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The numerical integration of the heat diffusion equation applied to the Bi/Si-heterosystem is presented for times larger than
the characteristic time of electron-phonon coupling. By comparing the numerical results to experimental data, it is shown that
the thermal boundary resistance of the interface can be directly determined from the characteristic decay time of the observed
surface cooling, and an elaborate simulation of the temporal surface temperature evolution can be omitted. Additionally, the
numerical solution shows that the substrate temperature only negligibly varies with time and can be considered constant. In this
case, an analytical solution can be found. A thorough examination of the analytical solution shows that the surface cooling behavior
strongly depends on the initial temperature distribution which can be used to study energy transport properties at short delays
after the excitation.
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1. INTRODUCTION

The ultrafast dynamics in a solid subsequent to short pulse
laser irradiation are of great interest yielding insights into
the microscopic processes of the energy transfer between
different degrees of freedom of a solid. After excitation, a
number of relaxation processes lead to the establishment of
a thermal equilibrium in the laser-irradiated solid. Electron-
electron thermalization is a rather fast process taking place
on a subpicosecond timescale [1, 2]. Compared to this, the
heat exchange between the electron and phonon subsystems
is a slow process [3–5]. The nonequilibrium between these
two subsystems can be described by the two-temperature
model [3, 4].

For timescales larger than the electron-phonon cou-
pling time, which typically lies between 1 picosecond and
10 picoseconds, the system can be described by the usual heat
conduction equation:

ρc
∂T
(
�r, t
)

∂t
= ∇·[K∇T(�r, t)] + A

(
�r, t
)

(1)

with ρ and c the specific mass and specific heat capacity,
respectively. In (1), Fourier’s law has been used relating

the heat flux to the temperature-gradient. K is the thermal
conductivity which generally is a tensor. The source term
A(�r, t) represents the heat generation in the solid per unit
time and unit volume subsuming all microscopic steps
from the absorption of a photon to the formation of
the thermal equilibrium between electrons and phonons.
Equation (1) can be solved analytically for simple forms of
A(�r, t) and assuming isotropic media with constant thermal
conductivity K [6].

For heterostructures, the assumption of an isotropic
medium is no longer valid and (1) has to be solved inde-
pendently for the different materials applying appropriate
boundary conditions. It is well known that the boundary
between two materials acts as a barrier to thermal heat
diffusion [7–9]. The heat flow Q̇ across an interface is given
by

Q̇ = 1
RK
·ΔT , (2)

where RK denotes the thermal boundary resistance,
which couples the heat flow across the interface to the
temperature jump ΔT at the interface. If this heat transport
is determined by phonons only, the temperature jump arises
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because phonons incident on the interface are partially
reflected and only a fraction is transmitted across the
interface. The simplest models that can be used to calculate
the phonon transmission probabilities are the acoustic
mismatch model (AMM) and the diffusive mismatch model
(DMM) [7, 8]. If the wavelength of the phonons is larger
than the interface roughness, the AMM can be applied for
the calculation of the transmission coefficient [10]. The
AMM treats phonons as acoustic waves that are reflected
and refracted at the interface. The transmission probability
is calculated by applying the acoustic analog of the Fresnel
equations in optics [11]. In the framework of the DMM,
which applies if the phonon wavelength is comparable
to or smaller than the interface roughness, leading to a
strong diffuse scattering at the interface, the transmission
probability depends on the phonon density of states of
the two adjacent media [7, 8, 10]. In the past, the above
mentioned models have been extended and refined including
lattice-dynamical calculations [12–15], heat transport in
superlattices [16–18], ballistic transport [19], exact phonon
dispersion curves instead of the usually applied Debye-
approximation [20], and electronic contributions to the heat
transport across the interface [21–23]. Recently, the Kapitza-
effect, that is, the formation of a temperature jump at an
interface, has also been observed in molecular dynamics
simulations [24].

