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A hybrid optimization algorithm combining finite state method (FSM) and genetic algorithm (GA) is proposed to solve the crude
oil scheduling problem. The FSM and GA are combined to take the advantage of each method and compensate deficiencies of
individual methods. In the proposed algorithm, the finite state method makes up for the weakness of GA which is poor at local
searching ability. The heuristic returned by the FSM can guide the GA algorithm towards good solutions. The idea behind this
is that we can generate promising substructure or partial solution by using FSM. Furthermore, the FSM can guarantee that the
entire solution space is uniformly covered. Therefore, the combination of the two algorithms has better global performance than
the existing GA or FSM which is operated individually. Finally, a real-life crude oil scheduling problem from the literature is used
for conducting simulation. The experimental results validate that the proposed method outperforms the state-of-art GA method.

1. Introduction

In recent years refineries have to explore all potential cost-
saving strategies due to intense competition arising from
fluctuating product demands and ever-changing crude prices.
Scheduling of crude oil operations is a critical task in the
overall refinery operations [1–3]. Basically, the optimiza-
tion of crude oil scheduling operations consists of three
parts [4]. The first part involves the crude oil unloading,
mixing, transferring, and multilevel crude oil inventory
control process. The second part deals with fractionation,
reaction scheduling, and a variety of intermediate product
tanks control. The third part involves the finished product
blending and distributing process. In this paper, we focus
on the first part, as it is a critical component for refinery
scheduling operations. Scheduling of crude oil problem is
often formulated as mixed integer nonlinear programming
(MINLP)models [2, 5, 6].The solution approaches for solving
MINLP can be roughly divided into two categories [7]:
deterministic approaches and stochastic approaches. Some
deterministic methods have been available for many years
[8]. These methods require the prior step of identification

and elimination of nonconvexity and decompose the MINLP
models into relevant nonlinear programming (NLP) and
mixed integer linear programming (MILP) and then these
subproblems have to be iteratively solved.Themost common
algorithms are branch and bound [9], outer-approximation
[10], generalized benders decomposition [11], and so forth.
Also, some commercial MINLP solvers have been developed
for solving the problem at hand optimally [12]. However,
the commercial solver can only handle MINLPs with special
properties. The other stream of global optimization is the
stochastic algorithms, for example, simulated annealing (SA),
GA, and their variants [7]. GA proposed by Holland [13],
because of their simple concept, easy scheme, and the global
search capability independent of gradient information, have
been developed rapidly. Much other attention is given to
the development of GA for MINLP. For instance, Yokota
et al. developed a penalty function that is suitable for solving
MINLP problems [14]. Costa and Oliveira also implemented
another type of penalty function to solve various MINLP
problems, including industrial-scale problems [15].They also
noted that the evolutionary approach is efficient, in terms
of the number of function evaluations, and is very suitable
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to handle the difficulties of the nonconvexity. Going one
step further, some mixed coding methods were proposed,
which include mixed-coding genetic algorithm [15] and
information-guided genetic algorithm (IGA). Ponce-Ortega
et al. [16] proposed a two-level approach based on GA to
optimize the heat exchanger networks (HENs). The outer
level is used to perform the structural optimization, for which
a binary GA is used. Björk and Nordman [17] showed that
the GA is very suitable to solve a large-scale heat exchanger
network.

Obviously, the two different approaches previously dis-
cussed have their own advantages and disadvantages. On
the one hand, a deterministic approach usually involves
considerable algebra and undeviating analysis to the problem
itself, whereas the evolutionary approach does not have this
property. On the other hand, some deterministic approaches,
such as mathematical programming, usually cannot provide
practical solutions in reasonable time, whereas the evolution-
ary approach can generate satisfying solutions. In this work,
a novel genetic algorithm which combined the finite state
method and GA is proposed to solve crude oil scheduling
problem. A MINLP model is formulated based on the
single-operation sequencing (SOS) time representation. A
deterministic finite automation (DFA) model which captures
valid possible schedule sequences is constructed based on the
sequencing rules. The initialization and mutation operation
of GA is based on the model which builds legal schedules
complying with sequencing rules and operation condition.
Thus, the search space of the algorithm is substantially
reduced as only legal sequence is explored. The rest of the
paper is organized as follows: the MINLP model is specified
in Section 2. Section 3 reviews the background of finite
state theory. In Section 4, a novel genetic algorithm which
combined the finite statemethod andGA is proposed to solve
the MINLP model. A test problem is studied to verify our
approach in Section 5. In the last section, conclusive remarks
are given.

2. Mathematic Model

In this section, the MINLP model of refinery crude oil
scheduling problem is described [18]. This problem has been
widely studied from the optimization viewpoint since the
work of Lee et al. [19]. It consists of crude oil unloading
from marine vessels to storage tanks, transfer and blending
between tanks, and distillation of crude mixtures. The goal
is to maximize profit and meet distillation demands for each
type of crude blend (e.g., low sulfur or high sulfur blends),
while satisfying unloading and transfer logistics constraints,
inventory capacity limitations, and property specifications for
each blend. The logistics constraints involve nonoverlapping
constraints between crude oil transfer operations.

