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Programmed cell death has been studied for decades in mammalian cells, but simpler organisms, including prokaryotes, plants, and
fungi, also undergo regulated forms of cell death. We highlight the usefulness of the filamentous fungus Neurospora crassa as a model
organism for the study of programmed cell death. In N. crassa, cell death can be triggered genetically due to hyphal fusion between
individuals with different allelic specificities at het loci, in a process called “heterokaryon incompatibility” Chemical induction of
cell death can also be achieved upon exposure to death-inducing agents like staurosporine, phytosphingosine, or hydrogen peroxide.
A summary of the recent advances made by our and other groups on the discovery of the mechanisms and mediators underlying

the process of cell death in N. crassa is presented.

1. Neurospora crassa as a Model Organism

Neurospora crassa is a nonpathogenic filamentous fungus,
very easy to maintain, grow, and manipulate. N. crassa enjoys
modest nutritional requirements: the common minimal
medium (Vogel's minimal medium) includes a sugar, a nitro-
gen source (ammonium and nitrate), phosphate, sulfate,
potassium, magnesium, calcium, trace metals, and a small
amount of the vitamin biotin [1]. Moreover, N. crassa is one
of the fastest growing filamentous fungi (approximately 10 cm
per day under optimal conditions), justifying its appearance
among the first colonizers of recently burned vegetation [2].
It is prone to genetic experiments like the induction of muta-
tions, genes, and mutants isolation, microscopic analysis,
biochemical testing, and so on. Thus, Neurospora presents
some features that turn it into a very attractive option to be
used in the laboratory.

N. crassa is a multicellular ascomycete. It was initially doc-
umented in 1843, when several Parisian bakeries were infested
by cultures of an orange sporulating mould [3]. A cen-
tury later, mycologists Cornelius Shear and Bernard Dodge
moved it to the Neurospora genus, based on the discovery
that this fungus possesses a sexual morphological struc-
ture called perithecia [4]. Literally translated, “Neurospora”

means “nerve” plus “spore” and the explanation for this name
resides in the fact that the fungal spores display longitudinal
striations resembling animal axons which belong to the
nervous system. In its natural habitat, Neurospora is found
essentially in tropical and subtropical regions but also in
temperate climates [2]. Figurel shows spots of N. crassa
colonization that can be easily observed following a forest
fire. During the 20th century, this fungus was the basis of
some breakthrough discoveries in the molecular genetics
field. The Nobel Prize in Physiology and Medicine was
awarded to George Wells Beadle and Edward Lawrie Tatum
in 1958, because of their “one gene-one enzyme” pioneering
hypothesis. The theory, which conceived the idea that par-
ticular portions of genetic material lead to the synthesis of
specific proteins, was described in 1941 [5] and allowed the
comprehension of one of the most basic aspects of Biology.
In another work using N. crassa during the 1940s, Srb and
Horowitz showed that metabolic pathways comprise a series
of steps each of them catalysed by an enzyme [6].

The aforementioned works of renowned geneticists rep-
resent only a few examples of successful applications of
N. crassa in the study of the molecular basis of biological
processes. The fungus has also been used to study circadian
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FIGURE L: N. crassa in a natural habitat. In nature, Neurospora is
commonly found as one of the first colonizers of burned vegetation.
The picture depicts growth of N. crassa on a burned tree in Portugal
(note the presence of the orange mould throughout the trunk,
indicated with arrows).

rhythms, gene silencing, DNA repair, cell differentiation,
and mitochondrial biology [7]. More recently, in 2003, the
genome of N. crassa was fully sequenced [8]. Access to this
information, together with the availability of valuable genetic
tools such as a large collection of deletion strains and a rich
assortment of plasmids for protein expression, provided by
the Fungal Genetics Stock Center [9], makes N. crassa a great
model organism to work with. Our group has focused on
the mechanisms employed by the mitochondrial respiratory
chain to produce energy in N. crassa for several years [10-
12] and, more recently, became interested in the process of
programmed cell death [13-22].

