1116 1662.58 605
Average 1356.95 296 1339.64 410 1329.42 436 1318.86 426 1330.88 440

Table 4: Comparison of RGTS and its reduced versions on TC-8.

TC-8 TS TS-R TS-G RGTS
OV CPU OV Gap CPU OV Gap CPU OV Gap CPU

13 1588.97 81 1686.08 6.11 45 1588.97 0.00 99 1560.97 −1.76 155
14 730.07 103 652.13 −10.68 206 718.9 −1.53 73 625.06 −14.38 148
15 1076.15 118 1077.11 0.09 84 1076.14 0.00 95 1025.76 −4.68 168
16 1225.80 82 1203.39 −1.83 68 1173.31 −4.28 82 1168.25 −4.69 80
17 1169.44 304 1156.89 −1.07 475 1169.44 0.00 241 1114.63 −4.69 725
18 2036.12 329 2013.31 −1.12 421 1972.22 −3.14 612 1939.85 −4.73 908
19 1197.53 1978 1212.17 1.22 790 1200.56 0.25 1095 1186.70 −0.90 2001
20 1680.11 589 1666.95 −0.78 964 1651.32 −1.71 1116 1628.49 −3.07 1345
Average 1338.02 448 1333.50 −1.01 381 1318.86 −1.30 426 1281.21 −4.86 691
Gap (%): gap with respect to the solutions found by the basic TS without reactive and guided mechanisms.
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Figure 5: Diversification effect of the guiding mechanism.

and is far more complex than T-8; moreover, the BKSs of T-
8 are found by several specifically designed algorithms and
parameter settings. However, incontestably, there is room for
further improvement on the algorithm for the HFFMCVRP.

Since our HFFMCVRP instance set TC-8 is generated
from the HFFVRP benchmark set T-8, we wonder how well
does our HFFMCVRP algorithm perform in solving T-8.
Hence, we apply the RGTS to T-8 with little modification
and the same parameter settings, even though it is not
intentionally designed for theHFFVRP. According to Table 5,
it is fair to say that RGTS is robust, because it unveiled
solutions of an average 2.06% gap with regard to the BKSs of
T-8 found by four remarkable algorithms. Note that similar

gaps can be observed in the MCVRP literature (see [1–3]);
that is, the designed-for-MCVRP algorithms can produce
VRP solutions of above 1% gap with respect to the BKSs of
the classic VRP in relatively long running times. El Fallahi et
al. [1] claimed that the VRP solution is hard to find because
of its special structure in aMCVRP context: the two products
for each customer must be regrouped in the same trip. Since
the HFFVRP is more difficult than the classic VRP because
of the heterogeneous fleet, we reckon that 2.06% is expected
and acceptable.

6. Conclusions

In this paper, we studied the HFFMCVRP, which is a rich
vehicle routing problem commonly found in the practice
of multicommodities (e.g., oil, food, fashion, and waste col-
lection) distribution where multicompartment vehicles are
indispensable due to safety and health issues. Heterogeneous
fleet is almost universal in realistic logistic, andmore so when
it comes to multicompartment vehicle as the vehicles may
have more technical differences. Hence, the HFFMCVRP
successfully captures the essence of real life multicommodi-
ties distribution. However, not enough attention, which it
deserves, has been paid to it.

We propose a hybrid algorithmRGTS to solve theHFFM-
CVRP. The RGTS systematically integrates a reactive mech-
anism and a guiding mechanism within the TS framework.
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Table 5: Comparison of RGTS with HFFVRP algorithms on T-8.

T-8 BKS of T-8 HCGa HRTRb Guided TSc TSAd RGTS Gap
Gap CPU Gap CPU Gap CPU Gap CPU OV CPU

13 1517.84 0.014 473 0 358 0 116 0 56 1534.72 26 1.11
14 607.53 1.335 575 0 141 0 92 0 55 630.38 57 3.76
15 1015.29 0.155 335 0 166 0 79 0 59 1025.87 48 1.04
16 1144.94 0.796 350 0 188 0 130 0 94 1146.38 61 0.10
17 1061.96 0.926 2245 0 216 0 153 0 206 1071.82 102 0.93
18 1823.58 2.554 2876 0 366 0 252 0 198 1860.01 111 2.00
19 1117.51 0 5833 0.253 404 0.253 327 0.253 243 1172.40 301 4.91
20 1534.17 1.669 3402 0 447 0 479 0 302 1574.24 220 2.61
Average 1227.85 2.614 2011 1228.21 286 1228.21 203 1228.21 152 1251.98 115 2.06
Average Gap 0.000 0.931 — 0.032 — 0.032 — 0.032 — 2.060 — —
aHCG: heuristic column generation by Taillard [4] (SucnSparc workstation 50MHz).
bHRTR: record-to-record travel algorithm for HFFVRP by Li et al. [5] (Athlon 1GHz).
cGuided TS: guided tabu search by Tarantilis et al. [25] (Pentium IV 2.4GHz).
dTSA: tabu search algorithm by Brandão [27] (PentiumM 1.4GHz).

The guiding mechanism is capable of utilizing historic infor-
mation continuously fed from the search evolution to help
more impartially select edges for penalization. Experiments
have shown that compared to classic guiding mechanisms
employing only predetermined information (i.e., edge dis-
tance), our mechanism provided the best results on all
generated instances. Moreover, once search history informa-
tion is used to help select undesired edges, edge distance
information may not matter that much. After all, edges with
long distance are not necessarily undesirable. To enhance
its efficiency, the well-known reactive mechanism is also
incorporated in RGTS, and experiments supported that two
mechanisms can coexist and supplement each other. The
collaboration of two mechanisms yielded an average 4.86%
improvement over the basic TS.

