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A particle filter based track-before-detect (PF-TBD) algorithm is proposed for the monopulse high pulse repetition frequency
(PRF) pulse Doppler radar. The actual measurement model is adopted, in which the range is highly ambiguous and the sum
and difference channels exist in parallel. A quantization method is used to approximate the point spread function to reduce
the computation load. The detection decisions of the PF-TBD are fed to a binary integrator to further improve the detection
performance. Simulation results show that the proposed algorithm can detect and track the low SNR target efficiently.The detection
performance is improved significantly for both the single frame and the multiframe detection compared with the classical detector.
A performance comparison with the PF-TBD using sum channel only is also supplied.

1. Introduction

The developments of stealthy military aircraft and cruise
missiles recently have emphasized the need for detection and
tracking of low signal-to-noise ratio (SNR) targets. This need
is especially urgent for a radar seeker because of its limited
battery capacity and antenna size. High pulse repetition
frequency (PRF) pulse Doppler is generally used in a radar
seeker at early detection stage, which allows thermal noise-
limited detection of targets with high radial velocities [1].
Noncoherent or binary integration is often used after the
coherent processing to improve the detection performance.
But the radar data rate and the unknown target motion have
limited the coherent processing interval (CPI) and noncoher-
ent/binary times. The azimuth and elevation are measured
by monopulse generally, which is a widely used technique to
provide accurate anglemeasurements in the tracking radar. A
monopulse system for estimating one angle typically consists
of two identical antennas, either separated by some distance
(phase monopulse) or at the same phase center but with
a squint angle (amplitude monopulse), whose outputs are
summed up to produce a sum channel Σ and are subtracted
to yield the difference channel Δ as shown in Figure 1. The
angular information 𝜃 is contained in the monopulse ratio

𝛾(𝜃) = Δ(𝜃)/Σ(𝜃) providing the function 𝜃 → 𝛾(𝜃) is revers-
ible. Poor monopulse estimation performance under low
SNR has also deteriorated the guidance performance.

Track-before-detect (TBD) is a simultaneous detection
and tracking paradigm that uses unthresholded data or
thresholded data with significantly lower thresholds than
those used in conventional detectors and integrates themover
time according to the target dynamic model to improve the
sensitivity to low SNR targets. Typical TBD is implemented as
a batch algorithm using the Hough transform [2] or dynamic
programming [3].TheHough transform TBD is suitable only
for linear trajectories. The dynamic programming TBD is
studied more for the radar application and is applied in pulse
Doppler radars in [4–6]. Particle filter based TBD (PF-TBD)
was introduced by [7] and extended by [8–10]. Compared
to the typical methods, it is recursive and does not require
discretization of the state space.

For simplicity, most researches on PF-TBD are based
on grayscale-image-like measurements (e.g., [8, 10]). Boers
and Driessen [9, 11] have studied PF-TBD on search radar
measurements. A Rao-Blackwellised PF-TBD is proposed
for over-the-horizon radar in [12]. Multisensor PF-TBD is
studied for MIMO radar [13]. There is no open literature
addressing PF-TBD on monopulse radar to the best of
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Figure 1: Amplitude of the sum and difference channels at different
deviation angles.

our knowledge. In monopulse radar systems, the sum and
difference channels exist in parallel as Figure 1 has shown.
A PF-TBD algorithm similar to [12] can be applied by using
only the output of the sum channel as the measurements.The
target Doppler and intensity are estimated by it and then the
bearing and azimuth are estimated by classical monopulse
methods (e.g., ML method proposed by [14]). But from
Figure 1 we can see that amplitude of the difference channel
is comparable to that of the sum channel when the target is
not at the beam center, which often occurred in the target
searching stage. So fusion of the sum and difference channels
using Bayesian theory in the PF-TBD algorithm is possible to
improve the detection performance as well as the monopulse
estimation performance.

In this work, the target and measurement models of the
monopulse high PRF pulse Doppler radar are constructed.
Based on them, we derive a PF-TBD algorithm which can
effectively detect and track the low SNR target. Its detection
performance is compared with the classical detector, which
shows that more than 7 dB gain in SNR can be attained.
A quantization method of approximating the point spread
function is proposed to reduce the computation load of the
PF-TBD. Binary integration of the PF-TBD’s detection result
is proposed to further improve the detection performance,
which is shown to be very effective and not limited by the
target maneuver.

The rest of the work is organized as follows. In Section 2
the target and sensor models are formulated. The recursive
Bayesian TBD filter for this application is described in
Section 3 and its PF implementation procedure is derived in
Section 4. Two simulated examples are presented in Section 5,
in which the detection and estimation performances of the
proposed algorithm are evaluated in comparison with the
classical method and the sum-only PF-TBD. Conclusions and
future work are drawn in the last section.

2. Target and Measurement Models

2.1. Target Model. The high PRF can measure Doppler
unambiguously, but it is highly ambiguous in range, which
precludes the pulse delay ranging. The range information is
not a must for a radar seeker, however, since the proportional
navigation is commonly adopted. As a result, only the target
Doppler is involved in the target state vector in this paper.The
target azimuth and elevation are measured by monopulse.
For the sake of brevity, only one difference channel (azimuth
difference or elevation difference) is considered. Moreover,
the unknown target echo amplitude is also incorporated to
implement the PF-TBD algorithm. The target state vector is
then defined as

x𝑘 = [𝑓
𝑘

𝑑
, 𝐴
𝑘

Σ
, 𝛾𝑘]
𝑇

, (1)

where 𝑓
𝑘

𝑑
, 𝐴𝑘
Σ
, and 𝛾𝑘 denote the Doppler frequency, echo

amplitude of the sum channel, and monopulse ratio of the
target in frame 𝑘, respectively. The Doppler frequency 𝑓𝑑 =

