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This paper presents a new FDI technique for fault detection and isolation in unknown nonlinear systems. The objective of the
research is to construct and analyze residuals bymeans of artificial intelligence and probabilisticmethods. Artificial neural networks
are first used for modeling issues. Neural networks models are designed for learning the fault-free and the faulty behaviors of the
considered systems. Once the residuals generated, an evaluation using probabilistic criteria is applied to them to determine what is
the most likely fault among a set of candidate faults. The study also includes a comparison between the contributions of these tools
and their limitations, particularly through the establishment of quantitative indicators to assess their performance. According to
the computation of a confidence factor, the proposedmethod is suitable to evaluate the reliability of the FDI decision.The approach
is applied to detect and isolate 19 fault candidates in the DAMADICS benchmark. The results obtained with the proposed scheme
are compared with the results obtained according to a usual thresholding method.

1. Introduction

Industrial complex automated systems are vulnerable to
many types of faults (due to sensors, actuators, components,
etc.). In order to maintain normal operating conditions, the
human operator plays the roles of supervisor according to the
several plant parameters, measurements, and observations.
These faults may be abrupt or incipient. Due to the growing
complexity of modern engineering systems and ever increas-
ing demand for safety and reliability, there is a great interest
in the development of fault detection and isolation (FDI)
methods. Those techniques are important in process engi-
neering because plant faults may cause abnormal operations
and, if not detected early, can cause emergency shutdowns
and also definitive damages. Moreover, the quality of pro-
duction will not be maintained in abnormal situations (i.e.,
process variables deviate significantly from their nominal
values).Therefore, designing robust FDI systems has received
considerable attention both from industry and academia [1].
The robustness of the method depends mainly on the reliable

discrimination between the effects of uncertainties in the
model behavior, noises in the signalmeasurements, and faults
that may occur [2].

FDI methods are generally separated into model-based
and data-based approaches. The advantage of model-based
approaches is to lead easily to residual signals by comparing
the behaviors of the system with the model and to provide
a mathematical framework that can be used to evaluate the
performance of the method [3–5]. For nonlinear systems, the
standard approach is to linearize the model around the oper-
ating point and to make use of usual contributions derived
from linear system theory. However, linearization does not
always provide a good model for the processes, in particular
when strongly nonlinear behaviors are observed. More-
over, complex processes often operate in multiple operating
regimes in industrial applications (e.g., mining, chemical
treatment, and water treatment). So it is often not possible to
obtain linear models that accurately describe the plants in all
regimes. One solution is to use nonlinear methods such that
nonlinear observers with analytical approach and geometric
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approach which require a perfect knowledge of nonlinear
system [6–8]. But, nonlinear observers are limited to a few
types of standard nonlinearities. Furthermore, the nonlinear
observer approach can be used only when the nonlinear
systems dynamics are known with sufficient confidence; this
is rarely the case for real system applications [2, 4, 9, 10].
To solve the nonlinear problem of observed data, nonlinear
PCA (principal component analysis) and PLS (partial least
squares) approaches have been developed [11, 12]. However,
PCA and PLS have a linearity assumption, limiting their
application.

An attractive alternative to nonlinear techniques is to use
linear multimodel strategies. The multimodel approach has
been often used in recent years for the modeling and control
of nonlinear systems [13]. Multimodel methods for FDI are
based on the partition of the operating range into separate
regions [14]. Local linear models are applied in each region.
It has also been associated with Kalman filters in order to
detect, isolate, and estimate the state of a system in presence of
faults [3, 15, 16]. In addition, Lane et al. proposed amultigroup
model to monitor batch processes with multiple modes [17].
Hwang and Han assumed that different operating modes
have the same number of retained principal components and
proposed a super PCA model to monitor multimode batch
processes [18]. More recently, effectiveness of the multimodel
approaches for FDI of real industrial systems has been
discussed [14, 19–21] and Baniardalani et al. proposed a
qualitative model based on fault diagnosis using a threshold
level [22].

The main motivation for this research is to explore the
potential of computational intelligence (CI) approaches to
design models of faulty behaviors and to generate residu-
als for nonlinear systems [23–26]. Diagnosis is a complex
reasoning activity, which is currently one of the domains
where artificial intelligence techniques have been successfully
applied as these techniques use association rules, reasoning,
and decision making processes as would the human brain in
solving diagnostic problems.Theproposedmethod combines
the benefits of model-based method (to easily generate
residuals) with those of data-based methods (probabilistic
methods for isolation). Some methods have been developed
based on neural networks (NNs) [27]. Kramer developed
a nonlinear PCA based on autoassociative neural networks
having five layers [28]. Chen and Liao proposed dynamic pro-
cess fault monitoring based on neural network and PCA [29].
The NN approaches are regarded as multivariate nonlinear
analytical tools capable of recognizing patterns from noisy
complex data.Theirmajor advantages include learning, noise
suppression, and parallel data processing [10].

Intelligent systems found broad application in fault
diagnosis from their early stages because an expert system
simulates human reasoning about a problem domain, per-
forms reasoning over representations of human knowledge,
and solves problems using heuristic knowledge rather than
precisely formulated relationships, in forms that reflect more
accurately the nature of most human knowledge. Neural
networks are able to learn diagnostic knowledge fromprocess
operation data. However, the learned knowledge is in the
form of weights which are difficult to comprehend.
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Figure 1: Structure of DAMADICS actuator system.

In this work, an FDI method is proposed that generates
a large number of residuals computed according to the set
of fault candidates. For each fault candidate, a model of
faulty behavior is worked out and residuals are obtained with
this model. The advantage of using models for both fault-
free and faulty behaviors lies in the fact that, in addition
to estimating the state of the system, faulty models provide
the probability of occurrence or activation of each model
in case of dysfunction. These probabilities are used for
diagnosis issues.The residuals are analyzed according to their
magnitude and signature and a confidence factor evaluates
the performance of the decision.Themethod is validatedwith
the DAMADICS benchmark process [30]. This benchmark
is well-defined for FDI purposes. The paper is organized
as follows: In Section 2, the FDI problem is presented for
the DAMADICS valve actuator. In Section 3, the design of
NN models for faulty and fault-free behaviors is put forward
and FDI based on those models is developed in Section 4.
Section 5 presents the application of our contributions to the
DAMADICS benchmark problem. Finally, in Section 6, some
concluding remarks are provided.