The most simple heterosystem which can be studied
is a layered structure of two materials, that is, a thin
film on a substrate. The thermal boundary resistance of
such heterosystems for a large number of different material
combinations and even the heat transport properties of
nanolaminates has been determined in the past using the
time-domain thermoreflectance technique [8, 25–29]. In a
previous study, the temporal surface temperature evolution
of a thin Bismuth-film on a silicon substrate has been
investigated by means of ultrafast electron diffraction [30,
31]. In this technique, a short electron pulse is diffracted
at the surface with variable delays from an initial fs-
laser pulse excitation [32–36]. The surface temperature is
extracted from the diffraction spot intensity, which is affected
by the Debye-Waller-effect. For the Bi/Si-system, it was
observed that the initial temperature increase is followed by
an exponential surface temperature decay. From the decay
time constant, the thermal boundary resistance has been
extracted, which was found to be in good agreement with
values calculated from the AMM and DMM [31]. A direct
determination of the thermal boundary resistance from the
exponential decay time constant, however, is only possible if
the substrate temperature is constant during the experiment
[8]. Generally, (1) has to be solved separately for the two
materials with a thermal boundary resistance as an input
parameter yielding the best agreement between experiment
and simulation [8, 25, 26].

In this paper, we will present numerical simulations
for the temporal evolution of the surface temperature of
Bi films of various thicknesses on a silicon substrate by
applying (1). It will be shown that for the Bi/Si-system,
the thermal boundary resistance can be directly extracted
from the experimentally observed decay constant without

an elaborate comparison of simulations and experimental
data. In addition, an analytical solution for the heat transport
in the Bi/Si-system will be presented and discussed. It will
be shown that the analytical approach well describes the
results of the numerical simulation and observed surface
cooling behavior. Although the discussion presented here is
carried out for the Bi/Si-system, the results are applicable
to other material combinations. That the temporal substrate
temperature changes need to be small compared to the
temperature changes in the film is the only restriction. If
this condition is fulfilled, even information on the heat
transfer mechanisms at times shorter than the electron-
phonon coupling time can even be obtained. This constitutes
a new approach for studying such processes.

2. NUMERICAL STUDY

The numerical integration of (1) is accomplished in a
standard, explicit FTCS-scheme (forward time centered
space) in one dimension, namely, the cross-plane, which in
the following will be referred to as the “z-direction” [37]. The
spatial and temporal discretization are both taken at finite
and constant values obeying the stability criterion for the
numerical integration [37]. In the above mentioned ultrafast
electron diffraction experiment, the probed area (300 μm ×
4 mm) was an order of magnitude smaller than the excited
area (spot size ≈4 mm) resulting in a laterally homogeneous
heating of the probed area. The lateral heat-diffusion is,
therefore, neglected in the following. Additionally, the tensor
properties of the heat diffusion constant K are reduced to
a single, but z -dependent constant in this one-dimensional
treatment.

At the surface the Neumann-type boundary condition,
∇T = 0 has been applied. This condition is valid if no
particles, that is, electrons, atoms, or clusters are leaving
the surface and radiation losses can be neglected. In an
experiment, both conditions can be fulfilled using low
laser excitation energies. In the studied Bi/Si-systems, the
maximum surface temperature was below 300 K, which
means that radiative losses are negligible. Additionally, no
ablation has been observed [30, 31].

At the second boundary, the back side of the sim-
ulated volume, a constant temperature has been applied
(Dirichlet-condition), which can be considered as a heat sink
(thermostat). The effect of this boundary condition on the
temporal surface temperature evolution has been minimized
by choosing a sufficiently large simulation slab.

The source term in (1) for one dimension can be written
as

A(z, t) = I0(1− r)α exp(−αz)q(t), (3)

where α is the inverse absorption length and r the reflection
coefficient for light at a given wavelength λ [4, 6]. q(t) is the
temporal profile for the heat generation, that is, the temporal
profile of the laser pulses. For the simulation, q(t) has been
taken constant for a period of 45 femtoseconds according to
the laser pulse duration used in the experiment. I0 is the
integrated laser-pulse intensity which was set to 8.5 × 1014
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Table 1: Literature values for the material constants used in the
numerical simulation. r is the reflectivity for light of wavelength
800 nm, α is the absorption coefficient, K is the heat conductivity, ρ
and c are the mass density and specific heat, respectively [40].

r (%) α (106m−1) ρ (kg/m3) K (W/(K m)) c (J/(K kg))

Bi 90 58.8 9780 7.9 (a) 122

Si 30 0.077 2328 1000.0 (b) 722
(a) at 300 K.
(b)at 80 K.