2V𝑟/𝜆, where 𝜆 is the wavelength and V𝑟 is the radial velocity.
Although the dynamic model can be as general as x𝑘 =

𝑓𝑘−1(x𝑘−1, k𝑘−1) for a particle implementation, where k𝑘−1 is
the process noise sequence, for simplicity wemodel the target
motion relative to the radar as the nearly constant velocity
model with a white acceleration noise V(1)

𝑘
. The target echo

amplitude and monopulse ratio are modeled as random walk
processes with process noises V(2)

𝑘
and V(3)

𝑘
, respectively. The

process noises V(1)
𝑘
, V(2)
𝑘
, and V(3)

𝑘
are mutually independent,

zero mean white noise with variances 𝜎
2

(1)
, 𝜎2
(2)
, and 𝜎

2

(3)
,

respectively. Thus, the system dynamic equation is

x𝑘 = x𝑘−1 + 𝑇 ⋅ k𝑘−1, (2)

where 𝑇 is the CPI and k𝑘−1 = [V(1)
𝑘−1

, V(2)
𝑘−1

, V(3)
𝑘−1

]
𝑇. This target

model accommodates not only target maneuver but also
fluctuations of the target intensity and the monopulse ratio.

Target existence variable 𝐸𝑘 is modeled as a two-state
Markov chain and 𝐸𝑘 ∈ {0, 1}. Here 0 denotes the event
that the target is absent, while 1 denotes the opposite [15].
Furthermore, we define the transitional probabilities of target
“birth” (𝑃𝑏) and “death” (𝑃𝑑) as

𝑃𝑏 ≜ 𝑃 {𝐸𝑘 = 1 | 𝐸𝑘−1 = 0}

𝑃𝑑 ≜ 𝑃 {𝐸𝑘 = 0𝐸𝑘−1 = 1} .

(3)

Thus the transitional probability matrix Π is given by

Π = [
1 − 𝑃𝑑 𝑃𝑏

𝑃𝑑 1 − 𝑃𝑏
] . (4)

2.2.MeasurementModel. Weassume that the target is located
in the clutter-free region; thus the clutter is not considered
in the signal model. When the target is present, the received
signal sequences at the video stage of the sum and difference
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channels in frame 𝑘 are denoted as 𝑠𝑘
Σ
(𝑛) and 𝑠

𝑘

Δ
(𝑛) and given

by

𝑠
𝑘

Σ
(𝑛) = 𝐴

𝑘

Σ
exp {𝑗2𝜋 (𝑓

𝑘

𝑑
𝑛𝑇𝑟 + 𝜙𝑘)} + 𝑛

𝑘

Σ
(𝑛) (5)

𝑠
𝑘

Δ
(𝑛) = 𝛾𝑘𝐴

𝑘

Σ
exp {𝑗2𝜋 (𝑓

𝑘

𝑑
𝑛𝑇𝑟 + 𝜙𝑘)} + 𝑛

𝑘

Δ
(𝑛) (6)

≜ 𝐴
𝑘

Δ
exp {𝑗2𝜋 (𝑓

𝑘

𝑑
𝑛𝑇𝑟 + 𝜙𝑘)} + 𝑛

𝑘

Δ
(𝑛) , (7)

respectively, where 𝐴
𝑘

Δ
is the amplitude of the difference

channel, 𝜙𝑘 is some arbitrary phase, 𝑇𝑟 is the pulse repetition
interval (PRI), and 𝑛 = 0, 1, . . . , 𝑁 − 1 is index of the sample
in an CPI. The background thermal noises 𝑛𝑘

Σ
(𝑛) and 𝑛

𝑘

Δ
(𝑛)

are mutually independent, zero mean, and temporally white
complex Gaussian processes with the same variance. The
Doppler frequency 𝑓

𝑘

𝑑
is assumed to be constant within an

CPI.
The coherent integrations of the sum and difference

echoes are done via fast Fourier transform (FFT) indepen-
dently. To reduce peak side-lobe levels, the signal sequences
are windowed before the FFT. The result of the coherent
integration is given by

𝑦
𝑘

Σ/Δ
(𝑙) =

𝑁𝑓−1

∑

𝑛=0

𝑠
𝑘

Σ/Δ
(𝑛) 𝑤𝑛 exp{−𝑗2𝜋(

𝑛𝑙

𝑁𝑓

)} , (8)

where the subscript Σ/Δ denotes sum channel Σ or difference
channel Δ for simplification,𝑁𝑓 is the next power of two that
is greater than or equal to 𝑁, 𝑠Σ/Δ(𝑛) = 0 for 𝑛 > 𝑁 − 1

(also known as zero padding),𝑤𝑛 is the windowing function,
and 𝑙 = 0, 1, . . . , 𝑁𝑓 − 1 is the index of the frequency bin.
The signal’s unknown phase component is useless, so the
magnitude of the spectrum in each frequency bin forms the
set of measurements in frame 𝑘. Then the measurement can
be modeled as

𝑧
𝑘

Σ/Δ
(𝑙) =

{

{

{

󵄨󵄨󵄨󵄨󵄨
𝐴
𝑘

Σ/Δ
𝐵𝑘 (𝑓

𝑘

𝑑
, 𝑙) + 𝑢

𝑘

Σ/Δ
(𝑙)

󵄨󵄨󵄨󵄨󵄨
𝐸𝑘 = 1

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑘

Σ/Δ
(𝑙)

󵄨󵄨󵄨󵄨󵄨
𝐸𝑘 = 0,

(9)

where | ⋅ | is the complex modulus, 𝐵𝑘(𝑓
𝑘

𝑑
, 𝑙) = exp{𝑗2𝜋𝜙𝑘}

∑
𝑁−1

𝑛=0
𝑤𝑛 exp{𝑗2𝜋𝑓

𝑘

𝑑
𝑛𝑇𝑟} exp{−𝑗2𝜋(𝑛𝑙/𝑁𝑓)}, and 𝑢

𝑘

Σ
(𝑙) and

𝑢
𝑘

Δ
(𝑙) are the background noises of the sum and difference

channels, respectively, after the coherent integration. Because
of linearity of the FFT, 𝑢𝑘

Σ
(𝑙) and 𝑢

𝑘

Δ
(𝑙) are also zeromean i.i.d.

complex Gaussian noise processes. We assume that they both
have a variance 2𝜎2

𝑢
.