2. FDI for Electropneumatic Actuator

The DAMADICS benchmark is an engineering research
case-study that can be used to evaluate FDI methods. The
benchmark is an electropneumatic valve actuator in the
Lublin sugar factory in Poland [30]. The DAMADICS has
been used as test bed of the fault detection and diagnosis
approach proposed in this paper. Its main characteristics are
as follows:

(a) the DAMADICS benchmark is based on the physical
phenomena that give origin to faults in the system;

(b) the DAMADICS benchmark clearly defines the pro-
cess and data sets; the fault scenarios are standardized.
This is done in view of industrial applicability of the
tested FDI solutions, to cut off methods that have no
practical feasibility.

2.1. Electropneumatic Actuator Description. The actuator
consists of three main parts as follows: control valve (V);
pneumatic servomotor (S); positioned (P). It is depicted
in Figure 1. Furthermore, each of the three main parts
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consists of other components shown in Figure 1, such as
the following: positioner supply air pressure (PSP); PT: air
pressure transmitter; FT: volume flow rate transmitter; TT:
temperature transmitter; ZT: rod position transmitter; E/P:
electropneumatic converter; V1, V2: cut-off valves; V3: by-
pass valve; Ps: pneumatic servomotor chamber pressure; and
CVI: controller output (PC output). In this actuator, faults
can appear in control valve, servomotor, electropneumatic
transducer, piston rod travel transducer, pressure transmit-
ter, or microprocessor control unit. A total number of 19
types different faults are considered (p = 19, Table 1). The
faults are emulated under carefully monitored conditions,
keeping the process operation within acceptable limits. Five
available measurements and one control value signal have
been considered for benchmarking purposes: process control
external signal (CV), liquid pressures on the valve inlet (𝑃

1
)

and outlet (𝑃
2
), liquid flow rate (F), liquid temperature (𝑇

1
),

and servomotor rod displacement (X) (Table 2).
To test the robustness of the proposed fault detection and

diagnosis method, several tests have been performed with
the set of 19 different types of abrupt and incipient faults
with several severities, according to the benchmark rules
defined in the actuator benchmark library (DABLib) [31].The
simulations have been conducted considering the physical
variables free of noise and affected by noise. Furthermore,
all simulation tests have been performed considering the
simulator input variables. A sampling time of 1 s has been
used by the fault detection system, while the simulator
uses a fourth-order Runge-Kutta method with a fixed step
size of 0.0025 s. The results achieved during the tests are
summarized in Table 1. The white cells in Table 1 indicate
that such faulty scenarios were not considered for benchmark
purposes.

Within the DAMADICS project the actuator simulator
was developed under MATLAB Simulink. This tool makes
it possible to generate data for the normal operating mode
and also for the 19 faulty modes. The considered faults are
presented in Table 1. They can be considered either as abrupt
or incipient. Abrupt faults may have small (S), medium (M),
or big (B)magnitude.Themark “∗” denotes the faults that are
specified for benchmark. In this study, results are provided in
case of big magnitude.

2.2. FDI Issues for Electropneumatic Actuator. The conditions
for testing and validating the FDI algorithms on the actuator
benchmark are given in [32, 33]. The system has already
experimented several FDI methods [34–36]. In [36], binary-
valued evaluation of the fault symptoms is explored and the
authors focus on the optimization of the neural network
architecture according to Akaide Information Criteria and
Final Prediction Error. Both criteria include the learning
error and also a term that depends on the complexity
(size of the network in number of nodes) and on the
dimension of the learning set in order to optimize the ratio
complexity/performance. The authors provide interesting
performances with small networks for detection but some
faults are not isolable. In comparison, our approach will
require a larger number of networks and the networks have

more nodes but all faults will be detected and isolated. In
[34], multiple-valued evaluation of the fault symptoms is
introduced to improve the isolation of faults. Such a method
requires a heuristic knowledge about influence of faults
on residuals. In comparison, our approach uses 3-valued
evaluation of the residuals for fault-free behaviors andbinary-
valued evaluation of the residuals for faulty behaviors.

3. Design of Models for Faulty and
Fault-Free Behaviors

3.1. Model of Fault-Free Behaviors. Physical processes are
very often complex dynamic systems, having strong non-
linearities. As a consequence, knowledge based models are
not easy to obtain. Simplifications are essential to formulate
an exploitable model, but are degrading the accuracy of
the mathematical model. Other problems remain with some
model parameters that are not easy to measure or estimate
and that could be variable in time. Another approach lies in
the systematic processing of data collected by sensors.

At this stage, unknown nonlinear systems are considered
with input vector 𝑈(𝑡) = (𝑢

𝑖
(𝑡)), 𝑖 = 1, . . . , 𝑞, and output

vector 𝑌(𝑡) = (𝑦
𝑘
(𝑡)), 𝑘 = 1, . . . , 𝑛. The state variables are not

measurable. NNs are introduced to generate accurate models
of the system in normal operating conditions [37, 38]. The
comparison between the output of the system and the output
𝑌
󸀠

0
(𝑡) = (𝑦

󸀠

𝑘0
(𝑡)), 𝑘 = 1, . . . , 𝑛, of the NNmodel gives the error

vector 𝐸(𝑡) = (𝑒
𝑘
(𝑡)), 𝑘 = 1, . . . , 𝑛, with

𝑒
𝑘
(𝑡) = 𝑦

𝑘
(𝑡) − 𝑦

󸀠

𝑘0
(𝑡) . (1)

The learning of the ANN is obtained according to the
Levenberg-Marquardt algorithm with early stopping. This
algorithm is known for its rapid convergence. During learn-
ing stage, the NN is trained with data collected during the
normal functioning of the system. The NN is then validated
with another set of data. In order to get the bestmodel, several
configurations are tested according to a trial error processing
that uses pruning methods to eliminate the useless nodes.
Finally the resulting NN will be used as a fault-free model
of the system.