W/m2 in the simulation depicting the experimental value.
Note, the above treatment of the source term is only correct
for strong electron-phonon coupling resulting in a thermal
equilibrium of electrons and phonons on a short timescale.
Generally, the two-temperature model has to be applied in
order to obtain the time-dependent temperature distribu-
tions of the electron and phonon subsystems [3, 4, 26]. In
section 3, the effect of strong and weak electron-phonon
coupling on the temporal temperature evolution will be
discussed in more detail. In addition to the application of the
two-temperature model, multiple reflection of light in the
thin film and internal reflection, that is, the dynamic change
of the optical properties during the excitation process, have
to be considered for the initial heating dynamics [38, 39]. As
the main concern of this work is the cooling behavior of thin
Bi-films, we assume the source term (3) to be valid and use
bulk values for the optical constants.

According to (3), the excitation of the Bi/Si-system with
light of wavelength 800 nm results in a temperature jump
at the interface because of the largely different absorption
coefficients of the two materials (cf. Table 1).

At the interface the energy flux is given by (2) which is
taken into account by applying

Kf
∂T f

∂z

∣∣
∣
∣
z=d

= Ks
∂Ts
∂z

∣∣
∣
∣
z=d

= − 1
RK

(
Tf − Ts

)
, (4)

as Neumann-type boundary conditions [25, 26, 37]. In
(4), Tf and Ts are the film- and substrate temperatures,
respectively. Kf and Ks are the heat diffusion constants in
the film and the substrate. The boundary condition (4)
guarantees that no heat is accumulated at the interface: the
heat flow toward the interface equals the heat flow from
the interface into the substrate. Due to the existence of a
Schottky-barrier between Bi and Si and the small density of
states in the interval up to 1.55 eV (energy of the photons
with wavelength 800 nm) above the valence band maximum
in Silicon, the energy transport across the interface by
electrons is neglected [40, 41].

The numerical integration uses literature values for the
material parameters that are tabulated in Table 1. It should
be noted that the material parameters can depend on the
dimension of the material, for example, the film-thickness.
As their thickness dependencies are unknown, we use bulk
values for Bismuth. The thermal boundary resistance is set
to RK = 9.76×10−8 (K m2)/W as experimentally determined
[30, 31]. For all numerical integrations, a starting tempera-
ture of 80 K is used.

In Figure 1, the results of the numerical integration
are shown. Figure 1(a) displays the spatial and temporal
temperature distributions of a 10 nm thin Bi-film. The total
simulation slab dimension in spatial direction was 110 nm,
but for a better representation only the first 30 nm are shown.
The boundary between Bi and Si is clearly visible for all
delays at z = 10 nm. The maximum temperature of the Bi-
film at short delays is 240 K. For larger delays, the Bi-film
cools down due to heat transport across the interface. On
the contrary, the Si-temperature is below 81 K for all times.
As discussed, above the small heat generation in Silicon for
short delays is explained by the three orders of magnitude
smaller absorption coefficient for light of wavelength 800 nm
compared to Bi. In addition, at larger delays heat transmitted
through the interface is efficiently dissipated in the Si-
substrate which has a thermal conductivity that is two
orders of magnitude higher than Bi (cf. Table 1). The silicon
substrate acts as a thermostat and the energy loss in the Bi-
film is given by (2). It has to be noted that the thickness
of the silicon substrate in the simulation dSi = 100 nm
is smaller than the phonon mean free path in silicon
(λSi

Ph ≈ 250 nm) and the validity of Fourier’s law in (1)
is not fulfilled. However, as shown above, the temperature
gradient in the Si-substrate is very small. We found that
larger substrate thicknesses has no effect on the temperature
evolution of the Bi-film reversely justifying the application
of Fourier’s law.

For a comparison with the experiment, the temporal
evolution of the temperature is obtained by taking slices
of the integration slab at the surface layer (z = 0 nm). A
compilation of the time-dependent surface temperature for
different film-thicknesses is displayed in Figure 1(b). The
surface temperature evolution of Bi-films with thicknesses
below ∼100 nm can be divided into two contributions: a
fast temperature decay at short delays followed by a slow
decay for long delays. These different decay behaviors can
be explained by studying the spatial temperature profiles for
different delays.