For the future research, except for algorithmic issues such
as further improvements in the RGTS and designing exact
algorithms, one may consider a loading subproblem in the
distribution of multiple products in multiple compartments,
especially when the compartments are flexible and the prod-
ucts are special (e.g., in shape, form, etc.).

Notations

𝐿: Node set {0, 1, . . . , 𝑛} including one depot
(node 0)

𝐿
𝑐
: Client set, that is, 𝐿 \ {0}

𝐸: Edge set, that is, {(𝑖, 𝑗) | 𝑖, 𝑗 ∈ 𝐿}
𝑑
𝑖𝑗
: Distance of edge

(𝑖, 𝑗) ∈ 𝐸, 𝑑
𝑖𝑖
= 0, 𝑑

𝑖𝑗
= 𝑑
𝑗𝑖
, 𝑑
𝑖𝑗
+ 𝑑
𝑗𝑙
⩾ 𝑑
𝑖𝑙

𝑉: Vehicle set
𝑀: Vehicle type set
𝑉
𝑚
: Subset of 𝑉 containing only vehicles of

type𝑚 ∈ 𝑀

costV: Variable cost per unit distance of vehicle
V ∈ 𝑉

𝐶V: Compartment set of vehicle V ∈ 𝑉
𝑄
𝑐
: Capacity of compartment 𝑐 ∈ 𝐶V, V ∈ 𝑉

𝑃: Product set
𝑂: Order set
𝑗
𝑜: Customer who places order 𝑜 ∈ 𝑂, 𝑗𝑜 ∈ 𝐿

𝑐

𝑝
𝑜: Product type of order 𝑜 ∈ 𝑂, 𝑝𝑜 ∈ 𝑃
𝑞
𝑜
: Quantity of order 𝑜 ∈ 𝑂, 𝑞

𝑜
> 0

𝑆
𝑜

𝑗
: Orders placed by customer 𝑗 ∈ 𝐿

𝑐
, that is,

{𝑜 ∈ 𝑂 | 𝑗
𝑜
= 𝑗}

𝑆
𝑜

𝑝
: Orders for product 𝑝 ∈ 𝑃, that is, {𝑜 ∈ 𝑂 |

𝑝
𝑜
= 𝑝}

𝐼
1
: Set of products incompatibilities, 𝐼

1
⊆

𝑃 × 𝑃, that is, (𝑝, 𝑞) ∈ 𝐼
1
, indicates that

products 𝑝 and 𝑞 must not be delivered
together in the same compartment

𝐼
2
: Set of incompatibilities between products

and compartments, 𝐼
2
⊆ 𝑃 × 𝐶, that is,

(𝑝, 𝑐) ∈ 𝐼
2
, means that products 𝑝must not

be delivered in compartment 𝑐
𝑏
𝑖𝑗V: = 1 if vehicle V travels from node 𝑖 to 𝑗,

otherwise = 0
𝑥
𝑜V𝑐: = 1 if order 𝑜 is assigned to compartment

𝑐 ∈ 𝐶V, otherwise = 0
𝑦
𝑝V𝑐: = 1 if product 𝑝 is assigned to compartment

𝑐 ∈ 𝐶V, otherwise = 0
𝑢
𝑖V: The position of node 𝑖 in the tour of vehicle

V, 𝑢
𝑖V = 0 indicates that node 𝑖 is never

visited by vehicle V.

Parameters

𝑇𝐿: Tabu list
𝐿𝑇𝐿: Long tabu list for detecting repetition
𝑇𝑢𝑟𝑛𝛿: Switch of the neighborhood reduction

strategy
𝑅𝐶𝑜𝑢𝑛𝑡𝑒𝑟: Counter for repetitions
𝑅𝐸𝑃: Constant threshold for 𝑅𝐶𝑜𝑢𝑛𝑡𝑒𝑟
𝐶ℎ𝑎𝑜𝑡𝑖𝑐: Counter for 𝑅𝐶𝑜𝑢𝑛𝑡𝑒𝑟 > 𝑅𝐸𝑃
𝐶ℎ𝑎𝑜𝑠: Constant threshold for 𝐶ℎ𝑎𝑜𝑡𝑖𝑐
𝐼𝑛𝑐: Percentage increase for 𝑇𝐿
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𝐷𝑒𝑐: Percentage decrease for 𝑇𝐿
𝑅𝑒𝑝𝑡𝑃: Number of iterations between two consec-

utive repetitions
𝑀𝑎𝑥𝑃: Constant threshold for 𝑅𝑒𝑝𝑡𝑃
𝑇𝐿𝐿𝑎𝑠𝑡𝐶ℎ: Number of iterations since the last change

of 𝑇𝐿
𝑀𝑜V𝑒𝐴V𝑔: Changing threshold for 𝑇𝐿𝐿𝑎𝑠𝑡𝐶ℎ
𝑖𝑡𝑟: Counter used to calculate 𝑅𝑒𝑝𝑡𝑃
𝐺𝑢𝑖𝑑𝐹𝑟𝑒𝑞: Frequency of guiding mechanism
𝑀𝑎𝑥𝑁𝑜𝐼𝑚𝑝: Maximum number of consecutive itera-

tions allowedwhen the best-found solution
has not been improved.
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