3.2. Model of Fault-Free Behaviors for Actuator. We have
constructed a multilayer perceptron (MLP) NN to model
the coupled outputs 𝑦

1
(𝑡) = 𝑋(𝑡) and 𝑦

2
(𝑡) = 𝐹(𝑡) of the

DAMADICS actuator system in case of fault-free behaviours.
We note 𝑦󸀠

10
(𝑡) = 𝑋

󸀠
(𝑡) and 𝑦󸀠

20
(𝑡) = 𝐹

󸀠
(𝑡) the estimated

values of𝑋(𝑡) and 𝐹(𝑡) processed by the NNs:

(𝑋
󸀠
, 𝐹
󸀠
) = NNFM (0) , (2)

where NNFM(0) stands for the double MLP structures
with inputs CV, 𝑃

1
, 𝑃
2
, 𝑇
1
, 𝑋, 𝐹. To select the structure of

NNFM(0), several tests have been carried out to obtain the
best architectures (withminimal number of hidden layers and
number of neurons by layer) for modeling the operation of
the actuator. Table 3 provides some results obtained during
this stage. The training and test data were generated by the
simulation of theMatlab Simulink actuatormodel. Validation
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Table 1: Set of faults specified for Benchmark actuator.

Fault Description Time development
S M B Incipient

𝑓
1

Valve clogging ∗ ∗ ∗

𝑓
2

Valve or valve seat sedimentation ∗ ∗

𝑓
3

Valve or valve seat erosion ∗

𝑓
4

Increasing of valve or bushing friction ∗

𝑓
5

External leakage ∗

𝑓
6

Internal leakage (valve tightness) ∗

𝑓
7

Medium cavity or critical flow ∗ ∗ ∗

𝑓
8

Twisted servomotor’s rod ∗ ∗ ∗

𝑓
9

Servomotor’s housing or terminals tightness ∗

𝑓
10

Servomotor’s diaphragm perforation ∗ ∗ ∗

𝑓
11

Servomotor’s spring fault ∗ ∗

𝑓
12

Electropneumatic transducer fault ∗ ∗ ∗

𝑓
13

Rod displacement sensor fault ∗ ∗ ∗ ∗

𝑓
14

Pressure sensor fault ∗ ∗ ∗

𝑓
15

Positioner spring fault ∗

𝑓
16

Positioner lever fault ∗ ∗ ∗

𝑓
17

Positioner supply pressure drop ∗ ∗

𝑓
18

Unexpected change of pressure difference ∗ ∗ ∗ ∗

𝑓
19

Fully or partly opened bypass valves ∗ ∗ ∗

Table 2: Input and output variables for actuator.

Input Range Unit Description

CV [0, 1] —
Control signal
from external PI
controller

𝑃
1

[2000, 4𝑒 + 6] Pa Inlet liquid
pressure

𝑃
2

[2000, 4𝑒 + 6] Pa Outlet liquid
pressure

𝑇
1

[30, 110] C∘ Liquid temperature
Output Range Unit Description
𝑋 [0, 1] — Position of the rod
𝐹 [0, 1] — Average flow

Table 3: Structure selection for NNFM(0).

NNFM Hidden layer 1 Hidden layer 2 Output layer MSE
(6, 3, 2) 6 3 2 3.3 ∗ 10−4

(10, 8, 2) 10 8 2 1.49 ∗ 10−4

(21, 12, 2) 21 12 2 3.91 ∗ 10−4

(26, 26, 2) 26 26 2 4.84 ∗ 10−6

is done by the measured data provided by the “Lublin Sugar
Factory.”

From Table 3, the structure NNFM(0) = NNFM(6, 3, 2)
is selected to avoid the phenomenon of overlearning. Adding
more nodes in hidden layers does not improve the perfor-
mance of NNFM(0).

The system outputs 𝑋 and 𝐹 and estimated outputs 𝑋󸀠
and𝐹󸀠 are reported in the Figures 2(a) and 2(c).Themodeling
errors 𝑋-𝑋󸀠 and 𝐹-𝐹󸀠 are reported in Figures 2(b) and 2(d).
The modeling results are very satisfactory because no noise
was considered and themodeling errors are less than 10−5 for
the first output and about 10−4 for the second output.

3.3. Models of Faulty Behaviors. When multiple faults are
considered, the isolation of the detected faults is no longer
trivial and early diagnosis becomes a difficult task. One
can multiply the measurements and use some analysis tools
(residuals analysis) in order to isolate the faults. But the
number of sensors limits the use of such approach. Another
approach is to use a history of collected data to improve
the knowledge about the faulty behaviors and then to use
this knowledge to design models of faulty behaviors and
additional residuals. Such models will be used to provide
estimations for each fault candidate and then the decision
results from the comparison of the estimations with the
measurements collected during system operations. The sys-
tematic design of models for the fault-free behaviors is the
first component of the proposed approach. The design of
models for faulty behaviors is similar to themethod described
in Section 3.1. The learning of faulty behaviors is obtained
according to the Levenberg-Marquardt algorithm with early
stopping. Each model is built for a specific fault candidate 𝑓

𝑖

that is considered as an additional input. Figure 3 exhibits the
general scheme used to design a model of faulty behaviors.
The vectors 𝑌󸀠

𝑖
(𝑡) = (𝑦

󸀠

𝑘𝑖
(𝑡)), 𝑘 = 1, . . . , 𝑛, 𝑖 = 1, . . . , 𝑝 stand

for the outputs of the NN models designed for the faults 𝑓
𝑖
,

𝑖 = 1, . . . , 𝑝.
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3.4. Models of Faulty Behaviors for DAMADICS. The preced-
ing method is applied to build NNs models corresponding to
the 19 fault candidates that are considered with DAMADICS
benchmark. For that purpose, it is necessary to create a
data base that contains samples for all faults exposed to
the DAMADICS system [39]. The method is illustrated in
Figure 4 for the fault 𝑓