As has been stated that not all the frequency bins of the
FFT result are of interest, only bins in clutter-free region
constitute the set of measurements at frame 𝑘; that is, z𝑘

Σ/Δ
=

{𝑧
𝑘

Σ/Δ
(𝑙𝑐 : (𝑁𝑓 − 𝑙𝑐 − 1))}, where 𝑙𝑐 = ceil(2V𝑀/(𝜆𝛿𝑓)), V𝑀 is

the horizontal velocity of the missile, and 𝛿𝑓 = 1/(𝑇𝑟𝑁𝑓) is
the Doppler bin size.

Following the model described above, the likelihood in
each frequency bin when the target is present has a Ricean
distribution

𝑝 (𝑧
𝑘

Σ/Δ
(𝑙) | x𝑘, 𝐸𝑘 = 1)

=

𝑧
𝑘

Σ/Δ
(𝑙)

𝜎2
𝑢

𝐼0(

𝐴
𝑘

Σ/Δ
| 𝐵𝑘 (𝑓

𝑘

𝑑
, 𝑙) | 𝑧

𝑘

Σ/Δ
(𝑙)

𝜎2
𝑢

)

× exp
{

{

{

−

𝑧
𝑘

Σ/Δ
(𝑙)
2
+ (𝐴
𝑘

Σ/Δ
)
2󵄨󵄨󵄨󵄨󵄨
𝐵𝑘 (𝑓

𝑘

𝑑
, 𝑙)

󵄨󵄨󵄨󵄨󵄨

2

2𝜎2
𝑢

}

}

}

,

(10)

where 𝐼0(⋅) is the modified Bessel function of order zero.
The likelihood when the target is absent has a Rayleigh
distribution

𝑝 (𝑧
𝑘

Σ/Δ
(𝑙) | 𝐸𝑘 = 0) =

𝑧
𝑘

Σ/Δ
(𝑙)

𝜎2
𝑢

exp{−

𝑧
𝑘

Σ/Δ
(𝑙)
2

2𝜎2
𝑢

} . (11)

Because of the windowing before the FFT, the target (if
present) power will spread into the bins in the vicinity of its
location. Let 𝐶(x𝑘) denote the bins affected by the target (i.e.,
the target’s effect on the other bins is negligible); then the
likelihood function of the whole measurement set when the
target is present can be approximated as follows:

𝑝 (z𝑘
Σ/Δ

| x𝑘, 𝐸𝑘 = 1) ≈ ∏

𝑙∈𝐶(x𝑘)

𝑝 (𝑧
𝑘

Σ/Δ
(𝑙) | x𝑘, 𝐸𝑘 = 1)

× ∏

𝑙∉𝐶(x𝑘)

𝑝 (𝑧
𝑘

Σ/Δ
(𝑙) | 𝐸𝑘 = 0)

(12)

and the likelihood function when the target is absent is

𝑝 (z𝑘
Σ/Δ

| 𝐸𝑘 = 0) =

𝑁𝑓−𝑙𝑐−1

∏

𝑙=𝑙𝑐

𝑝 (𝑧
𝑘

Σ/Δ
(𝑙) | 𝐸𝑘 = 0) . (13)

We denote the set of complete measurements up to frame
𝑘 as Z𝑘 = {z𝑖

Σ
, z𝑖
Δ
, 𝑖 = 1, . . . , 𝑘}.

It is computational complex to calculate the |𝐵𝑘(𝑓
𝑘

𝑑
, 𝑙)| for

bins in 𝐶(x𝑘) in real time applications. The contribution of
x𝑘 to bin 𝑙 in 𝐶(x𝑘) (i.e., point spread function) is generally
approximated by a Gaussian-like function (e.g., [7, 8] for
optical sensor). Using the Gaussian approximation method,
the point spread function ℎ(x𝑘, 𝑙) is

ℎ (x𝑘, 𝑙) = 𝐴
𝑘

Σ/Δ

󵄨󵄨󵄨󵄨󵄨
𝐵𝑘 (𝑓

𝑘

𝑑
, 𝑙)

󵄨󵄨󵄨󵄨󵄨

≈ 𝐴
𝑘

Σ/Δ
𝐺 exp

{

{

{

−

(𝑙𝛿𝑓 − 𝑓
𝑘

𝑑
)
2

2𝛽2

}

}

}

,

(14)

where 𝐺 = ∑
𝑁−1

𝑛=0
𝑤𝑛 is the coherent integration gain

and 𝛽 is a parameter to be designed to better approxi-
mate the amount of blurring introduced by the FFT win-
dowing functions. But this approximation is valid only
within a limited range as Figure 2 has shown. To solve this
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Figure 2: Comparison of different point spread function approxi-
mation methods. Hamming window is used,𝑁 = 1024,𝑁app = 64.

problem, we present an approximation approach which is
calculation-free and more precise. Note that |𝐵𝑘(𝑓

