
Reviews

DSSLIB(tm}-A Library of Parallelized and Optimized Linear Algebra Subroutines for SPARC Computers.
Available from Dakota Scientific Software, Inc., 2241 Cedar Drive, Rapid City, SD 57702-3245. e-mail:
sales@scisoft.com.

DETAILED SUMMARY

Cost: $995 for a single CPC or $4,995 one-time
charge for a 10-CPU license; includes 1 year of
support and 1 year of software upgrades; license
can be upgraded for $1,000 per additional 10
CPUs. Optional support beyond the first year is
available for 15% of the cost of the license.

Hardware and software requirements: SPARC
and SPARC-compatible computers: SunOS 4. L
Solaris 1.0, or Solaris 2.x operating system; works
with FORTRAN 1.x, 2.x, or 3.x; i.\1.Pact optional.

Licensing: Single-CPU licenses are node
locked; 10-CPU licenses or larger are floating li
censes.

Capabilities:

1. Automatically parallelizes large computa
tions over available CPUs to significantly in
crease speed.

2. 100% compatible with LAPACK, UK
PACK, FFTPACK, VFFTPACK, and Basic
Linear Algebra Subprograms (BLAS) levels
1, 2, and 3 so that many programs can par
allelize with no source code change or re
compilation.

3. Two modes of parallelization for optimal
parallel performance on either dedicated or
shared machines.

4. Optimized for SPARC-compatible CPCs to
speed up computations that do not parallel
ize.

5. 64-bit compatibility package simplifies the
process of using SPARCs as the develop-

Reviewed September 1994

© 1995 by John Wiley & Sons, Inc.
Scientific Programming, Vol. 4, pp. 45-49 (1995)
CCC 1058-9244/95/010045-05

ment platform for applications intended for
a supercomputer.

Environmental considerations: Requires ap
proximately 9 megabytes of disk space.

Performance: Runs LAPACK, BLAS and UI\
P ACK up to four times faster than the netlib ver
sion when running on a single-CPU workstation.
Performance is considerably higher than when us
ing the automatic parallelism to run a computa
tion on more than 1 CPU.

REVIEW TEXT

DSSUB is a library of parallelized and optimized
linear algebra subroutines based on LAPACK
2.0, UNPACK, FFTPACK, VFFTPACK, and
BLAS levels 1, 2, and 3. The significant benefits
of DSSUB are its high speed and its ease of use.
The major drawback to DSSUB is that it is only
helpful on applications that are floating-point in
tensive and it will not improve other types of appli
cations.

LAPACK, LIKPACK, FFTPACK, VFFT
p ACK, and the Basic Linear Algebra Subpro
grams (BLAS) are public domain linear algebra
libraries used in thousands of scientific software
packages, both public domain and proprietary.
Popular software that can be accelerated with
DSSUB include IYISL/::Vlath and I.\1SL/Stat from
Visual Kumerics, KAG from Kumerical Analysis
Group. and IDL from Research Systems. The
company is developing interfaces to some third
party Fortran 90 compilers to allow Fortran 90
vector and matrix operations use the fast subrou
tines in DSSLIB. Information about using the
public domain versions of these libraries can be
retrieved by sendin~ the following mail message to
netlib@ornl.wn:: send index.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192400854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

46 REVIEWS

Of course, the primary consideration in choos
ing parallel software is speed. DSSLIB delivers
speed in two ways: optimization and paralleliza
tion. The result is good performance even on
problems that are too small to effectively parallel
ize. For example, on a SPARCstation 10 the LIN
PACK 1000 X 1000 benchmark runs 2.5 times
faster on a single CPU and well over 6 times faster
on 3 CPUs. On a SPARCstation 5, DSSLIB runs
the UNPACK benchmark 60% faster than libSci
from CraySoft. Although DSSLIB contains signifi
cant improvements in most subroutines, little or
no improvement is apparent in subroutines deal
ing with symmetric, Hermitian, or triangular rna
trices stored in packed-storage mode.