3
. The network NNFM(3) learns the

mapping from 𝑞 = 6 inputs to 𝑛 = 2 outputs when fault 𝑓
3

is assumed to affect the system from time 𝑡 = 0. Equation (3)
holds:

(𝑋
󸀠

3
, 𝐹
󸀠

3
) = NNFM (3) , (3)

where NNFM(3) stands for the double MLP structures
with inputs CV, 𝑃

1
, 𝑃
2
, 𝑇
1
, 𝑋, 𝐹. To select the structure of

NNFM(3), numerous tests have been carried out to obtain the
best architectures. The training and test data were generated
usingMatlab-SimulinkDABLIBmodels (DAMADICS 2002).
The best structure is a NN with 6 nodes in the first hidden
layer, 3 nodes in the second hidden layer, and two output
neurons. Validation is done with the measured data provided
by the Lublin Sugar Factory in 2001 (DAMADICS 2002).

4. FDI with Models for Faulty and
Fault-Free Behaviors

4.1. Principle. Theproposed approach is based on the analysis
of the outputs obtained after applying the input 𝑈(𝑡) on the
real system and also in parallel on the fault-free and faulty
NN models (Figure 5). Detection and diagnosis result from
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the generation of residuals 𝑅
𝑖
(𝑡), 𝑖 = 0, . . . , 𝑝, according to a

decision block.

4.2. Fault Detection. During monitoring, the direct compar-
ison of the system outputs 𝑌(𝑡) and the outputs 𝑌󸀠

0
(𝑡) of fault-

free model leads to residuals 𝑅
0
(𝑡) = (𝑟

𝑘0
(𝑡)) 𝑘 = 1, . . . , 𝑛

with

𝑟
𝑘0
(𝑡) = 𝑦

𝑘
(𝑡) − 𝑦

󸀠

𝑘
(𝑡) , 𝑘 = 1, . . . , 𝑛. (4)

The residual 𝑅
0
(𝑡) provides information about faults for

further processing. Fault detection is based on the evaluation
of residuals magnitude. It is assumed that each residual 𝑟

𝑘0
(𝑡),

𝑘 = 1, . . . , 𝑛, should normally be close to zero in the fault-
free case, and it should be far from zero in the case of a
fault. Thus, faults are detected by setting threshold 𝑆

𝑘0
on

the residual signals (Figure 6, a single residual and a single
fault are considered for simplicity). The analysis of residuals
𝑟
𝑘0
(𝑡) also provides an estimate 𝜏

𝑘
of the time of occurrence

𝑡
𝑓
used for diagnosis issue. When several residuals are used,

the estimate 𝜏 of the time of occurrence of faults is given by

𝜏 = min {𝜏
𝑘
, 𝑘 = 1, . . . , 𝑛} . (5)

|r(t)|
|r(t)|

S0

False alarm Fault

f(t)

Faulty caseFault-free case

Delay
𝜏

Fault occurrence

tf

t

t

Figure 6: Fault detection using residual analysis.

The faults are detected when the magnitude of one residual
|𝑟
𝑘0
(𝑡)| becomes larger than the threshold 𝑆

𝑘0
:

󵄨󵄨󵄨󵄨𝑟𝑘0 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝑆𝑘0 : no fault is detected at time 𝑡,

󵄨󵄨󵄨󵄨𝑟𝑘0 (𝑡)
󵄨󵄨󵄨󵄨 > 𝑆𝑘0 : a fault is detected at time 𝑡.

(6)

The main difficulty with this evaluation is that the measure-
ment of the system outputs 𝑦

𝑘
(𝑡) is usually corrupted by

disturbances (e.g., measurement noise). In practice, due to
the modeling uncertainties and disturbances, it is necessary
to assign large thresholds 𝑆

𝑘0
in order to avoid false alarms.

Such thresholds usually imply a reduction of the fault detec-
tion sensitivity and can lead to no detections. In order to
avoid such problems, one can run also the models of faulty
behaviors from 𝑡 = 0 and use the method described below.
The idea is to evaluate the probability of the fault candidates
at each time. A fault is detected when the probability of one
model of faulty behaviors NNFM(𝑗), 𝑗 = 1, . . . , 𝑝, becomes
larger than the probability of the fault-free model NNFM(0).

4.3. Proposed Method for Fault Diagnosis. The diagnosis
results either from the usual thresholding technique or from
the online determination of fault probabilities and confidence
factors [39]. In the second method, the faulty models run
simultaneously from time 𝑡 = 𝜏 where 𝜏 is the fault detection
time. Each model will behave according to a single fault
candidate and the resulting behaviors will be compared with
the collected data to provide a rapid diagnosis. In case of
numerous fault candidates 𝑓

𝑖
, 𝑖 = 1, . . . , 𝑝, the output 𝑌󸀠

𝑖
(𝑡) =

(𝑦
󸀠

𝑘
(𝑡, 𝑓
𝑖
, 𝜏)) of the model NNFM(𝑖) is compared with the

measurement vector𝑌(𝑡) to compute additive residual𝑅
𝑖
(𝑡) =

(𝑟
𝑘𝑖
(𝑡, 𝜏)), 𝑘 = 1, . . . , 𝑛. The most probable fault candidate

is determined according to the comparison of all residuals
𝑟
𝑘𝑖
(𝑡, 𝜏), 𝑘 = 1, . . . , 𝑛, 𝑖 = 1, . . . , 𝑝, resulting from the 𝑛

outputs and 𝑝models of faults:

𝑟
𝑘𝑖
(𝑡, 𝜏) = 𝑦

𝑘
(𝑡) − 𝑦

󸀠

𝑘𝑖
(𝑡, 𝜏) . (7)