𝑘

𝑑
, 𝑙)| =

| ∑
𝑁−1

𝑛=0
𝑤𝑛 exp{𝑗2𝜋𝑛𝑇𝑟(𝑓

𝑘

𝑑
− 𝑙𝛿𝑓)}| can be expressed as a

function 𝑔w(𝑥) with a parameter w = {𝑤𝑛} and a variable
𝑥 = |𝑓

𝑘

𝑑
− 𝑙𝛿𝑓|. Because the windowing function w can

be taken as known a priori, we can quantize 𝑔w(𝑥) into a
number of points (e.g., 𝑔w(𝑘𝛿𝑓/𝑁app), 𝑘 = 0, 1, . . . , 𝑁app − 1

for 𝑥 ∈ [0, 𝛿𝑓), where 𝑁app is the number of points each bin
is quantized into, and we can store them as a look-up table in
the read-only memory (ROM). In real time operations, the
value of the quantized point nearest to the true point is read
from the ROM and used; that is,

ℎ (x𝑘, 𝑙) ≈ 𝐴
𝑘

Σ/Δ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐵𝑘(⌊
󵄨󵄨󵄨󵄨󵄨
𝑙𝛿𝑓 − 𝑓

𝑘

𝑑

󵄨󵄨󵄨󵄨󵄨

𝑁app

𝛿𝑓

+ 0.5⌋

𝛿𝑓

𝑁app
, 𝑙)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(15)

where ⌊⋅⌋ is the floor function and ⌊𝑥 + 0.5⌋ rounds 𝑥 to
the nearest integer. The result of this approximation is also
presented in Figure 2.

3. Recursive Bayesian Filtering Procedure

The posterior probability of target existence 𝑃𝑘
𝐸
≜ 𝑃{𝐸𝑘 = 1 |

Z𝑘} and x𝑘 are estimated recursively by a Bayesian method
as follows. Given the joint posterior PDF at frame 𝑘 − 1,
𝑝(x𝑘−1, 𝐸𝑘−1 | Z𝑘−1) and the latestmeasurementZ𝑘, the goal is
to construct the joint posterior PDF at frame 𝑘,𝑝(x𝑘, 𝐸𝑘 | Z𝑘).
𝑃
𝑘

𝐸
and x𝑘 are then estimated using 𝑝(x𝑘, 𝐸𝑘 = 1 | Z𝑘).

Prediction. Prediction of 𝐸𝑘 is given by

[

[

𝑃 {𝐸𝑘 = 1 | Z𝑘−1}

𝑃 {𝐸𝑘 = 0 | Z𝑘−1}
]

]

= Π[

[

𝑃 {𝐸𝑘−1 = 1 | Z𝑘−1}

𝑃 {𝐸𝑘−1 = 0 | Z𝑘−1}
]

]

. (16)

If 𝐸𝑘 = 0, x𝑘 is undefined and no prediction of it is needed. If
𝐸𝑘 = 1, the prediction step of x𝑘 can be expressed as

𝑝 (x𝑘, 𝐸𝑘 = 1 | Z𝑘−1)

= ∫𝑝 (x𝑘, 𝐸𝑘 = 1 | x𝑘−1, 𝐸𝑘−1 = 1,Z𝑘−1)

⋅ 𝑝 (x𝑘−1, 𝐸𝑘−1 = 1 | Z𝑘−1) 𝑑x𝑘−1

+ ∫𝑝 (x𝑘, 𝐸𝑘 = 1 | x𝑘−1, 𝐸𝑘−1 = 0,Z𝑘−1)

⋅ 𝑝 (x𝑘−1, 𝐸𝑘−1 = 0 | Z𝑘−1) 𝑑x𝑘−1,

(17)

where
𝑝 (x𝑘, 𝐸𝑘 = 1 | x𝑘−1, 𝐸𝑘−1 = 1,Z𝑘−1)

= 𝑝 (x𝑘 | x𝑘−1, 𝐸𝑘 = 1, 𝐸𝑘−1 = 1) 𝑃 {𝐸𝑘 = 1 | 𝐸𝑘−1 = 1}

= 𝑝 (x𝑘 | x𝑘−1, 𝐸𝑘 = 1, 𝐸𝑘−1 = 1) (1 − 𝑃𝑑) ,

𝑝 (x𝑘, 𝐸𝑘 = 1 | x𝑘−1, 𝐸𝑘−1 = 0,Z𝑘−1)

= 𝑝 (x𝑘 | x𝑘−1, 𝐸𝑘 = 1, 𝐸𝑘−1 = 0) 𝑃 {𝐸𝑘 = 1 | 𝐸𝑘−1 = 0}

= 𝑝𝑏 (x𝑘) 𝑃𝑏.
(18)

The transitional density 𝑝(x𝑘 | x𝑘−1, 𝐸𝑘 = 1, 𝐸𝑘−1 = 1) is
defined by the target dynamic model (2). The PDF 𝑝𝑏(x𝑘)
denotes the initial target density on its appearance.

Update. The update equation using Bayes’ rule is given by

𝑝 (x𝑘, 𝐸𝑘 = 1 | Z𝑘)

=

𝑝 (z𝑘
Σ
, z𝑘
Δ
| x𝑘, 𝐸𝑘 = 1) 𝑝 (x𝑘, 𝐸𝑘 = 1 | Z𝑘−1)

𝑝 (z𝑘
Σ
, z𝑘
Δ
| Z𝑘−1)

,

(19)

where the prediction density 𝑝(x𝑘, 𝐸𝑘 = 1 | Z𝑘−1) is given
by (17), the normalizing constant in the denominator is 𝑝(z𝑘

Σ
,

z𝑘
Δ
| Z𝑘−1) = ∫𝑝(z𝑘

Σ
, z𝑘
Δ
| x, 𝐸𝑘 = 1)𝑝(x, 𝐸𝑘 = 1 | Z𝑘−1)𝑑x, and

the likelihood function 𝑝(z𝑘
Σ
, z𝑘
Δ
| x𝑘, 𝐸𝑘 = 1) is

𝑝 (z𝑘
Σ
, z𝑘
Δ
| x𝑘, 𝐸𝑘 = 1)

= 𝑝 (z𝑘
Σ
| x𝑘, 𝐸𝑘 = 1) 𝑝 (z𝑘

Δ
| x𝑘, 𝐸𝑘 = 1) ,

(20)

where the likelihood function 𝑝(z𝑘
Σ/Δ

| x𝑘, 𝐸𝑘 = 1) is given by
(12).