2. Programmed Cell Death-Controlled
“Suicide” of Cells

Balance between cell division and cell death is of supreme
importance for the development and maintenance of mul-
ticellular organisms. Deregulation of this equilibrium can
lead to pathological conditions, namely, cancer and neurode-
generative disorders. Therefore, the balance between life and
death is tightly controlled and abnormal elements can be
effectively eliminated by a process called “programmed cell
death” [23]. Decades ago, programmed cell death was held
synonymous with apoptosis, and the concepts of apoptosis
and necrosis were the only used to explain the death of cells.
However, in recent years, it has become evident that this is
an oversimplification of the highly sophisticated mechanisms
guarding the organism against potentially harmful situations.
Many reports have been published and many terms have
been proposed to define dissimilar pathways of cell death.
However, some of these distinct ways of dying might not be
really different, because there are many overlapping features
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and the precise biochemical mechanisms are often unclear.
To overcome this issue, the Nomenclature Committee on
Cell Death has recently proposed unified criteria for the
definition of cell death and its different morphologies and
molecular signals [24]. Despite the advances made in the
comprehension of the cell death subject, several mechanisms
are still a matter of debate and new approaches might unravel
new pathways and mediators.

Cell death studies have been carried out for decades
using mammalian models. However, it has become clear
that lower eukaryotes and even prokaryotes undergo pro-
grammed cell death when insulted with chemical agents and
other stress signals. Humans, the nematode Caenorhabdi-
tis elegans, the fly Drosophila melanogaster, and the yeast
Saccharomyces cerevisiae represent major organisms used to
investigate programmed cell death. Because of the aforemen-
tioned advantages of using N. crassa as a model organism and
because it was shown that it presents additional proteins with
homology to cell death-related molecules of mammalian cells
when compared with other models such as yeasts [25], we
anticipated that it would be a good prototype to study the
fundamentals of cell death. More specifically, in silico searches
predict dozens of cell death-associated genes in filamentous
species that seem to be absent in S. cerevisiaze with a part
of them being fungal-specific and related to heterokaryon
incompatibility (please see the next section). Moreover, the
similarity between mediators of cell death (like BIR1, AMID,
CulA, and HtrA) in humans and filamentous fungi is higher
than the similarity of the same proteins between yeasts and
filamentous species [25].

3. Advances on the Understanding of
Cell Death in N. crassa

To our knowledge, the first report of cell death in N. crassa
was published back in the 1950s when Strauss described
that unstable attempts of auxotrophic strains to grow in the
absence of the required nutrient result in cell death [26]. Later,
it was observed that other stimuli lead to cell death in N.
crassa, particularly a combined stress of moderate heat shock
(45°C) and carbohydrate deprivation [27] or the incubation
with the polymer chitosan [28] or the small antifungal
peptide PAF26 [29]. Interestingly, the two latter stimuli
disturb intracellular calcium (Ca*") homeostasis during the
process of cell death induction.

Filamentous ascomycetes, namely, N. crassa, possess a
defense system for non-self-recognition that leads to pro-
grammed cell death and functions as a barrier to viral
transfer between fungal individuals and to prevent resource
plundering [30, 31]. This process occurs upon hyphal fusion
between individuals that are genetically dissimilar at het
loci (11 het loci have been identified so far). A cell death
program on the fusion compartment and surrounding cells is
triggered, leading to the rejection of heterokaryon formation.
This was therefore termed “heterokaryon incompatibility” At
the molecular level, heterokaryon incompatibility seems to be
controlled by the transcriptional regulator VIB-1 [32], which
is downstream of a negative regulation by the IME-2 kinase
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FIGURE 2: Chemical structures of cell death-inducing agents: phytosphingosine (a), hydrogen peroxide (b), and staurosporine (c). Chemical

structures were obtained from http://www.chemspider.com/.

[33]. The production of reactive oxygen species (ROS) and
the induction of genes involved in phosphatidylinositol and
(Ca®*) signaling pathways are also implicated in the phe-
nomenon [34]. Heterokaryon incompatibility was also shown
to be induced by the ectopic expression of the bacterial HET-
C homologue from Pseudomonas syringae, phcA [35]. Cell
death associated with heterokaryon incompatibility features
several hallmarks of apoptosis such as DNA condensation
and fragmentation, plasma membrane shrinkage, vesicle
formation, and internalization of vital dyes [31, 34, 36].