The introduction of probabilities to evaluate the significance
of each residual and the reliability of the decision is another
component of our approach. The proposed method uses
a time window that can be sized according to the time
requirement. Diagnosis with a large time window includes
a diagnosis delay but will lead to a decision with a high
confidence index. On the contrary single diagnosis with a
small time window leads to early diagnosis but with a lower
confidence index. To evaluate the probability of each fault
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candidate let us define 𝜌
𝑘𝑖
(𝑡, 𝑇, 𝜏) as the cumulative residuals

over the sliding time interval [max(0, 𝑡−𝑇), 𝑡] ofmaximal size
T (T stands for the size of time window):

𝜌
𝑘𝑖
(𝑡, 𝑇, 𝜏) = √∫

𝑡

max(0,𝑡−𝑇)
(𝑟
𝑘𝑖
(𝑢, 𝜏))

2

⋅ 𝑑𝑢. (8)

Then, 𝐷
𝑖
(𝑡, 𝑇, 𝜏) is the Euclidean norm of the vector

Ω
𝑖
(𝑡, 𝑇, 𝜏) = (𝜌

𝑘𝑖
(𝑡, 𝑇, 𝜏)) of dimension 𝑛:

𝐷
𝑖
(𝑡, 𝑇, 𝜏) = √

𝑘=𝑛

∑

𝑘=1

(𝜌
𝑘𝑖
(𝑡, 𝑇, 𝜏))

2

. (9)

𝐷
𝑖
(𝑡, 𝑇, 𝜏) is used to determine which is the most probable

fault according to delayed or early diagnosis. Two particular
cases are considered for 𝑇 = 𝑡 and 𝑇 = 0.

The most probable fault at time 𝑡 is given according to
the a posteriori analysis of 𝐷

𝑖
(𝑡, 𝑡, 𝜏) computed for the time

interval [0, 𝑡] (𝑇 = 𝑡):
𝑖
∗
(0, 𝑡) = argmin

𝑖

{𝐷
𝑖
(𝑡, 𝑡, 𝜏) , 𝑖 = 1, . . . , 𝑝} . (10)

The probability 𝑃
𝑖
(𝑡, 𝑡, 𝜏) that the current fault is 𝑓

𝑖
will be

given by

𝑃
𝑖
(𝑡, 𝑡, 𝜏) =

1

𝐷
𝑖
(𝑡, 𝑡, 𝜏)∑

𝑘=𝑝

𝑘=1
(1/𝐷
𝑘
(𝑡, 𝑡, 𝜏))

= [

𝑘=𝑝

∑

𝑘=1,𝑘 ̸= 𝑖

(
𝐷
𝑖
(𝑡, 𝑡, 𝜏)

𝐷
𝑘
(𝑡, 𝑡, 𝜏)

) + 1]

−1

.

(11)

Immediate diagnosis results from the analysis of 𝐷
𝑖
(𝑡, 0, 𝜏)

computed at time 𝑡 according to (𝑇 = 0):

𝑖
∗
(𝑡, 𝑡) = argmin

𝑖

{𝐷
𝑖
(𝑡, 0, 𝜏) , 𝑖 = 1, . . . , 𝑝} . (12)

In practical cases and in order to attenuate the effects of
noise and outlaw values, the most probable fault candidate is
determined according to the comparison of the cumulative
residuals over a sliding time interval [max(0, 𝑡 − 𝑇), 𝑡] of
maximal size T:

𝑖
∗
(𝑡 − 𝑇, 𝑡) = argmin

𝑖

{𝐷
𝑖
(𝑡, 𝑇, 𝜏) , 𝑖 = 1, . . . , 𝑝} . (13)

The probability 𝑃
𝑖
(𝑡, 𝑇, 𝜏) that the current fault is 𝑓

𝑖
will be

given by

𝑃
𝑖
(𝑡, 𝑇, 𝜏) = [

𝑘=𝑝

∑

𝑘=1,𝑘 ̸= 𝑖

(
𝐷
𝑖
(𝑡, 𝑇, 𝜏)

𝐷
𝑘
(𝑡, 𝑇, 𝜏)

) + 1]

−1

. (14)

The window size 𝑇 is selected in order to satisfy real time
requirements for rapid diagnosis. Let us mention that a
confidence factor for diagnosis can also be worked out
according to the probabilities 𝑃

𝑖
(𝑡, 𝑇, 𝜏):

CF (𝑡, 𝑇, 𝜏)

= (max (𝑃
𝑖
(𝑡, 𝑇, 𝜏) 𝑖 = 1, . . . , 𝑝)

−max (𝑃
𝑘
(𝑡, 𝑇, 𝜏) : 𝑘 = 1, . . . , 𝑝, 𝑘 ̸= 𝑖))

× (max (𝑃
𝑖
(𝑡, 𝑇, 𝜏) : 𝑖 = 1, . . . , 𝑝))

−1

.

(15)

The preceding method can also be combined with a thresh-
olding technique to avoid the multiplication of residuals and
to provide a reliable decision according to a hierarchical
scheme. In a first stage, a small number of residuals are
evaluated and analyzed.This stage leads to the determination
of a subgroup of possible faults that have the same signature.
Then, the fault probabilities are used within this subgroup in
order to select the most probable fault candidate.

5. Application to Electropneumatic Actuator

5.1. Fault Detection. The residual vector 𝑅
0
(𝑡) = (𝑟

𝑘0
(𝑡)), 𝑘 =

1, 2, is first considered for fault detection:

𝑟
10
(𝑡) = 𝑋 (𝑡) − 𝑋

󸀠
(𝑡) ,

𝑟
20
(𝑡) = 𝐹 (𝑡) − 𝐹

󸀠
(𝑡) ,

(16)

where 𝑋󸀠 and 𝐹󸀠 are the outputs of the NN model of fault-
free behaviors. The detection is obtained according to the
comparison of residuals with appropriate thresholds. Three-
valued signals are obtained (positive, negative, and zero).
The thresholds were calculated according to the standard
deviation of the residual for fault-free case [39]. Let us notice
that the choice of constant or adaptive thresholds strongly
influences the performance of the FDI system.The thresholds
must be thoroughly selected. For the continuation of our
work, the thresholds 𝑆

10
= 10⋅𝜎

1
and 𝑆
20
= 10⋅𝜎

2
are selected

where𝜎
1
and𝜎
2
are the standard deviations obtained from the

learning process. Table 4 sums up the detection performances
for the 19 types of faults according to the sign of the residual
vector 𝑅

0
.