Figure 2 shows the spatial temperature profiles at 1
picosecond and 6 picoseconds delay of a 10 nm thin Bi-
film. At 1 picosecond delay the temperature distribution
across the film is inhomogeneous. Heat diffusion in the
film drives the system into an equilibrated state with a
homogeneous temperature distribution across the film. For a
10 nm thin Bi-film this state is reached after ∼6 picoseconds
(Figure 2 dashed line). This equilibration-time for heat
diffusion in the film is smaller than the characteristic time
for diffusion obtained from (21) and from [25]. We attribute
this discrepancy to the application of Fourier’s law in (1).
As the phonon mean free path in Bi is λBi

Ph ≈ 13 nm,
the thermal energy transport is overestimated for film-
thicknesses below the phonon mean free path resulting in
a faster surface temperature decay. For such thin films the
Boltzmann transport equations have to be solved which
is beyond the scope of this study. For comparison with
the experiment, we assume that the heat diffusion can be
treated using Fourier’s law because the surface temperature
dynamics for these short timescales is not accessible due to
the limited experimental resolution (cf. Section 4).
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Figure 1: Result of the numerical integration of the heat diffusion equation using literature values and RK = 9.76 × 10−8 (K m2)/W. (a)
shows a temporal and spatial temperature of a 10 nm thin Bi-film on a Si-Substrate. (b) displays the temporal surface temperature (distance
from surface z = 0 nm) evolution for different Bi-film-thicknesses. For all numerical integrations, the thickness of the Si-slab was 100 nm,
but for a better representation only the first 30 nm of the total integration slab are shown in (a). Note, the unusual, nonlinear color scale in
(a) is for descriptive reasons.

With increasing film-thickness, the time required to
establish a homogeneous temperature distribution increases.
Concomitantly, the temperature level of the homogeneous
state decreases as the amount of absorbed energy is dis-
tributed over a larger volume. For larger film-thicknesses,
this results in temporal surface temperature evolutions which
are similar to the surface temperature evolution of a Bismuth
single crystal. In fact, the surface temperature evolution of
the 500 nm thick Bi-film is the same as obtained for a Bi-
single crystal in the displayed range. We conclude that the
fast temperature decay at short delays is governed by heat
diffusion in the film itself.

The evolution at delays after a homogeneous temperature
distribution is formed, follows an exponential behavior.
This is well understood in terms of the thermal boundary
resistance. Rewriting (2) results in

ρcd
∂T f

∂t
= − 1

RK

(
Tf − Ts

)
(5)

with d denoting the film-thickness. ρ and c are the mass
density and heat capacity of the thin film, respectively. For a
constant substrate temperature Ts, the above equation results
in an exponential decay of the film temperature Tf with a
time constant:

τK = cρRKd. (6)

The validity of (6) will be further discussed in section
3. By determining the decay constant, the thermal boundary
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Figure 2: Spatial temperature profiles at 1 picosecond (solid line)
and 6 picoseconds (dashed line) delay of a 10 nm thin Bi-film. The
thermal boundary resistance in the simulation is RK = 9.76 ×
10−8 (K m2)/W. The total simulation slab thickness is 100 nm but
for a better representation only the first 30 nm are shown. At
1 picosecond, a temperature gradient in the Bi-film is still present.
After ∼6 picoseconds the temperature gradient has vanished and
results in a homogeneous spatial temperature distribution.

resistance RK can be extracted from the exponential surface
temperature decay which can also be used to crosscheck
the accuracy of the numerical integration. It turns out that
the value of RK determined from the decay constant of the
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Figure 3: Dependence of the thermal boundary resistance RK extracted from the decay of the surface temperature obtained from the
numerical integration of (1) on (a) the spatial discretization Δz and (b) temporal discretization Δt. The temporal discretization in (a) is
Δt = 0.01 femtosecond. As evident from the figure, the extracted RK linearly depends on the spatial discretization Δz and reaches the input
value only for Δz→0. In (b), the numerical integration is performed with a spatial step-width of Δz = 2 nm. The numerical integration uses
the literature values from Table 1 and RK = 9.76× 10−8 (K m2)/W. The Bi-film-thickness is 10 nm.