Estimate. 𝑃𝑘
𝐸
is estimated by taking marginal of 𝑝(x𝑘, 𝐸𝑘 = 1 |

Z𝑘) as follows:

𝑃̂
𝑘

𝐸
= ∫𝑝 (x𝑘, 𝐸𝑘 = 1 | Z𝑘) 𝑑x𝑘. (21)

Using expected a posterior (EAP) estimator, x𝑘 is estimated
by

x̂𝑘 =
∫ x𝑘𝑝 (x𝑘, 𝐸𝑘 = 1 | Z𝑘) 𝑑x𝑘

𝑃̂
𝑘

𝐸

. (22)
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4. Particle Filter Implementation

To implement the recursive Bayesian filtering procedure,
a SIR particle filter based TBD algorithm described in
[8] is adopted with some modifications. As the particle
filter tends to suffer from a progressive degeneration as the
sequence evolves, an MCMC step referred to as resample-
move in [16] is employed after importance resampling, which
adds diversity to the particles without altering the underly-
ing distribution [10]. A Metropolis-Hasting resample-move
method is used as described in [10, 17]. Taking move of
the 𝛾, for example, a proposal distribution 𝑞𝑚(𝛾

󸀠

𝑘
| 𝛾𝑘) is

defined, from which a sample is drawn for each particle after
resampling. A monopulse ratio 𝛾

󸀠

𝑘
is obtained conditioned

on the old monopulse ratio 𝛾𝑘 while keeping the other two
states unchanged. Under the assumption that the proposal is
symmetric, 𝑞𝑚(𝛾

󸀠

𝑘
| 𝛾𝑘) = 𝑞𝑚(𝛾𝑘 | 𝛾

󸀠

𝑘
), the new particle is

accepted or rejected on a test, formed by a ratio of likelihoods

𝑇𝛾󸀠 ,𝛾 =

𝐿 (z𝑘 | 𝑓𝑘𝑑 , 𝐴
𝑘

Σ
, 𝛾
󸀠

𝑘
)

𝐿 (z𝑘 | 𝑓𝑘𝑑 , 𝐴
𝑘

Σ
, 𝛾𝑘)

. (23)

If 𝑇𝛾󸀠 ,𝛾 > 1, then the new particle, with monopulse ratio 𝛾
󸀠, is

kept. Otherwise the new particle is kept in preference to the
old particle only if 𝑈 < 𝑇𝛾󸀠 ,𝛾, where 𝑈 is a uniform random
number between 0 and 1. The move operation is used twice
in this application, firstly to the amplitude𝐴𝑘

Σ
and then to the

monopulse ratio 𝛾𝑘. Truncated Gaussian distributions with
different variances and means at 𝐴𝑘

Σ
and 𝛾𝑘, respectively, are

used as the proposal distributions.
A detailed description of the TBD algorithm is given as

follows.

Initialization. Set 𝑘 = 0 and generate𝑁𝑠 samples {𝐸𝑖
0
}
𝑁𝑠

𝑖=1
from

𝑃
0

𝐸
= 𝑃(𝐸0 = 1). If 𝐸𝑖

0
= 1, generate x𝑖

0
from the birth density

𝑞𝑏(x0 | z0), or else, x𝑖0 is undefined.
Then, given [{x𝑖

𝑘−1
}
𝑁𝑠

𝑖=1
, z𝑘] at each frame 𝑘, go from Steps

1 to 5.

Step 1 (prediction). Generate {𝐸𝑖
𝑘
}
𝑁𝑠

𝑖=1
on the basis of {𝐸𝑖

𝑘−1
}
𝑁𝑠

𝑖=1

and Π. If 𝐸𝑖
𝑘
= 0, x𝑖

𝑘
is undefined. If 𝐸𝑖

𝑘−1
= 1 and 𝐸

𝑖

𝑘
= 1,

predict x𝑖
𝑘
according to (2). For the new born particles, that

is, those with 𝐸
𝑖

𝑘−1
= 0 and 𝐸

𝑖

𝑘
= 1, generate x𝑖

𝑘
from the birth

density 𝑞𝑏(x𝑘 | z𝑘).

Step 2 (update). In the SIR filter, the prior PDF 𝑝(𝑧𝑘 | 𝑥
𝑖

𝑘−1
) is

chosen to be the important density and, thus, unnormalized
weights are proportional to the likelihood functions. Conse-
quently, using the likelihood ratios as unnormalized weights
will have no effect on the performance of the SIR filter. Thus
the importance weights are calculated by the following [7]:

𝑤
𝑖

𝑘
=

{{

{{

{

∏

𝑙∈𝐶𝑖(x𝑘)

𝐿 (𝑧
𝑘

Σ
(𝑙) , 𝑧
𝑘

Δ
(𝑙) | x𝑖

𝑘
) if 𝐸𝑖

𝑘
= 1

1 if 𝐸𝑖
𝑘
= 0.