The evaluation of residual vector 𝑅
0
leads to a first

stage in detection and isolation: from Table 4, the faults
𝑓
2
, 𝑓
4
, 𝑓
11
, 𝑓
13
, and 𝑓

16
have specific symptoms and can

be directly isolated. Three groups of faults with similar
symptoms can also be separated:

(i) group number 1 = {𝑓
3
, 𝑓
6
, 𝑓
9
, 𝑓
12
, 𝑓
18
, 𝑓
19
};

(ii) group number 2 = {𝑓
1
, 𝑓
7
, 𝑓
10
, 𝑓
15
, 𝑓
17
};

(iii) group number 3 = {Fault-free, 𝑓
5
, 𝑓
8
, 𝑓
14
}.

The faults in group 1 and group 2 are detected but not isolated
because the signatures over 𝑟

10
and 𝑟
20

are similar. One can
also notice that the faults in group 3 have the same signature
as the fault-free behaviors. Thus faults in group 3 cannot be
directly detected with residuals 𝑟

10
and 𝑟
20
.

To illustrate our contribution, 3 simulations with faults
are considered.The fault𝑓

3
, that is, an incipient fault of group

1, is simulated during the time interval [487 s 1000 s]; then
𝑓
15
, that is, an abrupt fault of group 2, is simulated during the

time interval [451 s 1000 s]; finally 𝑓
5
, that is, an incipient

fault, is simulated during time interval [302 s, 1000 s]. All
these simulations were realized by DABLIB models under
Matlab Simulink. The detection thresholds are selected such
that 𝑆

10
= 10 ∗ 𝜎

1
and 𝑆
20
= 10 ∗ 𝜎

2
with 𝜎

1
= 7.047 ∗ 10

−6

and 𝜎
2
= 1.065 ∗ 10

−5. According to the detection stage, the
fault 𝑓

3
is detected at time 𝜏 = 501 s and with a delay of 14 s

the group 1 is also isolated. The fault 𝑓
15

is detected at time
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Table 4: Fault detection with residuals 𝑟
10
and 𝑟
20
.

Faults Residuals

𝑟
10
> 0 𝑟

10
< 0 𝑟

20
> 0 𝑟

20
< 0

Group
number

Fault-free 0 0 0 0 3
𝑓
1

1 1 1 1 2
𝑓
2

0 0 1 0 Isolated
𝑓
3

0 0 0 1 1
𝑓
4

0 0 1 1 Isolated
𝑓
5

0 0 0 0 3
𝑓
6

0 0 0 1 1
𝑓
7

1 1 1 1 2
𝑓
8

0 0 0 0 3
𝑓
9

0 0 0 1 1
𝑓
10

1 1 1 1 2
𝑓
11

1 1 1 0 Isolated
𝑓
12

0 0 0 1 1
𝑓
13

0 1 0 1 Isolated
𝑓
14

0 0 0 0 3
𝑓
15

1 1 1 1 2
𝑓
16

1 0 0 1 Isolated
𝑓
17

1 1 1 1 2
𝑓
18

0 0 0 1 1
𝑓
19

0 0 0 1 1

𝜏 = 458 s with a delay of 7 s and the group 2 is isolated. The
fault 𝑓

5
cannot be detected with the thresholding technique

because it has the same signature as the fault-free behaviors.

5.2. Fault Diagnosis. Within each group, faults are not
isolable with both residuals (𝑟

10
and 𝑟

20
). For this reason,

the new technique proposed and described in Section 4.3
is used. For this purpose, models of faults corresponding
to each fault candidates of the 3 groups are designed
according to the historical data provided by DAMADICS
benchmark. Each model NNFM(𝑖) computes two estimated
outputs 𝑋󸀠

𝑖
(𝑡) and 𝐹󸀠

𝑖
(𝑡) and the difference with measured

data of the system leads to the residuals 𝑟
1𝑖
(𝑡) and 𝑟

2𝑖
(𝑡), 𝑖 ∈

{3, 6, 9, 12, 18, 19, 1, 7, 10, 15, 17, 5, 8, 14}:

𝑟
1𝑖
(𝑡) = 𝑋 (𝑡) − 𝑋

󸀠

𝑖
(𝑡) ,

𝑟
2𝑖
(𝑡) = 𝐹 (𝑡) − 𝐹

󸀠

𝑖
(𝑡) .

(17)

When the fault 𝑓
3
is simulated during the time interval

[487 s 1000 s], all faulty models in group 1 are evaluated
(Figure 7) and residuals from Figure 8 are obtained.

The residuals of Figure 8 are obtained. From time 𝜏 =
501 s, one can notice that only residuals 𝑟

13
and 𝑟
23

remain
within the interval limited by thresholds 𝑆

10
and 𝑆
20
.

The application of the usual thresholding method leads
to partial isolation.The residuals 𝑅

6
, 𝑅
12
, 𝑅
18
, and 𝑅

19
clearly

exceed the thresholds for 𝑡 > 𝜏 (𝜏 = 501 s) and thus the fault
candidates𝑓

6
,𝑓
12
,𝑓
18
, and𝑓

19
are eliminated.The residual 𝑟

29
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Figure 7: Fault diagnosis for a fault detected in group number 1.

also exceeds the threshold in some points but these points can
be interpreted as outlaws and the faults 𝑓

3
and 𝑓
9
are difficult

to separate.
The second method leads to better results. Let us define

the cumulative residuals 𝜌
1𝑖
(𝑡, 𝑇, 𝜏), 𝜌

2𝑖
(𝑡, 𝑇, 𝜏), and the dis-

tance 𝐷
𝑖
(𝑡, 𝑇, 𝜏), according to (8) and (9). The application

of the method described in Section 4.3 leads to the results
in Table 5. Delayed diagnosis with a large time window is
obtained according to (10).

