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We propose a nonmonotone adaptive trust regionmethod for unconstrained optimization problemswhich combines a conicmodel
and a new update rule for adjusting the trust region radius. Unlike the traditional adaptive trust region methods, the subproblem
of the new method is the conic minimization subproblem. Moreover, at each iteration, we use the last and the current iterative
information to define a suitable initial trust region radius. The global and superlinear convergence properties of the proposed
method are established under reasonable conditions. Numerical results show that the new method is efficient and attractive for
unconstrained optimization problems.

1. Introduction

In this paper, we consider the following unconstrained
optimization problem:

min
𝑥∈𝑅
𝑛

𝑓 (𝑥) , (1)

where 𝑓: 𝑅𝑛 → 𝑅 is a continuously differentiable function.
Trust region method is effective for solving (1). In 1970s,

Powell [1] established the convergence result of trust region
method. Yuan [2], Nocedal, and Yuan [3] proposed various
trust region methods for optimization problems. It calculates
a trial step by solving the subproblem

min𝜙
𝑘
(𝑑) = 𝑔𝑇

𝑘
𝑑 +

1

2
𝑑𝑇𝐵
𝑘
𝑑, s.t. ‖𝑑‖ ≤ Δ

𝑘
, (2)

where 𝑔
𝑘
= ∇
𝑥
𝑓(𝑥
𝑘
) is the gradient of the objective function

at 𝑥
𝑘
, 𝐵
𝑘
∈ 𝑅𝑛×𝑛 is a symmetric matrix which is either the

Hessian matrix of𝑓 at 𝑥
𝑘
or an approximation to it, ‖ ⋅ ‖ refers

to the Euclidean norm, and Δ
𝑘
> 0 is the radius of an area,

called the trust region, where the model is trusted. Let 𝑑
𝑘

be the solution of (2). The actual reduction of the objective
function is defined by

Ared
𝑘
= 𝑓
𝑘
− 𝑓 (𝑥

𝑘
+ 𝑑
𝑘
) , (3)

and the predicted reduction of 𝑓(𝑥) is defined by

Pred
𝑘
= 𝜙
𝑘
(0) − 𝜙

𝑘
(𝑑
𝑘
) . (4)

The ratio between these two reductions is defined by

𝑟
𝑘
=
Ared
𝑘

Pred
𝑘

=
𝑓
𝑘
− 𝑓 (𝑥

𝑘
+ 𝑑
𝑘
)

𝜙
𝑘
(0) − 𝜙

𝑘
(𝑑
𝑘
)
, (5)

and it is normally used to test whether the trial step 𝑑
𝑘
is

accepted or the trust region radius needs to be adjusted. The
next iterate 𝑥

𝑘+1
is chosen by the following formula:

𝑥
𝑘+1

=
{
{
{

𝑥
𝑘
+ 𝑑
𝑘

if 𝑟
𝑘
≥ 𝜂
0
,

𝑥
𝑘

otherwise,
(6)

where 𝜂
0
∈ [0, 1) is a constant. The next trust region radius is

chosen as

Δ
𝑘+1

=
{
{
{

𝑐
0
Δ
𝑘

if 𝑟
𝑘
< 𝜂
1
,

𝑐
1
Δ
𝑘

if 𝑟
𝑘
> 𝜂
2
,

Δ
𝑘

otherwise,
(7)

where 0 ≤ 𝜂
1
< 𝜂
2
< 1, 0 < 𝑐

0
< 1 < 𝑐

1
are constants.

In comparison with quasi-Newton methods, trust region
methods converge to a point which not only is a stationary
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point but also satisfies second-order necessary conditions.
Trust region method has strong convergence and robustness,
so many authors have studied it; see [4–7]. Conn et al. [8],
Nocedal andWright [9], and Yuan and Sun [10] presented the
complete introduction.

Recently, Grippo et al. [11] presented the nonmonotone
line search method for unconstrained optimization prob-
lems. Due to its high efficiency of nonmonotonemethod, this
technique has been combined with trust region methods; we
can see [12–16].

Sartenaer [17] presented a strategy for determining auto-
matically an initial trust region radius. Fan and Yuan [18]
proposed a trust region method with the trust region radius
converging to zero. Recently, Zhang et al. [19] gave an adaptive
trust region method, and they solve the subproblem (2) with
Δ
𝑘
= 𝑐𝑝‖𝑔

𝑘
‖‖𝐵−1
𝑘
‖, 0 < 𝑐 < 1, and 𝑝 is a nonnegative integer.