2.1. Sets. The following sets will be used in the model.

(i) 𝑇 = {1, . . . , 𝑛} is the set of priority-slots;
(ii) 𝑊 is the set of all operations:𝑊 ≜ 𝑊

𝑈
∪𝑊
𝑇
∪𝑊
𝐷
;

(iii) 𝑊
𝑈
⊂ 𝑊 is the set of unloading operations;

(iv) 𝑊
𝑇
⊂ 𝑊 is the set of tank-to-tank transfer opera-

tions;

(v) 𝑊
𝐷
⊂ 𝑊 is the set of distillation operations;

(vi) 𝑅 is the set of all operations: 𝑅 = 𝑅
𝑉
∪ 𝑅
𝑆
∪ 𝑅
𝐶
∪ 𝑅
𝐷
;

(vii) 𝑅
𝑉
⊂ 𝑅 is the set of vessels;

(viii) 𝑅
𝑆
⊂ 𝑅 is the set of storage tanks;

(ix) 𝑅
𝐶
⊂ 𝑅 is the set of charging tanks;

(x) 𝑅
𝐷
⊂ 𝑅 is the set of distillation units;

(xi) 𝐼
𝑟
⊂ 𝑊 is the set of inlet transfer operations on

resource 𝑟;

(xii) 𝑂
𝑟
⊂ 𝑊 is the set of outlet transfer operations on

resource 𝑟;

(xiii) 𝐶 is the set of products (i.e., crudes);

(xiv) 𝐾 is the set of product properties (e.g., crude sulfur
concentration).

2.2. Parameters. Parameters used in the paper are defined
below:

(i) 𝐻 is the scheduling horizon;

(ii) [𝑉𝑡V , 𝑉𝑡V ] are bounds on the total volume transferred
during transfer operation 𝑉; in all instances, 𝑉𝑡V = 0

for all operations except unloading for which𝑉𝑡V = 𝑉𝑡V
is the volume of crude in the marine vessel;

(iii) [𝑁
𝐷
, 𝑁
𝐷
] are the bounds on the number of distilla-

tions;

(iv) [𝐹𝑅V, 𝐹𝑅V] are flow rate limitations for transfer oper-
ation V;

(v) 𝑆
𝑟
is the arrival time of vessel 𝑟;

(vi) [𝑥V𝑘, 𝑥V𝑘] are the limits of property 𝑘 of the blended
products transferred during operation V;

(vii) 𝑥
𝑐𝑘
is the value of the property 𝑘 of crude 𝑐;

(viii) [𝐿𝑡
𝑟
, 𝐿𝑡
𝑟
] are the capacity limits of tank 𝑟;

(ix) [𝐷
𝑟
, 𝐷
𝑟
] are the bounds of the demand on products

to be transferred out of the charging tank 𝑟 during the
scheduling horizon;

(x) 𝐺
𝑐
is the gross margin of crude 𝑐.

2.3. Variables

2.3.1. Assignment Variables

𝑍
𝑖V ∈ {0, 1} , 𝑖 ∈ 𝑇, V ∈ 𝑊. (1)

𝑍
𝑖V = 1 if operation V is assigned to priority-slot 𝑖; 𝑍

𝑖V = 0

otherwise.
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2.3.2. Time Variables

𝑆
𝑖V ≥ 0, 𝐷

𝑖V ≥ 0, 𝑖 ∈ 𝑇, V ∈ 𝑊. (2)

𝑆
𝑖V is the start time of operation V if it is assigned to priority
slot 𝑖; 𝑆

𝑖V = 0 otherwise.
𝐷
𝑖V is the duration of operation V if it is assigned to

priority slot 𝑖;𝐷
𝑖V = 0 otherwise.

2.3.3. Operation Variables

𝑉
𝑡

𝑖V ≥ 0, 𝑉
𝑖V𝑐 ≥ 0, 𝑖 ∈ 𝑇, V ∈ 𝑊, 𝑐 ∈ 𝐶. (3)

𝑉
𝑡

𝑖V is the total volume of crude transferred during operation
V if it is assigned to priority slot 𝑖; 𝑉𝑡

𝑖V = 0 otherwise.
𝑉
𝑖V𝑐 is the volume of crude 𝑐 transferred during operation

V if it is assigned to priority slot 𝑖; 𝑉
𝑖V𝑐 = 0 otherwise.

2.3.4. Resource Variables

𝐿
𝑡

𝑖𝑟
, 𝐿
𝑖𝑟𝑐
, 𝑖 ∈ 𝑇, 𝑟 ∈ 𝑅, 𝑐 ∈ 𝐶. (4)

𝐿
𝑡

𝑖𝑟
is the total accumulated level of crude in tank 𝑟 ∈ 𝑅

𝑆
∪𝑅
𝐶

before the operation was assigned to priority-slot 𝑖.
𝐿
𝑖𝑟𝑐

is the accumulated level of crude 𝑐 in tank 𝑟 ∈ 𝑅
𝑆
∪𝑅
𝐶

before the operation was assigned to priority-slot 𝑖.