Altogether, accumulating evidence shows that pro-
grammed cell death in N. crassa can be achieved chemically
or genetically. During the last years, our group has focused
on the study of the molecular basis of cell death using a
chemical induction approach. The process has been mainly
induced with either phytosphingosine, hydrogen peroxide,
or staurosporine (Figure 2). Below we summarize the main
findings from the work with these compounds.

3.1. Phytosphingosine (PHS) and Hydrogen Peroxide (H,0,).
Phytosphingosine (PHS) is a natural long-chain sphingoid
base [37]. The evidence that this sphingolipid has potent
antifungal activity against Aspergillus nidulans with mito-
chondrial involvement [38] prompted us to investigate the
effects of the drug in N. crassa. Treatment of conidia with
PHS results in reduced viability, impairment of asexual
spore germination, production of ROS, YO-PROI staining,
and DNA condensation and fragmentation, suggesting the
induction of an apoptosis-like cellular death [16, 17]. Analysis
of gene expression during PHS-induced cell death by DNA
microarrays revealed that most of the alterations at the
transcriptional level correspond to upregulation of genes.
However, there is a very strong enrichment of genes encoding
mitochondrial proteins in the set of genes that are downreg-
ulated by the drug that likely explains its effects in the fungus
[22]. This may be correlated with the fact that deletion of
genes encoding subunits of the mitochondrial complex I, like

NUO09.8, NUO14, NUO21, NUO2L3¢c, NUO30.4, NUO5],
and NUO78 (but not the deletion of components of the
other complexes of the respiratory chain) confers increased
resistance to PHS. The same resistance profile is paralleled
by the treatment of complex I mutants with H,O,, indicating
shared intracellular mechanisms after the treatment with PHS
and H,0,.

We observed that complex I mutant strains generate less
ROS than wild type when exposed to PHS [16]. Transcrip-
tional analyses of H,O,-treated wild type versus Anuol4 cells
showed that genes encoding mitochondrial proteins are the
most enriched category among those with higher expression
in the mutant in the presence of the insult [22]. Thus, absence
of a functional complex I results in lowered production
of ROS upon treatment with PHS and confers increased
tolerance to some drug-induced transcriptional alterations
and this may explain why these cells cope better with the
growth insult elicited by PHS and H,O,. The involvement of
the mitochondria during PHS-induced cell death is further
stressed by the evidence that deletion mutants for subunit 4
of mitochondrial ATP synthase, for a mitochondrial aldehyde
dehydrogenase, and for the homologue of the mammalian
apoptosis-inducing factor (AIF) are more resistant to the
drug than wild type. On the other hand, Aamid cells, lacking
a homologue of the mammalian apoptosis-inducing factor-
homologous mitochondrion-associated inducer of death
(AMID) are more sensitive to PHS than wild type [16].
Another group showed that deletion of the tRNA processing
molecules TRANSLIN and TRAX confers increased resis-
tance to PHS [39]. More recently, we observed that treatment
with PHS, as well as staurosporine, causes the export of
reduced glutathione (GSH) [17], although both drugs induce
cell death through very distinct mechanisms (see below).
Addition of exogenous GSH does not revert the effects of
PHS, neither in N. crassa [17] nor in A. nidulans [38].

In S. cerevisiae there is evidence showing that
response to distinct cellular stresses such as heat [40] and



nitrogen starvation [41] is correlated with the accumulation
of phytosphingosine species. Additionally, yeast mutant cells
defective in the addition of inositol phosphate to ceramide are
particularly sensitive to treatment with PHS [42]. Exposure
of S. cerevisiae to PHS also reduces the uptake of some amino
acids by specific transporters, namely, tryptophan, leucine,
histidine, and proline, leading to amino acid starvation [43].