The subroutines in DSSLIB are optimized for
the SuperSPARC, microSPARC, hyperSPARC,
and SPARC CPUs. According to the company,
DSSLIB aggressively uses characteristics of the
hardware architecture that allow multiple instruc
tions to proceed simultaneously. It is obvious that
writing code so that it can do multiple concurrent
operations will greatly improve speed. It is even
more obvious that most scientists do not want to
think about low-level hardware and compiler de
tails while writing their code. We have found that
the level of optimization in DSSLIB allows us to
get very good performance without concem for
low-level hardware detail.

In addition to optimization, the DSSLIB sub
routines a:e parallelized. When a program calls
one of the parallel subroutines then DSSLIB de
termines how many CPUs to use, how to partition
the data, and divides the work among the avail
able CPUs. This process of parallelizing a compu
tation is automatic and no change is required ei
ther in the code or in the way that a program is
run. DSSLIB has two modes of parallelism, one
that gives peak performance on a dedicated ma
chine and the other that is best when there are
multiple jobs running concurrently. DSSLIB,
Sun's iMPact, and CraySoft's libSci all show ex
cellent performance on dedicated parallel ma
chines. However the Sun and CraySoft parallelism
is very resource-intensive and they both suffer
great performance degradation in shared environ
ments. We have found that DSSLIB maintains
high performance in both environments.

Just as one expects to get high-speed from par
allel software, one also expects that using parallel
software is difficult and error prone. With
DSSLIB, we found that everything from the instal
lation to actual use in our production environment
is reasonably easy. The ease of use comes from

three factors: compatibility with netlib, documen
tation, and a 64-bit development option. Each of
these factors is briefly described below.

DSSLIB interfaces are 100% compatible with
the standard netlib interfaces. (The standard
LAPACK 2.0 has different workspace require
ments than LAP ACK 1.1 but DSSLIB has made
algorithmic adjustments to be compatible with
programs that use either LAP ACK 1.1 or LA
PACK 2.0.) This compatibility allowed us to par
allelize our programs by relinking with DSSLIB.
No source code changes were required, nor did we
do anything differently in running our programs.
In addition to our programs based on the standard
libraries, we also parallelized an image processing
program written in a proprietary interpreted lan
guage called IDL. The original IDL program did
not use BLAB, so we did make source code
changes. Most of the processing was in a 2-D dis
crete cosine transform subroutine, and we were
able to parallelize that subroutine in under 3
hours.

The manual that comes with DSSLIB is very
good. It is clear, complete, and well written. The
documentation of each subroutine includes an ex
ample program with sample input and output.
Many of the subroutines also come with references
to related subroutines, tips on using the subrou
tines more effectively, and wamings about com
mon programming errors. The on-line documen
tation consists of man pages for the subroutines.
These are good, but not of the same quality as the
written manual. There is no interactive capability
similar to the Interactive Documentation Facility
in Visual Numerics' IMSL products, so users will
need the printed documentation for help on unfa
miliar topics.

The 64-bit development option is for people
who use workstations as a development platform
for 64-bit supercomputers. The naming conven
tion used by the standard libraries is that subrou
tines whose names begin with S or C process single
precision real numbers and subroutines whose
names begin with D or Z process double precision
numbers. Single precision on a SPARC or most
UNIX workstations is 32 bits, but single precision
on a mainframe or supercomputer is 64 bits. This
means that moving a 64-bit application from a
Sun to a Cray requires the user to change the
names of all of the subroutines. For example, the
user must change calls from DGEMM (64-bit
SPARC matrix multiply) to SGEYIM (64-bit Cray
matrix multiply). The 64-bit development option
is a version of DSSLIB in which the S and C sub-

routines process 64-bit data. No name changes
are required when the user moves to or from a 64-
bit computer. This feature is an interesting one,
and it is not available on the other libraries that we
have, but it is not useful unless you work on main
frames or supercomputers.