2.4. Objective Function. The objective is to maximize the
gross margins of the distilled crude blends. Let 𝐺

𝑐
be the

individual gross margin of crude 𝑐,

max∑
𝑖∈𝑇

∑

𝑟∈𝑅𝐷

∑

V∈𝐼𝑟

∑

𝑐∈𝐶

𝐺
𝑐
⋅ 𝑉
𝑖V𝑐. (5)

2.5. General Constraints. It should be noted that the crude
composition of blends in tanks is tracked instead of their
properties.The distillation specifications are later enforced by
calculating a posteriori the properties of the blend in terms
of its composition. For instance, in the problem, a blend
composed of 50% of crude A and 50% of crude B has a sulfur
concentration of 0.035 which does not meet the specification
for crude mix X nor for crude mix Y.

2.5.1. Assignment Constraints. In the SOS model, exactly one
operation has to be assigned to each priority slot,

∑

V∈𝑊
𝑍
𝑖V = 1, 𝑖 ∈ 𝑇. (6)

2.5.2. Variable Constraints. Variable constraints are given by
their definitions. Start time, duration, and global volume
variables are defined with big-𝑀 constraints,

𝑆
𝑖V + 𝐷𝑖V ≤ 𝐻 ⋅ 𝑍

𝑖V, 𝑖 ∈ 𝑇, V ∈ 𝑊,

𝑉
𝑡

𝑖V ≤ 𝑉
𝑡

V ⋅ 𝑍𝑖V, 𝑖 ∈ 𝑇, V ∈ 𝑊,

𝑉
𝑡

𝑖V ≥ 𝑉
𝑡

V ⋅ 𝑍𝑖V, 𝑖 ∈ 𝑇, V ∈ 𝑊.

(7)

Crude volume variables are positive variables whose sum
equals the corresponding total volume variable,

∑

𝑐∈𝐶

𝑉
𝑖V𝑐 = 𝑉

𝑡

𝑖V. (8)

Total and crude level variables are defined by adding to
the initial level in the tank all inlet and outlet transfer volumes
of operations of higher priority than the considered priority
slot,

𝐿
𝑡

𝑖𝑟
= 𝐿
𝑡

0𝑟
+ ∑

𝑗∈𝑇,𝑗<𝑖

∑

V∈𝐼𝑟

𝑉
𝑡

𝑖V − ∑

𝑗∈𝑇,𝑗<𝑖

∑

V∈𝑂𝑟

𝑉
𝑡

𝑖V,

𝑖 ∈ 𝑇, 𝑟 ∈ 𝑅,

(9)

𝐿
𝑖𝑟𝑐
= 𝐿
𝑜𝑟𝑐

+ ∑

𝑗∈𝑇,𝑗<𝑖

∑

V∈𝐼𝑟

𝑉
𝑖V𝑐 − ∑

𝑗∈𝑇,𝑗<𝑖

∑

V∈𝑂𝑟

𝑉
𝑖V𝑐,

𝑖 ∈ 𝑇, 𝑟 ∈ 𝑅, 𝑐 ∈ 𝐶.

(10)

2.5.3. Sequencing Constraints. Sequencing constraints
restrict the set of possible sequences of operations.
Cardinality and unloading sequence constraints are specific
cases of sequencing constraints. More complex sequencing
constraints will also be discussed later.

2.5.4. Cardinality Constraint. Each crude oil marine vessel
has to unload its content exactly once.∑

𝑖∈𝑇
∑V∈𝑂𝑟 𝑍𝑖V = 1, 𝑟 ∈

𝑅
𝑉
.The total number of distillation operations is bounded by

𝑁
𝐷
and𝑁

𝐷
in order to reduce the cost of CDU switches,

𝑁
𝐷
≤ ∑

𝑖∈𝑇

∑

V∈𝑊𝐷

𝑍
𝑖V ≤ 𝑁𝐷. (11)

2.5.5. Unloading Sequence Constraint. Marine vessels have to
unload in order of arrival to the refinery. Considering two
vessels 𝑟

1
, 𝑟
2
∈ 𝑅
𝑉
,𝑟
1
< 𝑟
2
signifies that 𝑟

1
unloads before 𝑟

2
,

∑

𝑗∈𝑇,𝑗<𝑖

∑

V∈𝑂𝑟2

𝑍
𝑗V + ∑

𝑗∈𝑇,𝑗≥𝑖

∑

V∈𝑂𝑟1

𝑍
𝑗V ≤ 1. (12)

2.5.6. Scheduling Constraints. Scheduling constraints restrict
the values taken by time variables according to logistics rules.

2.5.7. Nonoverlapping Constraint. A nonoverlapping con-
straint between two sets of operations𝑊

1
⊂ 𝑊 and𝑊

2
⊂ 𝑊

states that any pair of operations (V
1
, V
2
) ⊂ 𝑊

1
×𝑊
2
must not

be executed simultaneously.
Unloading operations must not overlap,

∑

V∈𝑊𝑈

(𝑆
𝑖V + 𝐷𝑖V) ≤ ∑

V∈𝑊𝑈

𝑆
𝑗V + 𝐻 ⋅ (1 − ∑

V∈𝑊𝑈

𝑍
𝑗V) ,

𝑖, 𝑗 ∈ 𝑇, 𝑖 < 𝑗.