numerical simulation critically depends on the size of the
spatial discretization Δz. Figure 3(a) shows a linear rela-
tionship between the extracted thermal boundary resistance
and the spatial discretization. For finite step widths, the
difference between the input value and the extracted value
for the thermal boundary resistance can be up to 25% (for
Δz = 5 nm, cf. Figure 3(a)). Only for Δz→0 the extracted
thermal boundary resistance is equal to the input value. In
contrast, the temporal discretization has a relative influence
on the order of only 10−4 for the extracted thermal boundary
resistance as shown in Figure 3(b). For the simulation, we
used a spatial and temporal discretization of Δz = 0.25 nm
and Δt = 0.01 femtosecond, respectively, which results in a
thermal boundary resistance that is 2% larger than the input
value.

3. ANALYTICAL SOLUTION OF THE HEAT DIFFUSION
EQUATION AFTER EXCITATION

One result of the above numerical simulation is the negligible
temperature variation of the substrate temperature in the
Bi/Si-heterosystem. For this case, that is, thin film on
a substrate with an approximately constant temperature,
an analytical solution can be derived. Consider the one-
dimensional heat diffusion equation after excitation:

∂

∂t
T(z, t) = κ

∂2

∂z2
T(z, t) (7)

with κ = K/(ρc) the diffusivity. Introducing the dimension-
less variables:

θ
(
ξ, t̃
) = T(z, t)− Ts

Ti − Ts
, (8)

ξ = z

d
, t̃ = κt

d2
, σ̃K = d

RKK
, (9)

where Ti is the initial surface temperature (z = 0), Ts
the substrate temperature, and d the film-thickness. For
the derivation of the analytical solution, we apply the
same boundary conditions used in the numerical simulation
which are

∂θ
(
ξ, t̃
)

∂ξ

∣
∣∣
∣
ξ=0

= 0,
∂θ
(
ξ, t̃
)

∂ξ

∣
∣∣
∣
ξ=1

= −σ̃Kθ
(
ξ, t̃
)
. (10)

Standard procedure for solving (7) yields the series
expansion:

θ
(
ξ, t̃
) =

∞∑

n=1

Ene
−λ2

nt̃cos
(
λnξ
)
, (11)

where the Eigenvalues λn are obtained by evaluating the
transcendental equation:

λntan
(
λn
) = σ̃K . (12)

The coefficients En in (11) are determined from the initial
condition θ(ξ, t̃ = 0). Within the scope of this paper,
the initial condition is the state after thermal equilibration
between the electron- and phonon-subsystems. Depending
on the timescale on which the electron-phonon thermal-
ization occurs, two limiting cases can be distinguished
yielding different initial conditions. For weak electron-
phonon coupling, the energy transport at short timescales is
mediated by ballistic electrons resulting in a fast dissipation
of the excitation energy in the film [42]. Provided that
these hot electrons are reflected at the interface and remain
in the film, this results in a homogeneous distribution of
the absorbed energy and the phonon temperature will be
constant across the film

θ
(
ξ, t̃ = 0

) = 1, for 0 < ξ < 1. (13)
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Figure 4: (a) Surface temperature evolution θ(ξ = 0, t̃ = κt/d2)
including the first 200 terms of the analytical solution of the heat
diffusion equation for σ̃K = d/(RKK) = 0.01297, corresponding to
a 10 nm thin Bi-film on an Si-substrate with an initially exponential
(solid line) and constant (dashed line) temperature distribution.
(b) close up view of (a) for 0 < t̃ < 1. In (b), the first expansion
terms θλ1 corresponding to λ1 are separately displayed. (c) Double-
logarithmic plot of Eigenvalues λ1 to λ4 versus σ̃K . The solid and
dotted line represent

√
σ̃K and π/2, respectively.