3.2. Staurosporine (STS). Staurosporine (STS) is a bacterial
alkaloid initially isolated from Streptomyces staurosporeus
during a screening for protein kinase C inhibitors [44], which
was later shown to display a broad kinase inhibitory activity
[45]. The protein kinase C homologue Pkcl of S. cerevisiae was
validated as an essential target of STS [46]. This drug displays
strong anticancer and antimicrobial activities and is widely
used by the scientific community as a prototypical cell death-
inducing agent. Importantly, some STS analogues displaying
better selectivity profiles, such as UCN-01, CGP41251, or
PKCA412, are currently under evaluation in clinical trials for
the treatment of different forms of cancer [47]. In N. crassa,
STS induces loss of cell viability, marked impairment of
conidial germination, chromatin fragmentation, YO-PRO1
staining, uptake of vital dyes, and early ROS production [15,
17, 18]. In contrast to the observations with PHS, deletion of
some subunits of mitochondrial complex I such as NUO?9.8,
NUOI14, NUO30.4, and NUO51 (but not others like NUQO78)
results in hypersensitivity to STS. Interestingly, complex I
assembly status of these mutant strains cannot explain the
increased susceptibility to STS because cells with similar
assembly phenotypes display different sensitivity to the drug.
Thus, it seems that some of the proteins play a specific
role during intracellular cell death signaling or execution.
This in line with observation that mammalian complex I
subunits execute particular programmed cell death pro-
grams: GRIM-19 (NUO14 homologue) regulates cell death
by binding a cytomegalovirus RNA [48] and is also involved
in B-interferon- and retinoic acid-induced cancer cell death
[49]; cleavage of NDUFS1 (NUO78 homologue) [50] by a
caspase and cleavage of NDUFS3 (NUO30.4 homologue)
by granzyme A [51] mediate cell death; downregulation of
NDUFA6 (NUO14.8 homologue) induces apoptosis in HIV-
I-infected cells [52]. STS and PHS definitively act by different
mechanisms, but mitochondria and respiration are central for
the cell death process induced by both drugs.

Because of the involvement of mitochondrial complex I
during the fungal response to STS, we decided to combine
STS with the classical complex I inhibitor rotenone. It
was observed that the combination of the drugs displays
synergistic activity against the growth of N. crassa and the
clinically relevant fungi Aspergillus fumigatus and Candida
albicans [15]. Surprisingly, this synergistic behavior is also
observed in complex I mutant strains (in which the enzyme is
already nonfunctional), suggesting a complex I-independent
for the action of rotenone. Indeed, other complex I inhibitors
(piericidin A and diphenyleneiodonium) do not act like
rotenone in combination with staurosporine and the com-
bination STS plus rotenone is synergistic even against S.
cerevisiae cells which are devoid of complex I. This led us
to study the mechanisms of rotenone activity. Using thyroid
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cancer cells as the model system, we observed that the drug
acts as an antimitotic agent, causing cell death following cell
cycle arrest and mitotic catastrophe with p53 being a pivotal
player in the process [19]. Importantly, the combination of
STS with rotenone is also synergistic in thyroid cancer cells
[19, 20], validating N. crassa as a good model to study broad
mechanisms of programmed cell death.

The exogenous addition of GSH or its precursor N-acetyl-
cysteine (NAC) effectively blocks STS-induced cell death,
pointing to the importance of ROS generation during the
fungal response to STS [15]. We observed recently, for the
first time in fungi, that the export of GSH is a crucial event
during the cell death program driven by STS [17]. It seems
that GSH eftlux following treatment with STS (or PHS, with
even faster kinetics) is an early and specific event of cell
death rather than a secondary effect such as a detoxification
mechanism. Thus, N. crassa exports GSH when exposed to
STS causing a change in the intracellular environment to
a more oxidative redox state. The consequent decrease of
the internal GSH/GSSG ratio modulates intracellular redox
signaling and may facilitate the oxidation of proteins or
lipids. Antioxidants like -carotene and ascorbic acid are
ineffective in the modulation of the effects of STS and
a combined treatment with STS and rotenone results in
increased depletion of GSH [15].