The ease of use allows DSSLIB to fulfill its
promise of "parallelizing your application within
minutes," but this ease of use exacts a perfor
mance penalty on some applications. DSSLIB
only parallelizes those operations that are per
formed by one of its predefined subroutines. It is
not a general-purpose parallelization system like
Express(tm) or Linda(tm). DSSLIB does an excel
lent job of parallelizing an application dominated
by solving linear systems, eigenproblems, solu
tions to least-squares problems, and other linear
algebra operations. DSSLIB will not help an ap
plication dominated by 110, sorting, or non
mathematical computations. DSSLIB is also not
helpful on applications dominated by computa
tionally trivial operations, even if there are many

REVIEWS 47

of those operations. For example, we have an im
age processing program that spends most of its
time manipulating 3 X 3 matrices of integers and
the rest of its time with 4 X 4 matrices of reals.
These operations are so cheap that we do them
with our own in-line code rather than use
DSSLIB.

In summary, we have found that DSSLIB gives
us a fast and easy way to parallelize our numeri
cally intensive applications, especially those
based on LAPACK, BLAS, LINPACK, FFT
PACK, or VFFTPACK. It is not a general-purpose
parallel system, and it is useful only for numeri
cally-intensive applications.

Jeremy Week
South Dakota School of ~ines and Technology
501 E. St. Joseph Street
Rapid City, SD 57701-3995

e-mail:jcw6998@silver.sdsmt.edu
voice: 1 (605)343-6496

A Comparative Study of Parallel Programming Languages: The Salishan Problems, by John Feo, Ed.,
North-Holland (Elsevier), Amsterdam, 7992, $720.00, 386 pp.

As parallel computing moves out of research labs
and into the supercomputing mainstream, the
problem of programming parallel machines is re
ceiving greater attention. The designers and man
ufacturers of a parallel machine are usually willing
to spend hundreds of hours coding for it at the
assembly level. Their users, on the other hand,
rarely enjoy having to invest an order-of-magni
tude more time to get reasonable performance out
of their new machine than they would spend pro
gramming a conventional workstation or vector
supercomputer.

Many benchmarks assess the numerical perfor
mance of novel architectures, but no similar tests
inform potential users about programmability. In
deed, the very idea of measuring programmability
is a suspicious one. There is tremendous variation
in users' taste, aptitude, and background. Just as
important, no matter how bizarre an architecture
or programming system, there exists at least one

Reviewed June 199:~

application for which it is ideally suited. Thus, one
finds the advocates of data -parallel languages
concentrating on regularly-structured problems
which are intrinsically load-balanced, while mes
sage-passing's proponents show us task-farm af
ter task-farm, and devotees of the religious sects
which have grown up around various functional,
dataflow, and logic languages keep pointing out
how much simpler their programs appear (to
them, at least) than those of their competitors.

Feo's book represents a laudable attempt toes
tablish some kind of baseline to compare the pro
gramming language usability on parallel com
puters. The editor, a member of the Computing
Research Group at Lawrence Livermore National
Laboratory (LLNL) presents four non-trivial
problems. The four problems contain a variety of
different types of parallelism, including dynamic
task creation, producer/ consumer synchroniza
tion, and array management (unlike matrix multi
plication, numerical quadrature, or the eight
queens problem, which are often used to show
language features). These problems are ·'solved"
using eight different programming languages by

48 REVIEWS

the participants at a 1988 Salishan workshop
sponsored by LLNL.

The first problem, known as Hamming's Prob
lem, takes a set of primes {a, b, c, ... }, and a limit
N, and to output in increasing order, without du
plicates, all integers with exactly those prime fac
tors which are less than N. The Paraffins Problem
is similar-given an integer l\' > 0, output the
chemical structure of all paraffin molecules which
have uptoN carbon atoms. (A paraffin molecule
contains only single carbon-carbon and carbon
hydrogen bonds, and no loops.) The third prob
lem simulates a doctor's office, where a set of pa
tients become ill at random intervals and queue
up to be served by one of several doctors. The
final, and only numerical, problem solves a sys
tem of linear equations Ax = b, where A is a sky
line matrix, i.e., a matrix whose nonzero elements
are contained with a known envelope. While the
matrix can use a conventional solver, the intent is
that solutions take advantage of the location of
zeros in the matrix.

The languages are divided into categories:

1. imperative languages with data-parallel ex
tensions (C*),

2. imperative languages with control-parallel
operations (Ada and Occam), and

3. functional or dataflow languages.