With this initial condition the coefficients En are given by
[43]

En =
2 sin

(
λn
)

λn + sin
(
λn
)
cos

(
λn
) . (14)

On the other hand, if electron-phonon coupling occurs
on a time scale which is faster than energy dissipation
by hot electrons across the film, the heat generation can
be described by (3) and the initial condition will be an
exponential temperature distribution given by

θ
(
ξ, t̃ = 0

) = e−α̃ξ (15)

with α̃ = αd and α the absorption coefficient used before.
With this temperature distribution, the coefficients En are
given by

En =
2λn
(
α̃
(
1− e−α̃cos (λn)

)
+ λne−α̃sin

(
λn
))

(
α̃2 + λ2

n

)(
λn + sin

(
λn
)
cos

(
λn
)) . (16)

This condition leads to an analytical solution of the heat
diffusion equation that is comparable to the numerical
simulation shown in Figures 1 and 2.

The temporal surface temperature evolution θ(ξ = 0, t̃)
of the analytical solution (11) including the first 200 expan-
sion terms are shown in Figure 4(a) for σ̃K = 0.01297, which
corresponds to a 10 nm thin Bi-film on an Si-substrate. For
t̃ > 1, the surface cooling follows an exponential behavior
with the same decay constant regardless of the temperature
distribution at t̃ = 0. At small t̃, the temperature evolution
strongly depends on the initial condition as can be seen in the
close up view for 0 < t̃ < 1 shown in Figure 4(b). If the initial
temperature distribution is exponential, the result from the
analytical model is equal to the numerical simulation: a
fast temperature decrease (t̃ < 0.3) is followed by a slow
surface cooling. Using the same arguments as above, the fast
temperature decrease is driven by heat diffusion in the film
itself until a homogeneous temperature distribution across
the film is established. Subsequently, the surface cooling
is determined by the heat transport across the interface.
Consequently, an initially already homogeneous temperature
distribution directly results in the slow surface cooling
(Figures 4(a) and 4(b) dashed line).

The similarity of the exponential surface temperature
decay for t̃ > 1 regardless of the initial conditions is explained
by the dominant contribution of first term θλ1 of the series
expansion (11). Independent of the initial condition θλ1

describes the temporal evolution for t̃ > 0.3 as evident
from Figure 4(b). For an initially constant temperature
distribution, θλ1 even describes the surface cooling behavior
for t̃ < 0.3.

From (12), it is seen that the Eigenvalues λn are only
determined by σ̃K . The dependence of the Eigenvalues λ1 to
λ4 are shown in Figure 4(c), which explains the dominant
contribution of θλ1 to the series expansion for t̃ > 0.3. For
σ̃K < 1, λ1 is more than an order of magnitude smaller,
and for σ̃K > 1, λ1 is at least a factor of 3 smaller than the
other Eigenvalues. On basis of this observation, the transient
surface temperature evolution can be described with a single
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exponential decay characterized by a decay constant (cf.
(11)):

τ̃ = 1
λ2

1
. (17)

Figure 4(c) shows that within 5%, the Eigenvalue λ1 is equal
to
√
σ̃K for σ̃K < 1 (thick solid line). Using (9) and (17), the

decay constant of the surface cooling τK is given by

τK = τ̃·d
2

κ
= 1
σ̃K
· d2

K/cρ
= cρRKd, (18)

which is the same result as stated previously by (6). This
means that for a given set of constants ρ, c, and RK , the decay
constant linearly depends on the film-thickness as long as
σ̃K < 1 is fulfilled. The upper limit for the film-thickness is

1 > σ̃K = d

RKK
−→ d < RKK = lK (19)

with the Kapitza-length lK defined previously [9, 44]. The
Kapitza-length is a measure for the thermal resistance of
the interface in terms of the thermal resistance of a perfect
crystal. In the case of a thin Bi-film on an Si-substrate lK =
770 nm using literature value for the thermal conductance
K and the experimentally determined thermal boundary
resistance RK . This means that the temperature difference on
the two sides of the interface is the same as the temperature
difference of a stationary temperature profile between two
sites in bulk-Bi that are 770 nm apart.

For σ̃K > 1, the Eigenvalue λ1 asymptotically reaches the
value π/2 (cf. Figure 4 thick dotted line). In this limit, the
decay-constant quadratically depends on the film-thickness,
but is independent of the thermal boundary resistance RK :

τDiff = 4
π2
·d

2

κ
= 4
π2

cρ

K
d2. (20)

The decay constant obtained by (20) is associated with the
heat diffusion in the film itself.