(24)

We simplify the likelihood 𝐿(𝑧
𝑘

Σ
(𝑙), 𝑧
𝑘

Δ
(𝑙) | x𝑖

𝑘
) as follows:

𝐿 (𝑧
𝑘

Σ
(𝑙) , 𝑧
𝑘

Δ
(𝑙) | x𝑖

𝑘
)

≜

𝑝 (𝑧
𝑘

Σ
(𝑙) , 𝑧
𝑘

Δ
(𝑙) | x𝑖

𝑘
, 𝐸𝑘 = 1)

𝑝 (𝑧
𝑘

Σ
(𝑙) , 𝑧
𝑘

Δ
(𝑙) | 𝐸𝑘 = 0)

=

𝑝 (𝑧
𝑘

Σ
(𝑙) | x𝑖

𝑘
, 𝐸𝑘 = 1) 𝑝 (𝑧

𝑘

Δ
(𝑙) | x𝑖

𝑘
, 𝐸𝑘 = 1)

𝑝 (𝑧
𝑘

Σ
(𝑙) | 𝐸𝑘 = 0) 𝑝 (𝑧

𝑘

Δ
(𝑙) | 𝐸𝑘 = 0)

= 𝐿 (𝑧
𝑘

Σ
(𝑙) | x𝑖

𝑘
) 𝐿 (𝑧

𝑘

Δ
(𝑙) | x𝑖

𝑘
) .

(25)

From (10) and (11), 𝐿(𝑧𝑘
Σ/Δ

(𝑙) | x𝑖
𝑘
) can be simplified as

𝐿 (𝑧
𝑘

Σ/Δ
(𝑙) | x𝑖

𝑘
)

=

𝑝 (𝑧
𝑘

Σ/Δ
(𝑙) | x𝑖

𝑘
, 𝐸𝑘 = 1)

𝑝 (𝑧
𝑘

Σ/Δ
(𝑙) | 𝐸𝑘 = 0)

= 𝐼0(

󵄨󵄨󵄨󵄨󵄨
𝐴
(𝑘,𝑖)

Σ/Δ
𝐵𝑘 (𝑓

(𝑘,𝑖)

𝑑
, 𝑙)

󵄨󵄨󵄨󵄨󵄨
𝑧
𝑘

Σ/Δ
(𝑙)

𝜎2
𝑢

)

× exp
{

{

{

−

󵄨󵄨󵄨󵄨󵄨
𝐴
(𝑘,𝑖)

Σ/Δ
𝐵𝑘 (𝑓

(𝑘,𝑖)

𝑑
, 𝑙)

󵄨󵄨󵄨󵄨󵄨

2

2𝜎2
𝑢

}

}

}

,

(26)

where 𝐴
(𝑘,𝑖)

Δ
is calculated by 𝐴

(𝑘,𝑖)

Δ
= 𝛾
𝑖

𝑘
𝐴
(𝑘,𝑖)

Σ
. Then get the

normalized weights {𝑤𝑖
𝑘
}
𝑁𝑠

𝑖=1
by 𝑤
𝑖

𝑘
= 𝑤
𝑖

𝑘
/∑
𝑁𝑠

𝑖=1
𝑤
𝑖

𝑘
.

Step 3 (resample). Generate a new set of samples [{𝐸𝑖
𝑘
, 𝑥
𝑖

𝑘
}
𝑁𝑠

𝑖=1
]

from [{𝐸
𝑖

𝑘
, 𝑥
𝑖

𝑘
, 𝑤
𝑖

𝑘
}
𝑁𝑠

𝑖=1
] and replace them using systematic

resampling algorithm [18]. The weights of the new samples
are not required since they are all equal to 1/𝑁𝑠.

Step 4 (MCMC move). Generate a new set of samples
from [{𝑥

𝑖

𝑘
}
𝑁𝑠

𝑖=1
] and replace them by move of 𝐴𝑘

Σ
using the

Metropolis-Hastingmethoddescribed above; do this again by
move of 𝛾𝑘. Note that this operation only changes the particles
with 𝐸

𝑖

𝑘
= 1.

Step 5 (state estimation). Estimate the posterior probability
of target existence 𝑃𝑘

𝐸
by

𝑃̂
𝑘

𝐸
=

∑
𝑁𝑠

𝑖=1
𝐸
𝑖

𝑘

𝑁𝑠

. (27)

If 𝑃̂𝑘
𝐸
exceeds a certain threshold Th ∈ (0, 1), target presence

is declared, and then the target state is estimated by

x̂𝑘|𝑘 =
∑
𝑁𝑠

𝑖=1
x𝑖
𝑘
𝐸
𝑖

𝑘

∑
𝑁𝑠

𝑖=1
𝐸
𝑖

𝑘

. (28)

To bemore specific, some application issues are discussed
as follows.

If there is no additional information, the birth density
should be a uniform density over the surveillance region. For
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(b) Single run

Figure 3: Probability of target existence under different SNRs, asterisk signs (∗) at the bottom indicate the presence of the target.

example, for Doppler component, 𝑓𝑘
𝑑
, uniform samples are

drawn frombins in themeasurements which have amplitudes
that exceed a predefined threshold. For echo amplitude 𝐴𝑘,
the birth density is uniform over [𝐴min, 𝐴max], where 𝐴min
and 𝐴max are expected minimum and maximum intensity
levels, respectively. For monopulse ratio, 𝛾𝑘, we assume that
the target only exists within the half-power beamwidth, and
from Figure 1 we can get that 𝛾 takes value within [0, 0.8];
thus, we choose its birth density to be uniformwithin [0, 0.8].
If other information is available (e.g., angle, range, orDoppler
information supplied by the carrier aircraft, which usually has
a normal law of error distribution and can be easily sampled
as 𝑞𝑏(x𝑘 | z𝑘)), the information should be used rather than
the uniform one to improve the performance.