The diagnosis results are reported in Table 5 for 𝑇 =

1000 s. The column 5 of Table 5 shows that the probability
for fault 𝑓

3
is about 52% and the confidence factor for the

diagnosis is about 51% according to (15). To conclude 𝑓
3
is

the most probable fault when residuals are analyzed within
time interval [0, 1000 s].

Early diagnosis for fault 𝑓
3
is also illustrated by selecting

a small time interval with 𝑇 = 50 s. For any 𝑡 ∈ [0, 1000],
the model with minimal distance to the origin (i.e., minimal
value of 𝐷

𝑖
(𝑡, 50, 𝜏)) corresponds to the most probable fault.

Figure 9 reports the probabilities of the fault candidates
from the instant 𝜏 of detection versus time and also the
confidence factor of the FDI decision. One can notice that the
signals 𝑃

𝑗
and CF exhibit a specific frequency of 0.01Hz that

corresponds to the frequency of input.
In Figure 9(a), the curve above in red corresponds to the

probability of the fault𝑓
3
.This probability increaseswith time

and reaches the value 1 at time 𝑡 = 𝜏 + 290 = 791 s. It
varies quickly during the decision phase [500 s 550 s]. This
illustrates the robustness of our method. Figure 9(b) shows
the variations of the confidence factor calculated by (15) and
confirms that the 𝑓

3
fault is the most probable fault.

The fault 𝑓
15

is also simulated during time interval
[451 s 1000 s]. This fault is detected at time 458 s and group
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Figure 8: Residuals for group number 1 (X-label: time (s), Y-label: residual magnitude) when 𝑓
3
is simulated from time 𝑡 = 487 s.

2 is isolated. Then all faulty models in group 2 are evaluated
and residuals in Figure 10 are obtained.

The residuals of Figure 10 are obtained. From time 𝜏 =
458 s, one can notice that only residuals 𝑟

115
and 𝑟
215

remain
within the interval limited by thresholds 𝑆

10
and 𝑆
20
. So fault

𝑓
15
is isolated.

The FDI method proposed is also applied to isolate 𝑓
15
.

The application of the method described in Section 4.3 leads
to the results in Table 6.

Table 6 reports the location of each model NNFM(𝑖) in
plan (𝜌

1
, 𝜌
2
) and the distance 𝐷

𝑖
(𝑡, 𝑡, 458) at time 𝑡 = 1000 s.

The column 5 of Table 6 also reports the probabilities of
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Table 5: Delayed diagnosis for fault 𝑓
3
with 𝑇 = 𝑡 = 1000 s.

Model of faults NNFM(𝑖)
Fault candidate 𝜌

1𝑖
(1000, 1000, 501) 𝜌

1𝑖
(1000, 1000, 501) 𝐷

𝑖
(1000, 1000, 501) 𝑃

𝑖
(1000, 1000, 501)

𝑓
3

0.01 0.90 0.90 0.51
𝑓
6

0.03 6.48 6.48 0.07
𝑓
9

0.09 1.84 1.84 0.25
𝑓
12

2.71 5.73 6.34 0.07
𝑓
18

0.03 9.92 9.92 0.04
𝑓
19

0.03 13.13 13.13 0.03
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Figure 9: Performance evaluation for FDI of fault 𝑓
3
(X-label: time (s), Y-label probability and confidence factor). (a) Probability

𝑃
3
(𝑡, 50, 501); (b) confidence factor CF(𝑡, 50, 501).

each fault candidate according to (14). From this column
one can conclude that the most probable fault is 𝑓

15
: the

fault probability for 𝑓
15

is about 96%. In the same time
the probabilities of the other faults do not exceed 3%. Such
indicators provide a confidence factor for the diagnosis about
96% according to (15).

Early diagnosis of fault 𝑓
15

is illustrated by selecting a
small time interval with 𝑇 = 50 s. For any 𝑡 ∈ [0, 1000],
the model with minimal distance to the origin corresponds
to the most probable fault. In Figure 11(a), all trajectories are
reported; the trajectory for model NNFM(15) is highlighted.
Figure 11(b) plots details about the trajectory for model
NNFM(15).

The trajectory corresponding toNNFM(15) remains near
origin in comparison to the other trajectories. One can
conclude that the fault candidate 𝑓

15
is the most probable

fault. The repartition of the cumulative residuals in plan
(𝜌
1
, 𝜌
2
) confirms the significance of both outputs 𝑋(𝑡) and

𝐹(𝑡) to design residuals (we can notice that cumulative
residuals 𝜌

1𝑖
(𝑡, 𝑇, 𝜏) and 𝜌

2𝑖
(𝑡, 𝑇, 𝜏) cover the positive part of

plan (𝜌
1
, 𝜌
2
)). Figure 12 reports the probabilities of the fault

candidates from the instant 𝜏 of detection versus time and
also the confidence factor of the FDI decision.

In Figure 12(a), the curve above corresponds to the
probability of the fault 𝑓

15
. This probability increases very

quickly and reaches the value 1 at time 𝑡 = 𝜏 + 100 = 558 s.
Figure 12(b) shows the variations of the confidence factor
calculated by (15) and confirms that the 𝑓

15
fault is the most

probable fault. One can notice that the confidence factor
for the isolation of fault 𝑓

15
reaches quickly the value 1 in

comparison with fault 𝑓
3
: the reason is that 𝑓

15
is an abrupt

fault whereas 𝑓
3
is an incipient one.

The fault 𝑓
5
is also simulated during time interval

[302 s 1000 s]. This fault cannot be detected with the thresh-
olding technique: the residuals in Figure 13 are obtained and
one can notice that no residual from group 3 overcomes the
thresholds previously defined.