(13)
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Inlet and outlet transfer operations on a tank must not
overlap,

∑

V∈𝐼𝑟

(𝑆
𝑖V + 𝐷𝑖V) ≤ ∑

V∈𝑂𝑟

𝑆
𝑗V + 𝐻 ⋅ (1 − ∑

V∈𝑂𝑟

𝑍
𝑗V) ,

𝑖, 𝑗 ∈ 𝑇, 𝑖 < 𝑗, 𝑟 ∈ 𝑅
𝑆
∪ 𝑅
𝐶
,

∑

V∈𝑂𝑟

(𝑆
𝑖V + 𝐷𝑖V) ≤ ∑

V∈𝐼𝑟

𝑆
𝑗V + 𝐻 ⋅ (1 − ∑

V∈𝐼𝑟

𝑍
𝑗V) ,

𝑖, 𝑗 ∈ 𝑇, 𝑖 < 𝑗, 𝑟 ∈ 𝑅
𝑆
∪ 𝑅
𝐶
.

(14)

Although we do not consider crude settling in storage
tanks after vessel unloading, it could be included in themodel
with amodified version of constraint (14) taking into account
transition times. We define TR

𝑉
as the transition time after

unloading operation V ∈ 𝑊
𝑈

and TR as the maximum
transition time, TR = maxV∈𝑊𝑈TR𝑉

∑

V∈𝐼𝑟

(𝑆
𝑖V + 𝐷𝑖V + TRV ⋅ 𝑍𝑖V)

≤ ∑

V∈𝑂𝑟

𝑆
𝑗V + (𝐻 + TR) ⋅ (1 − ∑

V∈𝑂𝑟

𝑍
𝑗V) .

(15)

Constraint (15) is valid in the four possible cases:

(∃V
1
∈ 𝐼
𝑟
, 𝑍
𝑖V1 = 1)

∧ (∃V
2
∈ 𝑂
𝑟
, 𝑍
𝑗V2 = 1) ⇒ 𝑆

𝑖V + 𝐷𝑖V1 + TRV1 ≤ 𝑆𝑗V2 ,

(∃V
1
∈ 𝐼
𝑟
, 𝑍
𝑖V1 = 1)

∧ (⋁ V
2
∈ 𝑂
𝑟
, 𝑍
𝑗V2 = 1) ⇒ 𝑆

𝑖V + 𝐷𝑖V1 ≤ 𝐻 + TR − TRV1 ,

(⋁ V
1
∈ 𝐼
𝑟
, 𝑍
𝑖V1 = 0)

∧ (∃V
2
∈ 𝑂
𝑟
, 𝑍
𝑗V2 = 1) ⇒ 0 ≤ 𝑆

𝑗V2 ,

(⋁ V
1
∈ 𝐼
𝑟
, 𝑍
𝑖V1 = 0)

∧ (⋁ V
2
∈ 𝑂
𝑟
, 𝑍
𝑗V2 = 0) ⇒ 0 ≤ 𝐻 + TR.

(16)

A tank may charge only one CDU at a time,

∑

V∈𝑂𝑟

(𝑆
𝑖V + 𝐷𝑖V) ≤ ∑

V∈𝑂𝑟

𝑆
𝑗V + 𝐻 ⋅ (1 − ∑

V∈𝑂𝑟

𝑍
𝑗V) ,

𝑖, 𝑗 ∈ 𝑇, 𝑖 < 𝑗, 𝑟 ∈ 𝑅
𝐶
.

(17)

A CDUmay be charged by only one tank at a time,

∑

V∈𝐼𝑟

(𝑆
𝑖V + 𝐷𝑖V) ≤ ∑

V∈𝐼𝑟

𝑆
𝑗V + 𝐻 ⋅ (1 − ∑

V∈𝐼𝑟

𝑍
𝑗V) ,

𝑖, 𝑗 ∈ 𝑇, 𝑖 < 𝑗, 𝑟 ∈ 𝑅
𝐷
.

(18)

To avoid schedules in which a transfer is being performed
twice at a time, thus possibly violating the flow rate limita-
tions, constraint (19) is included in the model,

𝑆
𝑖V + 𝐷𝑖V ≤ 𝑆𝑗V + 𝐻 ⋅ (1 − 𝑍

𝑗V) , 𝑖, 𝑗 ∈ 𝑇, 𝑖 < 𝑗, V ∈ 𝑊.
(19)

2.5.8. Continuous Distillation Constraint. It is required that
CDUs operate without interruption. As CDUs perform only
one operation at a time, the continuous operation constraint
is defined by equating the sum of the duration of distillations
to the time horizon,

∑

𝑖∈𝑇

∑

V∈𝐼𝑟

𝐷
𝑖V = 𝐻, 𝑟 ∈ 𝑅

𝐷
. (20)

2.5.9. Resource Availability Constraint. Unloading of crude
oil vessels may start only after arrival to the refinery. Let 𝑆

𝑟

be the arrival time of vessel 𝑟,

𝑆
𝑖V ≥ 𝑆𝑟 ⋅ 𝑍𝑖V, 𝑖 ∈ 𝑇, 𝑟 ∈ 𝑅V, V ∈ 𝑂𝑟. (21)

2.5.10. Operation Constraints. Operation constraints restrict
the values taken by operation and time variables according to
operational rules.