The bins in 𝐶(x𝑘) should be selected carefully, one
practical choice is 𝐶(x𝑘) = {𝑖0 −𝑝, . . . , 𝑖0 − 1, 𝑖0, 𝑖0 + 1, . . . , 𝑖0 +

𝑝}, where 𝑖0 is the bin nearest to the predicted x𝑖
𝑘
and 𝑝

is a design parameter. Bins near the true Doppler position
have comparatively higher amplitudes and can be beneficial
to the performance, while the others will, on the contrary,
deteriorate the performance because the signal amplitudes
there are too low. As can be seen from Figure 2, the spread
function for the points that are one bin away from the true
position is below −20 dB; thus we choose 𝑝 = 1 in this
application.

5. Experiments

5.1. Experiment 1: Stationary Scenario. The radar parameters
are set as follows: the wavelength is 𝜆 = 3 cm, the PRI is
𝑇𝑟 = 4 𝜇s, and the number of pulses per CPI is 𝑁 = 1000.
Hamming FFT windowing function is used. The target SNR
represents the envelope of the target return compared to that

of just noise. The SNR is measured after the entire coherent
process (losses caused by windowing and straddle effect are
considered). The initial relative velocity between target and
radar is 1900m/s. The initial monopulse ratio is 0.2. There
are 368 bins in the clutter-free region. The initial amplitudes
for 3, 6, and 10 dB are 0.87, 1.23, and 1.95, respectively. The
levels of process noise used in the target model are 𝜎

2

(1)
=

0.01 ⋅ 𝛿𝑓, 𝜎
2

(2)
= 0.001, and 𝜎

2

(3)
= 0.01 (the SNR varies only

marginally). The target is born at frame 11 and disappeared at
frame 51.

The particle filter parameters are set as follows: the level of
the process noise is perfectly matched to the simulated data,
the probabilities of target “birth”𝑃𝑏 and “death”𝑃𝑑 are both set
as 0.05, the initial target existence probability is 𝑃0

𝐸
= 0.1, the

threshold𝑇1 = 0.32, and each bin of the point spread function
is quantized into 𝑁app = 64 points. The birth density 𝑞𝑏(x0 |
z0) is selected as follows: 𝐴0

Σ
∼ 𝑈(0.5, 3), 𝛾0 ∼ 𝑈(0, 0.8),

and 𝑓
0

𝑑
uniformly distributed in the clutter-free region. The

variances of the proposal distributions in the MCMC move
for 𝐴Σ and 𝛾 are 0.04 and 0.01, respectively. 𝑝 = 1 and 4000
particles are used.

Figure 3 shows the estimation result of the existence
probability 𝑃̂

𝑘

𝐸
; asterisk signs (∗) at the bottom of the figure

indicate the presence of the target. It can be seen that it is
possible to detect target under an SNR as low as 3 dB. Setting
the threshold Th = 0.6, for example, we can see that the
target can be detected after several frames’ accumulations.
From Figure 3(b) we can see that the false alarms are isolated.
Thus a binary integrator can be used to mitigate them and
at the same time keep the successful detections, which are
continuous after 𝑃̂𝑘

𝐸
becomes stable.

Now we evaluate the detection performance of the PF-
TBD algorithm in the detection terminologies. We estimate
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Figure 4: Probability of detection. For single frame detection, 𝑃FA = 0.1. For binary integration (3-out-of-5), the 𝑃FA of classical detector is
0.02, while that of PF-TBD is 0 (no false alarm occurs in the 200 runs).

the probability of false alarm 𝑃FA using frames 1 to 10 of
the 200 Monte Carlo runs, where no target is present. More
explicitly,

𝑃FA =
1

200 × 10

200

∑

𝑚=1

10

∑

𝑘=1

(𝑃̂
𝑘,𝑚

𝐸

1

≷

0

Th) , (29)

where 𝑚 is the index of each Monte Carlo run. Similarly, 𝑃𝐷
is computed when the target is present. To see performance
in the stable region as well as in the whole region, we estimate
𝑃𝐷 using frames 41 to 50 and frames 11 to 50, respectively. For
example, 𝑃𝐷 using frames 41 to 50 is

𝑃𝐷 =
1

200 × 10

200

∑

𝑚=1

50

∑

𝑘=41

(𝑃̂
𝑘,𝑚

𝐸

1

≷

0

Th) . (30)

For comparison, the classical detector is applied to the same
data. Because the PF-TBD algorithm makes one decision in
each frame, for a fairly comparison, the classical detector
declares a detection once any bin in the clutter-free region
exceeds the threshold Th󸀠. Setting 𝑃FA = 0.1 for both the PF-
TBD and the classical detector (correspondingly, probability
of false alarm for the classical detector in each single bin is
2.86 × 10

−4 and the threshold for the PF-TBD is Th = 0.45),
the 𝑃𝐷 performances of them are shown in Figure 4(a). It can
be observed that the𝑃𝐷 of PF-TBD in the stable region at 3 dB
is better than that of the classical detector at 10 dB. Thus an
SNR gain of up to 7 dB is obtained.

Taking results of Figure 4(a) as the primary detection
results, we apply the 3-out-of-5 binary integration strategy
to both the PF-TBD and the classical detector. Once 3
or more frames of consecutive 5 frames pass the primary
detection, a secondary detection is declared. The resulting

𝑃FA of the classical detector is 0.02, while that of the PF-
TBD is 0 (no false alarm occurs in the 200 runs), which has
proved that the binary integration after the PF-TBD performs
well at false alarm mitigation. The 𝑃𝐷 in binary integration is
defined as the quotient of the number of secondary detections
that have past the 3-out-of-5 logic divided by the total
number of secondary detections. The 𝑃𝐷 results are shown
in Figure 4(b). We can see that the 𝑃𝐷 improvement over
the classical detector is more compared with the single frame
detection even under lower 𝑃FA.