In this case, detection and isolation are obtained in a
single stage by considering simultaneously all residuals for
models in group number 3 (i.e., 𝑅

0
, 𝑅
5
, 𝑅
8
, and 𝑅

14
). The

probabilities of the models NNFM(0), NNFM(5), NNFM(8),
and NNFM(14) are reported in Figure 14(a). In this figure,
one can notice that the probability of model NNFM(0) is
clearly the largest one from 𝑡 = 100 s to 𝑡 = 300 s (bleu
line), then from 𝑡 = 300 s to 𝑡 = 500 s; the probabilities
of all models are very similar and finally the probability of



Computational Intelligence and Neuroscience 11

0 200 400 600 800 1000 1200

−5

0

5
×10−3

−5

0

5
×10−3

−5

0

5
×10−3

−5

0

5
×10−3

−5

0

5
×10−3

−5

0

5
×10−3

−5

0

5
×10−3

−5

0

5
×10−3

−5

0

5
×10−3

−5

0

5
×10−3

r1

0 200 400 600 800 1000 1200

0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

r1

r27

r2

r11

r210

r11

r215

r11

r217

Figure 10: Residuals for group 2 (X-label: time (s), Y-label: residual magnitude) when 𝑓
15
is simulated from time 𝑡 = 451 s.

Table 6: Delayed diagnosis for fault 𝑓
15
with 𝑇 = 𝑡 = 1000 s.

Model of faults NNFM(𝑖)
Fault Candidate 𝜌

1𝑖
(1000, 1000, 458) 𝜌

1𝑖
(1000, 1000, 458) 𝐷

𝑖
(1000, 1000, 458) 𝑃

𝑖
(1000, 1000, 458)

𝑓
1

8.93 4.09 9.82 0.007
𝑓
7

10.38 12.52 16.27 0.004
𝑓
10

1.23 1.44 1.90 0.037
𝑓
15

0.06 0.04 0.07 0.935
𝑓
17

1.69 4.50 4.81 0.015



12 Computational Intelligence and Neuroscience

0 0.5 1 1.5 2 2.5 3 3.5 4

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

NNFM(15)

(a)

0 0.1 0.2 0.3 0.4 0.5

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

NNFM(15)

(b)

Figure 11: Early diagnosis for fault 𝑓
15
(X-label: 𝜌

1
, Y-label: 𝜌

2
): (a) location of the models NNFM(𝑖); (b) details.
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Figure 12: Performance evaluation for FDI of fault 𝑓
15

(X-label: time (s), Y-label probability and confidence factor). (a) Probability
𝑃
15
(𝑡, 50, 458); (b) confidence factor CF(𝑡, 50, 458).

model NNFM(5) increases from time 𝑡 = 500 s (curve with
blue circles). The confidence factor reported in Figure 14(b)
illustrates that the decisions provided by the FDI system are
reliable in intervals [100 s 300 s] and [500 s 1000 s].

5.3. Discussion. Table 7 reports some conclusion concerning
the detection and diagnosis of faults for the DAMADICS
benchmark and according to the considered method. Results
are detailed (1) for the fault detectionwith thresholds (accord-
ing to the evaluation of residual 𝑅

0
); (2) for the fault isolation

with thresholds (according to the evaluation of residuals
𝑅
0
to 𝑅
19
); (3) for the fault detection and isolation with

probability and confidence factor computation (according
to the evaluation of residuals 𝑅

0
to 𝑅
19
). 84% of the fault

candidates are detected with the thresholding method. The
delay to detection never exceeds 30 s. But faults in group 3
are not detectable with the considered thresholds. Decreasing

the detection thresholds improves detection results but leads
also to false alarms and fault 𝑓

14
remains undetectable. Some

faults are detected but cannot be isolated with thresholds
(e.g., 𝑓

3
and 𝑓

9
): isolation succeeds for 63% of the fault

candidates with the thresholdingmethod. In comparison, the
computation of fault probabilities and confidence factor leads
to the detection and isolation of all faults (for the considered
example). In a few cases, the confidence factor is near 0.5 and
the decision is not considered as reliable. The computation
effort with the proposed method is to run several (up to 6)
models in parallel.

6. Conclusion

The proposed FDI scheme combined the design of neural
networks to model fault-free and faulty behaviors of indus-
trial systems (residuals generation by using thresholding
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Table 7: Comparison of FDI methods (+: decision is correct; −: decision is wrong).

Faults Technique
Detection with threshold Isolation with threshold FDI with confidence factor

𝑓
1

+ − +
𝑓
2

+ + +
𝑓
3

+ − +
𝑓
4

+ + +
𝑓
5

− − +
𝑓
6

+ − +
𝑓
7

+ + +
𝑓
8

− − +
𝑓
9

+ − +
𝑓
10

+ + +
𝑓
11

+ + +
𝑓
12

+ + +
𝑓
13

+ + +
𝑓
14

− − +
𝑓
15

+ + +
𝑓
16

+ + +
𝑓
17

+ + +
𝑓
18

+ + +
𝑓
19

+ + +

method for isolation) with a probabilisticmethod (evaluating
the fault probability and the confidence on decision). The
results are compared with a usual thresholding method. Both
techniques give correct decisions inmany cases. However, the
results obtained with the method based on the computation
of the probabilities are better and the reliability of the decision
is also explicitly evaluated. In particular the proposedmethod
does not require computing thresholds for detection and
isolation and as a consequence is easier to use for incipient
faults.

The systematic design of fault-free and faulty models
based on NNs has been proved to be suitable for early
detection and diagnosis issues in case of nonlinear systems.
The application of the proposed method on the DAMADICS
benchmark illustrates also the performance of the proposed
FDI approach.

From our point of view, the main limitation of the
proposed method is the rapid increase of the computational
effortwhennumerous fault candidates andnumerous outputs
are considered. To reduce this effort, one can notice that
some residuals contain useful information for FDI and others
are quite useless. Based on the evaluation of a confidence
factor for each residual, we will study a method to select
the more reliable residuals. Another drawback is that the
proposed method requires the design of models that include
the influence of faults. The strength and size of faults also
can influence the model behavior. For these reasons, the
method must be carefully applied depending on the system
under conditions. Our future works are also to validate
this technique by applying it on other systems with various
operating conditions and various faults.
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