Of the latter, Scheme and Sisal are the most
widely used, with Haskell, Id, and Program Com
position l\'otation (PCN) representing more mod
ern or extreme alternatives.

Each chapter overviews a language and its im
plementation, and then discusses the four prob
lems. Most of the contributors present the entire
source code for their solutions, which run from a
few 10's of lines to several pages per program. As

expected, the imperative programs are usually
longer than their higher-level brethren, while most
of the functional and dataflow solutions presented
are broadly similar to one another. ~ost of the
discussion is clear and concise; more program
ming language comparisons would have helped,
but the material presented is a good overview of
what people are doing and thinking in parallel
computing.

While this book is generally very good, it does
have two shortcomings. The first problem is the
lack of discussion about how long it took the con
tributors to develop their programs. An elegant so
lution achieved after months of hard thinking is
probably a poorer measure of usability than a
workable solution produced in a day or a week:
some measure of programming effort is required
and would serve the same purpose (and have the
same pitfalls) as megaFLOPS figures for Lll\'
PACK, l\'AS, and other benchmarks.

The second, and more important, problem with
The Salishan Problems is its price. $120 for 386
pages is well out of the reach of graduate students
and most lecturers, and indeed of many college
libraries. One only hopes that Elsevier will pro
duce a paperback edition in the near future so
that this valuable work can become more widely
known.

Gregory V. Wilson
Computer Systems Research Institute
University of Toronto
6 King's College Road
Toronto, Ontario
Canada M5S 1A4

email:gvw@cs.toronto.edu
Phone: 1(416)978-1241
Fax:1 (416)978-1676

Redundant Disk Arrays: Reliable Parallel Secondary Storage, by Garth A Gibson, MIT Press, Cambridge,
1992, $35.00, 250 pp.

The simplest way to sum up this book is to say that
anyone who is doing research in computer systems
should sit down and read it. Even if 1/0 svstems
and ways of modelling reliability are not one's pri-

Reviewed June 1993

mary interests (and Gibson's writing makes them
seem very interesting), this book is a beautiful ex
ample of how one ought to conduct and analyze
research, and indeed of how to choose important
directions for research.

The book's central thesis is by now well known.
Just as volume production of microprocessors has

made them more cost-effective than the multichip
or multiboard CPCs which typically inhabit main
frames, so the volume production of small disk
systems for the microcomputer and workstation
markets has led to them providing more storage
per dollar, volume, or watt than their larger coun
terparts. As a result, a system containing a dozen
small disks may provide the capacity of a single
large one at a significantly lower cost. Such an
array might be expected to have a higher overall
failure rate because of its larger number of com
ponents, but this can be ameliorated by storing
data redundantly, using the same coding tech
niques used to detect and correct single-word
faults in most solid-state memories.

Gibson argues that such redundant arrays of
inexpensive disks (RAIDs) will inevitably replace
large single-disk systems. He backs up this argu
ment with statistics drawn from the behavior of
commercially-available disk systems, with a vari
ety of performance models, and with the experi
ence of the RAID group at UC Berkeley. The
book's first two chapters introduce his thesis, and
review the current and likely future state of l/0
systems. Chapter 3 then presents the RAID con-

REVIEWS 49

cept, while Chapters 4 and 5 characterize disk
lifetimes, and use these characterizations to sup
port the reliability models which are crucial to the
overall argument. The final chapter summarizes
his conclusion that RAID systems could exceed
the throughput of conventional disks by factors of
6 to 8, while being more reliable, and no more
expensive.

It is easy to see why the ACM chose this book as
a Distinguished Dissertation in 1991. A decade
from now, the work it presents will probably be
seen as having been as influential in the 1990s as
the development of RISC technology and multi
processor architectures were in the 1980s.

Gregory V. Wilson
Computer Systems Research Institute
Cniversity of Toronto
6 King's College Road
Toronto, Ontario
Canada M5S 1A4

email:gvw@cs. toronto.edu
Phone: 1(416)978-1241
Fax: 1(416) 978-1676

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