2.5.11. Flow Rate Constraint. The flow rate of transfer opera-
tion V is bounded by FRV and FRV

FRV ⋅ 𝐷𝑖V ≤ 𝑉
𝑡

𝑖V ≤ FRV ⋅ 𝐷𝑖V, 𝑖 ∈ 𝑇, V ∈ 𝑊. (22)

2.5.12. Property Constraint. The property 𝑘 of the blended
products transferred during operation V is bounded by
𝑥V𝑘 and 𝑥V𝑘. The property 𝑘 of the blend is calculated from
the property 𝑥

𝑐𝑘
of crude 𝑐 assuming that the mixing rule is

linear,

𝑥V𝑘 ⋅ 𝑉
𝑡

𝑖V ≤ ∑

𝑐∈𝐶

𝑥
𝑐𝑘
𝑉
𝑖V𝑐 ≤ 𝑥V𝑘 ⋅ 𝑉

𝑡

𝑖V, 𝑖 ∈ 𝑇, V ∈ 𝑊, 𝑘 ∈ 𝐾.

(23)

2.5.13. Composition Constraint. It has been shown that pro-
cesses including both mixing and splitting of streams cannot
be expressed as a linear model. Mixing occurs when two
streams are used to fill a tank and is expressed linearly in
constraint (10). Splitting occurs when partially discharging a
tank, resulting in two parts: the remaining content of the tank
and the transferred products. This constraint is nonlinear.
The composition of the products transferred during a transfer
operation must be identical to the composition of the origin
tank,

𝐿
𝑖𝑟𝑐

𝐿
𝑡

𝑖𝑟

=
𝑉
𝑖V𝑐

𝑉
𝑡

𝑖V
, 𝑖 ∈ 𝑇, 𝑟 ∈ 𝑅, V ∈ 𝑂

𝑟
, 𝑐 ∈ 𝐶. (24)

Constraint (24) is reformulated as an equation involving
bilinear terms,

𝑉
𝑖V𝑐 ⋅ 𝐿
𝑡

𝑖𝑟
= 𝐿
𝑖𝑟𝑐
⋅ 𝑉
𝑡

𝑖V, 𝑖 ∈ 𝑇, 𝑟 ∈ 𝑅, V ∈ 𝑂
𝑟
, 𝑐 ∈ 𝐶. (25)
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Figure 1: Crude oil operations system for the problem.

Note that constraint (25) is correct even when operation
V is not assigned to priority-slot 𝑖, as then

𝑉
𝑡

𝑖V = 𝑉𝑖V𝑐 = 0. (26)

2.5.14. Resource Constraints. Resource constraints restrict the
use of resources throughout the scheduling horizon.

2.5.15. Tank Capacity Constraint. The level of materials in
the tank 𝑟 must remain between minimum and maximum
capacity limits 𝐿𝑡

𝑟
and 𝐿𝑡

𝑟
, respectively. Let 𝐿𝑡

0𝑟
be the initial

total level and let 𝐿
0𝑟𝑐

be the initial level of crude 𝑐 in the
tank 𝑟. As simultaneous charging and discharging of tanks is
forbidden, the following constraints are sufficient:

𝐿
𝑡

𝑟
≤ 𝐿
𝑡

𝑖𝑟
≤ 𝐿𝑡
𝑟
, 𝑖 ∈ 𝑇, 𝑟 ∈ 𝑅

𝑆
∪ 𝑅
𝐶
,

0 ≤ 𝐿
𝑖𝑟𝑐
≤ 𝐿𝑡
𝑟
, 𝑖 ∈ 𝑇, 𝑟 ∈ 𝑅

𝑆
∪ 𝑅
𝐶
, 𝑐 ∈ 𝐶,

𝐿
𝑡

𝑟
≤ 𝐿
𝑡

0𝑟
+ ∑

𝑖∈𝑇

∑

V∈𝐼𝑟

𝑉
𝑡

𝑖V − ∑

𝑖∈𝑇

∑

V∈𝑂𝑟

𝑉
𝑡

𝑖V ≤ 𝐿
𝑡

𝑟
,

𝑟 ∈ 𝑅
𝑆
∪ 𝑅
𝐶
,

0 ≤ 𝐿
0𝑟𝑐

+ ∑

𝑖∈𝑇

∑

V∈𝐼𝑟

𝑉
𝑖V𝑐 − ∑

𝑖∈𝑇

∑

V∈𝑂𝑟

𝑉
𝑖V𝑐 ≤ 𝐿

𝑡

𝑟
,

𝑟 ∈ 𝑅
𝑆
∪ 𝑅
𝐶
, 𝑐 ∈ 𝐶.