Analysis of transcriptional alterations associated with
treatment with STS by DNA microarrays revealed that the
drug strongly induces high levels of expression of a gene
encoding a member of the ABC (ATP-binding cassette)-
transporter family, abc3 [18]. This result was confirmed at the
gene level by qRT-PCR and at the protein level by western
blotting with a house-made specific antibody. This antibody
allowed the localization of ABC3 at the cell surface. Inter-
estingly, the deletion of abc3 results in extreme sensitivity
to STS. Because of the significant homology between ABC3
and the human P-glycoprotein, shown to mediate multidrug
resistance in cancer cells [53], we measured the levels of
intracellular and extracellular STS after treatment of N. crassa
cells. To achieve this, a method that took advantage of the
fact that STS fluoresces when excited with UV light was
devised. We showed that ABC3 performs drug efflux to the
extracellular space, describing for the first time a transporter
of the broadly used STS [18]. In agreement with this, a
combined treatment of STS and the P-glycoprotein inhibitors
verapamil and sodium orthovanadate results in synergistic
inhibition of growth in N. crassa as well as in the pathogenic
A. fumigatus and C. albicans, likely due to blockage of STS
efflux. Sodium orthovanadate is not selective and, in cancer
cells, the drug causes dose-dependent and caspase-mediated
cell death by interfering with the PI3K/Akt/mTOR signaling
cascade [21].

Gene expression data obtained with microarrays was also
used to identify other putative mediators of STS-induced
cell death. We showed that two STS highly induced genes,
NCU09141 and NCU02887, present homology with f-
subunits of voltage-gated potassium channels. In line with a
role for this proteins during the action of STS, an inhibitor
of these potassium channels, 4-aminopyridine, enhances cell
death elicited by STS in N. crassa, A. fumigatus, and C.
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albicans [18]. In addition, microarray data also unraveled a
novel transcription factor with a role on STS-induced cell
death that we are currently characterizing.

The literature on the effects of STS in fungi other than
N. crassa is scarce. In S. cerevisiae, a group of genes termed
stt (for “staurosporine- and temperature-sensitive”) were iso-
lated. This set of genes whose respective deletion strains are
particularly susceptible to STS includes protein kinases such
as Pkcl, Pi4k, and Bckl, mediators of Golgi to vacuole protein
sorting (Vpsl8, Vps34, Vpsll, Vps45, and Vps33), a pro-
tein involved in glycophosphatidylinositol anchor synthesis
(Gpil), the acetoacetyl-CoA thiolase involved in ergosterol
biosynthesis Ergl0, vacuolar H"-ATPase mutants (Vmal,
Vma2, Vma3, Vma4, Vmall, Vmal2, and Vmal3), and a
subunit of oligosaccharyltransferase [46, 54-56].

4. Concluding Remarks

The understanding of the molecular mechanisms of pro-
grammed cell death has benefited from the intensive research
carried out in the last years, but it is still open to new
approaches and discoveries. Ongoing projects in our group
include, for example, the determination of the role of Ca?"
during STS-induced cell death. We observed that incubation
with this drug (but not PHS) promotes a well-defined profile
of alterations in cytosolic Ca®" levels, similarly to what is
observed when fungal cells are exposed to other cell death
stimuli [57]. On the other hand, we are taking advantage
of the recent developments on the transcriptomics field and
employing high-throughput RNA sequencing (RNA-seq) to
study the transcriptional profile of N. crassa cells submitted
to different cell death conditions and identify novel cell death
intervenients.

It is inevitable to stress that there are several important
differences between filamentous fungi and yeast programmed
cell death. Due to their multicellular nature, filamentous
species require cell death to accomplish different develop-
mental and defense processes, such as the aforementioned
heterokaryon incompatibility. Another discrepant aspect
resides in the characteristics of the electron respiratory chain
in both types of fungi. Whereas complex I is undoubtedly
involved in programmed cell death in N. crassa [15, 16, 22], it
is absent in S. cerevisiae. However, in the latter, under certain
nutritional conditions, the overexpression of the alternative
NADH dehydrogenase NDI], the first component of the yeast
electron transport chain, results in programmed cell death
[58]. Our group is also interested in unraveling links between
cell death, oxidative stress, mitochondrial bioenergetics, and
specific enzymes, such as NAD(P)H dehydrogenases [13, 14].

In summary, evidence points to the usefulness of using
N. crassa as a model for the study of the mechanisms of
programmed cell death although the available data is still
limited. We anticipate that this fungus will be an invaluable
tool for future investigations on the cell death field.
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