The condition σ̃K < 1 implies a lower limit of the decay
constant τK for the temperature decay which is determined
by the heat transport across the interface (cf. (18)):

τK >
cρ

K
d2 > τDiff, (21)

which is the same result as previously stated [25]: the
thermal boundary resistance can be extracted from the
temperature decay if the decay constant associated with the
heat transport across the interface is larger than the time
constant of the heat diffusion in the film itself. By comparing
(19) and (21), this means that the film-thickness has to be
smaller than the Kapitza-length lK , otherwise the surface
cooling behavior is determined by the heat diffusion in the
film.

The transition from a surface cooling that is determined
by the heat transport across the interface to a surface cooling
which is driven by heat diffusion in the film itself can also be
seen in the numerical results (Figure 1) at a film-thickness on
the order of the Kapitza-length.
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Figure 5: Comparison of the simulation result and experimental
data for a 10.4 nm thin Bi-film deposited on a Si(001) substrate.
The experimental data are obtained from the temporal evolution of
the (01)-spot intensity that is converted to a temperature using the
Debye-Waller-effect [30, 31]. An exponential fit to the experimental
data yields the decay constant τexp = (1205 ± 70) picoseconds.
Convolving the numerical result with a rectangular function of
70 picoseconds width has no influence on the time constant which
is τsim = 1187 picoseconds for the 10.4 nm thin Bi-film.

As an example, for a 10-nm-thin Bi-film τK must
be larger than 15 picoseconds which is well below the
time constant of the numerical simulation of τsim =
1187 picoseconds and the experimentally observed value
τexp = 1205 picoseconds (cf. Section 4). The condition that
the thermal boundary resistance can only be extracted from
the surface temperature decay for delays with t̃ > 0.3
corresponds to 5 picoseconds for a 10 nm thin Bi-film.

4. COMPARISON OF NUMERICAL RESULTS
AND EXPERIMENT

In Figure 5, an example of the temporal surface tempera-
ture evolution of a 10.4 nm thin Bi-film deposited on an
Si(001) substrate at 300 K is shown. The transient surface
temperature evolution is obtained from the (01)-diffraction
spot by means of ultrafast electron diffraction [30, 31]. An
exponential fit to the data (dashed line in Figure 5) yields a
time constant for the decay of τexp = (1205±70) picoseconds.
As discussed above, the thermal boundary resistance can
be determined from the decay constant which yields RK =
(9.7±0.6)×10−8 (K m2)/W using bulk values for c and ρ (cf.
Table 1). Within the error this value is the same as previously
determined from the surface temperature decay of a 5.5 nm
thin Bi-film [30, 31].

The result of the numerical integration is also shown in
Figure 5 (dash-dotted curve). In order to account for the
finite temporal resolution of the experiment, the result of
the numerical integration has been convoluted with a boxed
shaped function. The temporal resolution in the experiment
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Figure 6: Surface temperature evolution θ(0, t) for a 50 nm thick
Bi-film (σ̃K = 0.065). The curves are obtained by convolving the
results from the analytical solution with a rectangular function of
70 picoseconds width in order to account for the limited temporal
resolution of the experiment (see text for detailed discussion).
Compared to the fast decay at short times resulting from the model
with an initially exponential temperature distribution, the surface
of a homogeneously heated film cools down exponentially with
a time-constant τ = 5823 picoseconds. For delays larger than
200 picoseconds, both models yield the same exponential decay.

is limited by the velocity mismatch between the probing
electrons at grazing incidence and the pumping laser pulses
at normal incidence [30]. During the travel time of the elec-
trons across the surface, the resulting measured temperature
is an average over the travel time which is 70 picoseconds
for the above shown experiment (electron energy: 7 keV,
sample width: 3 mm, incident angle: 5◦). Convolution with
a rectangular function assumes that any spot of the sample
is probed with an equal number of electrons. Note, this
procedure gives an upper limit for the temporal resolution. If
the electron distribution is inhomogeneous across the sam-
ple width, the temporal resolution is increased because the
major part of the electrons is diffracted from a smaller area
of the sample. The transient temperature evolution obtained
from the convolution of the simulation with a box-shaped
function is also displayed in Figure 5 (solid line). Apart from
the region of the initial temperature increase at short delays,
both sets are similar and the surface temperature decays with
a time constant of τsim = 1187 picoseconds which agrees with
the experimentally determined value τexp.