(27)

2.5.16. DemandConstraint. Demand constraints define lower
and upper limits, 𝐷

𝑟
and 𝐷

𝑟
, on total volume of products

transferred out of each charging tank 𝑟 during the scheduling
horizon,

𝐷
𝑟
≤ ∑

𝑖∈𝑇

∑

V∈𝑂𝑟

𝑉
𝑡

𝑖V ≤ 𝐷𝑟, 𝑟 ∈ 𝑅
𝐶
. (28)

3. Finite State Theory

This section presents in a somewhat informal way those basic
notions and definitions from formal language and finite state
theories, which are relevant for the sections to follow. Related
definitions are taken from literature [20, 21]. Readers, who
are unfamiliar with formal language theory, are advised to
consult the sources whenever necessary.

0 1

2

3

44a

b b

bc

Figure 2: A deterministic finite state automaton (DFA).

0 1

2

3

4

o: "a"

d: "c"

o: "o" o: "o"

g: "t"

Figure 3: Finite state transducer encoding the relation {(dog, cat),
(dog, cow)}.

3.1. Finite State Automata. A DFA is a 5-tuple (𝑄, Σ, 𝛿, 𝑖, 𝐹),
where𝑄 is a set of states, Σ is an alphabet, 𝑖 is the initial state,
𝐹 ⊆ 𝑄 is a set of final states, and 𝛿 is a transition function
mapping 𝑄 × Σ to 𝑄. That is, for each state 𝑢 and symbol
𝑎, there is at most one state that can be reached from 𝑢 by
“following” 𝑎 (Figure 2).

3.2. Finite State Transducers. A finite state transducer (FST)
is a 6-tuple (Σ

1
, Σ
2
, 𝑄, 𝛿, 𝑖, 𝐹), where 𝑄, 𝑖, and 𝐹 are the same

as for DFA, Σ
1
is input alphabet, Σ

2
is output alphabet, and 𝛿

is a function mapping𝑄× (Σ
1
∪ {𝜀}) × (Σ

2
∪ {𝜀}) to a subset of

the power set of𝑄 (Figure 3). Intuitively, an FST is much like
an NFA except that transitions are made on strings instead of
symbols and, in addition, they have outputs.

3.3. Finite State Calculus. As argued in Karttunen [22–25],
many of the rules used can be analyzed as special cases of
regular expressions.They extend the basic regular expression
with new operators. These extensions make the finite state
automation and finite state transducer become more suit-
able for particular applications. The system described below
was implemented using FSA Utilities [26], a package for
implementing and manipulating finite state automata, which
provides possibilities for defining new regular expression
operators.The part of FSAs built in regular expression syntax
relevant to this paper is listed in Table 4.

One particular useful extension of the basic syntax of
regular expressions is the replace-operator. Karttunen [22–
25] argues that many phonological and morphological rules
can be interpreted as rules which replace a certain portion
of the input string. Although several implementations of the
replace-operator are proposed, the most relevant case for our
purposes is the so-called “leftmost longest-match” replace-
ment. In case of overlapping rule targets in the input, this
operator will replace the leftmost target, and in cases where
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Figure 4: An example to indicate the relationship between binary variable and schedule.

a rule target contains a prefix which is also a potential target,
the longer sequence will be replaced. Gerdemann and van
Noord [27] implement leftmost longest-match replacement
in FSA as the operator:

replace (Target, LeftContext,RightContext) , (29)
where Target is a transducer defining the actual replacement
and LeftContext and RightContext are regular expressions
defining the left and right context of the rule, respectively.
The segmentation task discussed in the mutation procedure
makes crucial use of longest-match replacement.

4. The Hybrid Algorithm

From the point view of optimization efficiency and robust-
ness, a novel two-level optimization framework based on
finite statemethod andGA is proposed for theMINLPmodel
in this section.

4.1. Two-Level Optimization Structure. As the foundation
of the framework, a two-level optimization structure is
introduced. Once all binary variables are fixed the original
problem becomes a relatively simpler model with only con-
tinuous variable. Following this deal, we rewrite (5) as follows:

max (𝐽 (𝜉, 𝑧)) ⇐⇒ max
𝑧

[max
𝜉

𝐽 (𝜉, 𝑧)] , (30)

where 𝜉 and 𝑧 represent continuous and binary variables,
respectively. Equation (30) shows when 𝑧 is fixed as 𝑧, the
submodel 𝐽(𝜉, 𝑧) can be solved optimally by continuous-
optimization solvers in the inner level; then we update 𝑧
towards the best binary solution 𝑧∗ in the outer level.

We used an example in Figure 4 to show how binary
solution can be mapped to a scheduling sequence. The
schedule 𝑆 = [7683513762] where 7 stands for the specific
operation 7 to assign to position 1 corresponding to the binary
decisions 𝑍

17
= 1.

4.2. Initial Population. Based on the sequencing rules [18]
and the extension to the regular expression calculus [22–25],
a DFA model which builds legal schedules complying with
sequencing rules and operation condition is constructed.The
whole set of possible schedules is too huge to be processed at
once.TheDFAmodel of the schedule constitutes a reasonable
framework, capturing all possible schedules and removing
many redundant sequences of operations. Initial values of
decision variables must satisfy the equality constraints and
operation condition and therefore represent a feasible oper-
ating point.