Remark 1. As the number of Monte Carlo runs is compar-
atively small, these results are not intended to provide a
performance assessment.More precise results can be attained
by performing a large number of Monte Carlo simulations.
Compared with the classical target detection problem, it
seems more reasonable to define an index to describe the
delay before the 𝑃̂

𝑘

𝐸
becomes stable and then evaluate the

detection and estimation performances in the stable region.

5.2. Experiment 2: Maneuvering Target. Now we consider
a real scenario on a 2D plane. As Figure 5 has shown, the
missile performs a straight motion with its antenna direction
1 degree deviated off the south to the east side. After 10 noise
only frames, the target enters the main beam of the seeker
radar and performs a 2 s evasive maneuver. The trajectory
of the target is generated by the simulation software JSBSim
(http://jsbsim.sourceforge.net/). The target’s velocity is about
280m/s and its normal acceleration during the maneuver is
6 g. The missile’s velocity is 1200m/s and its monopulse sum
and difference beam patterns are the same as those shown in
Figure 1. The echo amplitude is inversely proportional to the
square of the range between missile and target (the eclipsing
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Figure 5: Missile and target trajectories. The “◻” and “△” denote
start and end of the trajectory, respectively.

effect and the target fluctuation are not considered).The radar
parameters are the same as those in Experiment 1 except that
𝑁 = 5000; thus, the CPI is 20ms and there are 100 target
presented frames. Because the number of bins in the clutter-
free region is too large, only 200 bins (bins from 3100 to
3300) containing the target are used. The initial SNR is 6 dB.
The levels of process noise used in the particle filter are set
as 𝜎
2

(1)
= 5 ⋅ 𝛿𝑓, 𝜎

2

(2)
= 0.05, and 𝜎

2

(3)
= 0.05. The birth

density 𝑞𝑏(x0 | z0) is 𝐴
0

Σ
∼ 𝑈(1, 4), 𝛾0 ∼ 𝑈(0.79, 0.8),

and 𝑓
0

𝑑
uniformly distributed in the 200 bins. The other

parameters of the particle filter are the same as Experiment
1. For comparison, the PF-TBD algorithm using sum channel
only is also developed and tested using the same data. The
sum-only PF-TBD is obtained through omitting the 𝛾𝑘 in the
state vector and the filtering process. To distinguish them, the
filter proposed in this paper is referred to as the dual-channel
PF-TBD.

In Figure 6, the estimated probabilities of existence prove
the effectiveness of the two filters in target detection. Note
that the sum-only filter results in worse 𝑃̂

𝑘

𝐸
when the target

is both absent and present, which means that its detection
performance is worse than that of the dual-channel one.
This is because the dual-channel PF-TBD benefits from the
difference channel whose amplitude is high near the half-
power point.

Figures 7(a)–7(c) present the state estimation results of
the two filters. We can see that both of the two filters can
successfully track in target maneuvering. The dual-channel
filter has better Doppler estimation performance. Note that
the target Doppler can travel across half the bin size per
frame; the binary integration of the classical detector will
fail while that of the PF-TBD is unaffected. As the sum-only
filter does not output the monopulse estimation result, the
monopulse estimation performance of the dual-channel PF-
TBD is compared with the classical single frame monopulse
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Figure 6: Probability of target existence (averaged by 100 runs),
asterisk signs (∗) at the bottom indicate the presence of the target.

estimation method as shown in Figure 7(d). To use the
same a priori knowledge, the result of the classical method
is constrained to be within (0, 0.8) and that is why its
estimation result is biased. The classical method assumes
index of the bin which contains the target is known while the
PF-TBD does not use this information. In spite of this, the
monopulse estimation performance of the dual-channel PF-
TBD is better.

Remark 2. This example shows that the detection perfor-
mance can be improved by using the difference channel when
the target is near beam edge. When the target is at the beam
center, however, the difference channel amplitude is approxi-
mately zero as can be seen from Figure 1. Then the detection
performance may be deteriorated instead compared with
the sum-only PF-TBD. In fact, through simulation we have
found that when 𝛾 > 0.1, detection performance of the
dual-channel PF-TBD is better. In practical application, the
two methods should be selected according to the scenario
(e.g., whether there is precise angular targeting information),
and the estimation performance should also be taken into
account.

6. Conclusions and Future Work

Using PF-TBD in monopulse high PRF pulse Doppler radar
to improve detection and estimation performances under low
SNR is addressed in this paper. The target and measurement
models are analyzed and defined for this application. Based
on them, a PF-TBD algorithm with resample-move opera-
tions is developed. Extensive simulations have shown that the
proposed algorithm can improve both the detection and esti-
mation performances compared with the classical and sum-
onlymethods. To further improve the detection performance,
binary integration after the PF-TBD is proposed. Simulation
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Figure 7: Estimation results of 𝐴Σ, 𝑓𝑑, and 𝛾. The thick dashed lines show the mean value over 100 Monte Carlo runs. The thin dashed lines
are mean ± one standard deviation.

result shows that it can effectively mitigate the false alarms in
the PF-TBD detection result.

As a byproduct of the PF-TBD algorithm, the estimated
amplitude can be used to predict range eclipsing and to
estimate the SNR. Application of the PF-TBD requires exact
knowledge of the thermal noise power, which can be esti-
mated on-the-fly before the PF-TBD is enabled. For seekers
incorporating multispectral sensors, targeting information
(e.g., angular information of the target, probability of exis-
tence of target in the main beam) from other sensors like
the infrared sensor or the passive radar can be fused easily
as Section 4 has stated.
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