𝐵
𝑘
is a safely positive definite matrix based on Schnabal and

Eskowmodified Cholesky factorization.Therefore, instead of
adjusting Δ

𝑘
, one adjusts 𝑝 at each iteration. Based on [19]

and a simple subproblemmodel, Sang and Sun [20] proposed
another adaptive trust region method with line search.
The numerical results show that the adaptive trust region
algorithms [21–24] are more effective than traditional trust
region methods for unconstrained optimization problems.

The adaptive trust region methods listed above are based
on quadratic model; however, when the objective function
has strong nonquadratic behavior, the quadraticmodelmeth-
ods often produce a poor prediction of the minimizer of the
function. In 1980, Davidon [25] proposed the conic model
methods for unconstrained optimization problems. A typical
conic trust region subproblem is as follows:

min𝜑
𝑘
(𝑠) =

𝑔𝑇
𝑘
𝑠

1 − 𝛼𝑇
𝑘
𝑠
+
1

2

𝑠𝑇𝐵
𝑘
𝑠

(1 − 𝛼𝑇
𝑘
𝑠)
2
,

s.t. 1 − 𝛼𝑇
𝑘
𝑠 > 0,

‖𝑠‖ ≤ Δ
𝑘
,

(8)

where 𝜑
𝑘
(𝑠) is called conic model which is an approximation

to 𝑓(𝑥
𝑘
+ 𝑠
𝑘
) − 𝑓(𝑥

𝑘
). The vector 𝛼

𝑘
is the associated vector

for the collinear scaling in the 𝑘th iteration, and it is normally
called the horizontal vector. If 𝛼

𝑘
= 0, the conic model

reduces to a quadratic model. Also, one can see that 𝜑
𝑘
(𝑠)

is quadratic along any direction 𝑠 ∈ 𝑅𝑛 satisfying 𝛼𝑇
𝑘
𝑠 = 0.

Recently, trust region methods based on conic model have
been presented and studied; see [26–32]. Numerical results
show the efficiency of the conic trust region methods.

In the traditional trust region methods, the next trust
region radius is updated by the current ratio 𝑟

𝑘
, which is

reasonable if the matrix 𝐵
𝑘
is exactly as the Hessian𝐻

𝑘
and if

the trust region subproblem (2) is solved exactly. However,
in practical computations, the matrix 𝐵

𝑘
is often obtained

approximately and the subproblem is solved approximately.
In such a case, it may be more reasonable to adjust the
next trust region Δ

𝑘+1
according to not only 𝑟

𝑘
but also the

previous ratios {𝑟
𝑘−𝑞

, . . . , 𝑟
𝑘
}, where 𝑞 is some nonnegative

integer.

In order to measure the agreement between the model
function and the objective function, we define the following
ratio:

𝑟
𝑘
=

min{𝑘,𝑞}

∑
𝑖=0

𝜔
𝑘𝑖
𝑟
𝑘−𝑖

, (9)

where 𝜔
𝑘𝑖
∈ [0, 1] is the weight of 𝑟

𝑘−𝑖
, such that

min{𝑘,𝑞}

∑
𝑖=0

𝜔
𝑘𝑖
= 1. (10)

In this paper, we propose a new adaptive trust region
method which combines the conic model and nonmonotone
technique which was given in [33] and a new update rule
for adjusting the trust region radius. Our method is different
from other adaptive trust region methods in three points.
First, the subproblem is conicmodelwhich canproduce a bet-
ter prediction of theminimizer of the function than quadratic
model methods when the objective function has strong
nonquadratic behavior. Second, at each iteration, ourmethod
generates a suitable trust region radius automatically based
on the current and last iterative information. Last, we use a
new update rule (8) to adjust the next trust region radius.
The new trust region model is more consistent with the
objective function at the current iterative point. According to
the nonmonotone technique in [33], our method constructs
an iterative series {𝑥

𝑘
} such that the sequence {𝑓(𝑥

𝑘
)} is not

monotonic, which can accelerate the convergence rate of the
minimization process, especially in the narrow curved valley.
The global and superlinear convergence properties of the
proposed method are proved under reasonable conditions.
The numerical results show that the new method is more
effective than other trust region methods.

The rest of this paper is organized as follows. In next
section, we describe a new nonmonotone adaptive trust
region method based on conic model for unconstrained
optimization problems. In Sections 3 and 4, we prove the
global and superlinear convergence properties of the pro-
posed method under reasonable conditions, respectively.
Some numerical results are given in Section 5. Conclusions
are summarized in Section 6.

2. Algorithm Description

In this section, we describe a new nonmonotone adaptive
trust regionmethod based on conic model for unconstrained
optimization problems.