The differences between the convoluted and original
temperature profiles at small delays are two-fold. One
is the linear increase of the surface temperature of the
convoluted profile compared to the step-like increase of the
unconvoluted profile. The other is, the fast decrease of the
surface temperature for small delays, driven by heat diffusion
in the film itself, is leveled out by the convolution. For thicker
films, however, the fast temperature decay for small delays
is still present even after convolution with a 70 picoseconds
wide rectangular function which is demonstrated in Figure 6.

Figure 6 compares the temperature evolution of 50 nm
thick Bi-film, σ̃K = 0.065, obtained from the analytical
solution of the heat diffusion equation with the two dif-
ferent initial conditions, that is, exponential and constant
initial temperature distribution. To account for the finite
experimental temporal resolution, the two results have been
convolved with a rectangular function of 70 picoseconds
width. For delays larger than 200 picoseconds, corresponding
to t̃ > 0.53, both evolutions follow an exponential decay
with time-constant τ = 5823 picoseconds. Evidently, the
cooling behavior for delays below 200 picoseconds drastically
depends on the initial condition. An initially constant tem-
perature distribution results in the slow exponential decay
similar to delays larger than 200 picoseconds. Compared
to this slow cooling, the surface temperature drops much
faster if the initial temperature distribution is exponential
since heat diffusion in the film itself dominates the cooling
behavior at these short delays.

From the discussion of the initial condition in section
3, the two different surface cooling behaviors can be used
to gain information on the energy transport at short times
after the excitation. If the electron and phonon subsystems
are weakly coupled, the main transport mechanism is via hot
electrons resulting in homogeneously heating of the phonon
system. In the limit of an instantaneous electron to phonon
energy transfer, the phonon subsystem is expected to be
an exponential temperature distribution across the film. To
study this property, further experiments with varying film-
thicknesses are in progress.

5. SUMMARY

In conclusion, we have applied the one-dimensional heat
diffusion model to the heterosystem of a thin Bi-film on an
Si-substrate. The numerical integration was carried out for
timescales larger than the typical electron-phonon coupling
times when the two subsystems are in thermal equilibrium.
The Bi-surface temperature has been determined for differ-
ent film-thicknesses. For film-thicknesses below 100 nm, the
surface cooling is characterized by two different timescales.
For short delays after the initial heat pulse, the surface
cooling is dominated by thermal diffusion in the film
resulting in a homogeneous temperature distribution across
the film. Subsequently, the surface temperature evolution
is determined by the heat transport across the interface
resulting in a slow exponential temperature decay. For
these films, the decay constant linearly depends on the
film-thickness. For film-thicknesses larger than 100 nm, the
surface cooling is virtually determined by the heat diffusion
in the film itself.

Because of its thermal properties, the silicon substrate
temperature stays constant for all delays, which allows the
derivation of an analytical solution for the heat diffusion
equation. The examination of the analytical solution shows
that the linear dependence of the decay-constant is valid
up to film-thicknesses on the order of the Kapitza-length.
For thicknesses larger than the Kapitza-length, it is shown
that the decay-constant quadratically depends on the film-
thickness and the thermal boundary resistance cannot be
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determined from surface temperature decay. Additionally,
the analytical study yields insight into the initial dynamics
of energy dissipation. Two limiting cases were studied:
strong versus weak electron-phonon coupling. These two
cases result in different initial temperature distributions
across the film which have a strong effect on the surface
cooling behavior. We have shown that for certain sets of
parameters, the experimentally obtained temporal resolution
is sufficient to resolve the initial surface cooling behavior and
we motivate further experimental studies on the ultrashort
dynamics of energy dissipation. Due to its large Kapitza-
length, the Bi/Si-heterosystem is an ideal candidate for such
studies.
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