Here, we still use the instance with 8 operations from
Mouret et al. [18] to describe an efficient sequencing rule by
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macro (procedure,
segmentation, % segmentation of the input sequence into a set of sub-sequence
mutation, % apply mutation rules
clean up) % remove markers

Algorithm 1

using a regular expression. A feasible sequence V
1
⋅ ⋅ ⋅ V
𝑖
⋅ ⋅ ⋅ V
𝑛

can be described by the following:

sequence = (𝜀 + 𝐿
𝑎
) (𝐿
𝑏
⋅ 𝐿
𝑎
)
∗
(𝜀 + 𝐿

𝑏
) ,

𝐿
𝑎
= 7 (𝜀 + 4) (𝜀 + 6) (𝜀 + 1 + 14) (𝜀 + 2 + 26) ,

𝐿
𝑏
= 8 (𝜀 + 3) (𝜀 + 5) (𝜀 + 1 + 13) (𝜀 + 2 + 25) .

(31)

However, this automation suffers from a serious problem
of overgeneration. For example, the short length of the
sequence may lead to infeasibility, while the long length of
the sequence may result in an unsolvable model. It is an
interesting challenge for finite state syntactic description to
specify a sublanguage that contains all and only the sequences
of valid length.

Our solution is to construct a suitable constraint for the
sequences of valid length. The constraint expressions denote
a language that admits sequences of valid length but excludes
all others. We obtain the desired effect by intersecting the
constraint language with the original language of sequence
expressions. The intersection of the two languages contains
all and only the valid dates:

ValidSequence = Sequence ∩ ValidLength. (32)

The ValidLength constraint is a language that includes all
sequences of length 𝑛:

ValidLength = (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8)𝑛. (33)

We have now completed the task of describing the
language of valid sequences from the set of possible sequence
expressions. It is also possible to create an automation on
the basis of the regular expression and ValidSequence and
then generate all possible sequences V

1
⋅ ⋅ ⋅ V
𝑖
⋅ ⋅ ⋅ V
𝑛
accepted

by the automaton. The processes are implemented using
FSA Utilities [26] that is a package for implementing and
manipulating DFA and finite state transducer. In order to
generate all possible sequences. When all possible sequences
V
1
⋅ ⋅ ⋅ V
𝑖
⋅ ⋅ ⋅ V
𝑛
accepted by the automaton are generated, and

the population of the according possible binary decisions is
generated. In the initial population stage of GA, the popu-
lation size is the number of individuals. When the number
of individuals is given, a population of candidate solutions is
generated by randomly selecting from the population of the
all possible binary decisions.

4.3. Rule-Based Mutation Approach. In the mutation stage,
we use a finite state transducer for this rule-based muta-
tion process. The rule-based mutation strategy must obey

Input
7681325712

Segmentation
transducer

76-81325-712 74-83132-741

Mutation
transducer transducer

Output

748313274

Cleanup

Figure 5: An example of mutation.

replace (
[identity(SSequence),[]x-],[],]
).

Algorithm 2

the sequencing rule and the nonoverlapping constraint such
that all involved solutions in GA are feasible.

The proposedmutation approach is a two-step procedure.

Step 1. Segmentation of the input sequence into a set of
subsequences (i.e., the subsequence which belongs to the
regular language L7 or L8).

Step 2. Mutation of the subsequences into others.

Formally, the rule-based mutation procedure is imple-
mented as the composition of three transducers (see
Algorithm 1).

An example of mutation including the intermediate steps
is given for the sequence “7681325712” as shown in Figure 5.

4.3.1. Segmentation Transducer. Segmentation transducer
splits an input sequence into subsequences. The goal of
segmentation is to provide a convenient representation level
for the next mutation step.

Segmentation is defined as shown in Algorithm 2.
The macro “SSequence” defines the set of subsequences.

The subsequences which belong to the regular language
L7 and L8 are displayed in Tables 1 and 2. Segmentation
attaches the marker “–” to each subsequence. The Targets
are identified using leftmost longest-match, and thus at each
point in the input, only the longest valid segment is marked.

4.3.2. The Mutation Rules. In the GA process, the mutation
rules are made by carefully considering nonoverlapping con-
straint between operations. A concrete instance for partially
illustrating the mutation rules is given in Algorithm 3. Note
that the final element of the left-contextmust be amarker and
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marco (conversion, 𝐿
7
subsequence rules)

∘ 𝐿
8
subsequence rules)

marco (𝐿
7
subsequence rules,

replace ({2, 4, 6} × 1, 7, —)
∘ replace ({14, 26, 41, 42, 46, 61, 62} × 12, 7, —)
∘ replace ({142, 412, 414, 426, 461, 462, 612, 614, 626} × 126, 7, —)
marco (𝐿

8
subsequence rules,

replace ({2, 3, 5} × 1, 8, —)
∘ replace ({13, 25, 31, 32, 35, 51, 52} × 12, 8,—)
∘ replace ({132, 312, 313, 325, 351, 352, 512, 513, 525} × 125, 8, —)

Algorithm 3: An example to demonstrate the mutation rules.

Table 1: Subsequence belonging to 𝐿
7
.

Length Sequences belonging to 𝐿
7

1 7
2 71 72 74 76
3 712 714 726 741 742 746 761 762
4 7126 7142 7412 7414 7426 7461 7462 7612 7614 7626
5 71426 74126 74142 74612 74614 74626 76126 76142
6 741426 746126 746142 761426
7 7461426

the target itself ends in “–.” This ensures that mutation rules
cannot apply to the same subsequence.

5. Experimental Study

In this section, the same problem from the literature [18] is
used for computational experiments. The proposed method-
ology is compared with existing promising algorithms,
mixed-coding GA [15, 28]. Figure 1 depicts the refinery
configuration for problem. The data involved in the problem
are given in Table 3. The performance comparison with
different computing times, such as 350 s, 500 s,. . ., 2400 s, is
conducted. The objective value is used to statistically analyze
the optimization results.

The performance comparison between the two method-
ologies used is illustrated in Figure 6, which shows that the
hybrid optimization algorithm which combined the finite
state method and GAwill statistically outperform the mixed-
coding counterpart. The genetic algorithm which combined
the finite state method and GA finds feasible solutions very
fast and is able to find better solutions in reasonable time.

In Figure 7, we compare the objective variance of each
iteration in the two evolution processes of these two kinds
of methodology. By tracking the evolution process, we find
that the mixed-coding GA is easy to stick in a local minimal
sequence solution. This situation only can be improved
through increasing the mutation scaling factor. However,
this may result in a hard convergence, unless sufficient
iterations are implemented. As for the hybrid optimization
algorithm, the optimization processes of binary variable
and continuous variable are separated. The performance
of the whole methodology mainly depends on the FSM
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Figure 6: Average objective values of two methodologies.

which captures most promising schedules and removes many
redundant sequences of operations, so that the user can use
a small population size of corresponding discrete variables to
obtain suboptimal solutions. From Figure 7, we see that the
proposed method has converged at 350 iterations as opposed
to 2400 iterations for the mixed-coding GA.

The success of the proposed algorithm lies in a compre-
hensive analysis of the region of the search space and its
capacity to focus the search on the regions with the partial
solution. One of the good merits of the hybrid algorithm is
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Table 2: Subsequence belonging to 𝐿
8
.

Length Sequences belonging to 𝐿
8

1 8
2 81 82 83 85
3 812 813 825 831 832 835 851 852
4 8125 8132 8312 8313 8325 8351 8352 8512 8513 8525
5 81325 83125 83132 83512 83513 83525 85132 85125
6 831325 835125 835132 851325
7 8351325

Table 3: Problem data.

Scheduling horizon 8 days
Vessels Arrival time Composition Amount of crude
Vessel 1 0 100% A 1000
Vessel 2 4 100% B 1000
Storage tanks Capacity Initial composition Initial amount
Tank 1 [0, 1000] 100% A 250
Tank 2 [0, 1000] 100% B 750
Charging tanks Capacity Initial composition Initial amount
Tank 1 (mix X) [0, 1000] 100% C 500
Tank 1 (mix X) [0, 1000] 100% D 500
Crudes 1 Gross margin Crude mixtures Property1 Demand
Crude A 0.01 9 Crude mix X [0.015, 0.025] [1000, 1000]

Crude B 0.06 4 Crude mix Y [0.045, 0.055] [1000, 1000]

Crude C 0.02 8 Unloading flow rate [0, 500]

Crude D 0.05 5 transfer flow rate [0, 500]

Table 4: A fragment of FSA regular expression syntax and 𝑈

transducers, and 𝑅 can be either.

[]: The empty string
[𝑅
1
, . . . , 𝑅

𝑛
]: Concatenation

{𝑅
1
, . . . , 𝑅

𝑛
} Disjunction

𝑅
Λ: Optionality

Identity (𝐴): Identity: the transducer which maps each
element in 𝐴 onto itself

𝑇 ∘ 𝑈: Composition of the transducers 𝑇 and 𝑈
macro (Term, 𝑅): Use term as an abbreviation for 𝑅

that each solution involved in theGA algorithm is guaranteed
to be feasible by using the mutation rules generated by DFM
method while in existing GA algorithms the procedure to
generate feasible solution under complex process constraints
is very time costive. The deterministic finite automata (DFA)
can easily represent this kind of structure. Furthermore,
the complex process constraints can be very difficult to
express with mixed integer programming. Consequently, it
is unfeasible to solve the industrial problem by using MIP
solver.

6. Conclusion

In this paper, a novel hybrid optimization algorithm which
combined the finite state method and GA is proposed.
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Figure 7: Variance values of two methodologies.

The proposed algorithm constitutes a reasonable framework,
capturing both the operating condition and sequencing rule
of the schedule. The solution captures all possible sched-
ules and removes many redundant sequences of operations.
The algorithm is equivalent to introducing new structure



10 The Scientific World Journal

information into the optimization process, which will help
reduce the risk of trapping in a local minimal sequence
solution. The hybrid optimization algorithm is an effective
and robust tool to solve the crude oil scheduling problem in
terms of efficiency and reliability. Algorithms only with the
two properties are suitable for solving practical engineering
application.
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