We obtain the trial step 𝑠
𝑘
by solving the following

subproblem:

min𝜑
𝑘
(𝑠) =

𝑔𝑇
𝑘
𝑠

1 − 𝛼𝑇
𝑘
𝑠
+
1

2

𝑠𝑇𝐵
𝑘
𝑠

(1 − 𝛼𝑇
𝑘
𝑠)
2
,

s.t. 1 − 𝛼𝑇
𝑘
𝑠 > 0,

‖𝑠‖ ≤ Δ
𝑘
,

(11)

whereΔ
𝑘
= 𝜇
𝑘
(‖𝑠
𝑘−1

‖2/𝑠𝑇
𝑘−1

𝐵
𝑘
𝑠
𝑘−1

)‖𝑔
𝑘
‖,Δ
0
= 𝜇
0
‖𝑔
0
‖,𝜇
0
> 0.

𝜇
𝑘
is updated according to (8), 𝑠

𝑘−1
is the solution of the last
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subproblem. 𝐵
𝑘
is generated by the procedure 𝑠𝑇

𝑘−1
𝐵
𝑘
𝑠
𝑘−1

=

𝑠𝑇
𝑘−1

𝐵
𝑘
𝑠
𝑘−1

+ 𝑖‖𝑠
𝑘−1

‖2 and 𝑖 is the smallest nonnegative integer
such that

𝑠𝑇
𝑘−1

𝐵
𝑘
𝑠
𝑘−1

= 𝑠𝑇
𝑘−1

𝐵
𝑘
𝑠
𝑘−1

+ 𝑖
𝑠𝑘−1


2

> 0. (12)

The new reduction of 𝑓(𝑥) is defined by

Ared
𝑘
= 𝑀
𝑘
− 𝑓 (𝑥

𝑘
+ 𝑠
𝑘
) , (13)

where

𝑀
𝑘
= max{𝑓 (𝑥

𝑘
) ,
𝑚(𝑘)−1

∑
𝑟=0

𝜆
𝑘𝑟
𝑓 (𝑥
𝑘−𝑟

)} , (14)

𝜆 ∈ (0, 1], 𝑚 ≥ 1 is a positive integer. We define 𝑚(𝑘) =
min{𝑘 + 1,𝑚} and choose

𝜆
𝑘𝑟

≥ 𝜆, 𝑟 = 0, 1, . . . , 𝑚 (𝑘) − 1,
𝑚(𝑘)−1

∑
𝑟=0

𝜆
𝑘𝑟

= 1. (15)

The predicted reduction of 𝑓(𝑥) is

Pred
𝑘
= −

𝑔𝑇
𝑘
𝑠
𝑘

1 − 𝛼𝑇
𝑘
𝑠
𝑘

−
1

2

𝑠𝑇
𝑘
𝐵
𝑘
𝑠
𝑘

(1 − 𝛼𝑇
𝑘
𝑠
𝑘
)
2
. (16)

The new ratio 𝑟
𝑘
is defined by

𝑟
𝑘
=
Ared
𝑘

Pred
𝑘

. (17)

In what follows, we describe our new nonmonotone
adaptive trust region method based on conic model.

Algorithm 1 (nonmonotone adaptive trust region method
based on conic model). Consider the following.

Step 0. Given 𝑥
0
∈ 𝑅𝑛, 𝐵

0
∈ 𝑅𝑛×𝑛 is a symmetric positive

definite matrix, 𝜀 > 0, 𝜇
0
> 0, Δ

0
= 𝜇
0
‖𝑔
0
‖, 0 < 𝜆 ≤ 1,

0 < 𝜂
0
< 𝜂
1
< 1, 0 < 𝑐

0
< 1 < 𝑐

1
, and an integer constant

𝑚 ≥ 1; set𝑚(0) = 0, 𝑘
:
= 0.

Step 1. Compute 𝑔
𝑘
. If ‖𝑔

𝑘
‖ < 𝜀, then stop. Otherwise, go to

Step 2.

Step 2. Solve the subproblem (11) and let 𝑠
𝑘
be an approximate

solution of the subproblem (11).

Step 3. Compute Ared
𝑘
,Pred

𝑘
, and 𝑟

𝑘
.

Step 4. If 𝑟
𝑘
< 𝜂
0
, set 𝜇

𝑘
:= 𝑐
0
𝜇
𝑘
and go to Step 2. Otherwise,

go to Step 5.

Step 5. Choose 𝜔
𝑘𝑖

∈ [0, 1] that satisfying (9). Compute 𝑟
𝑘

and, by (8), set 𝑥
𝑘+1

= 𝑥
𝑘
+ 𝑠
𝑘
and

𝜇
𝑘+1

= {
𝑐
1
𝜇
𝑘

if 𝜂
1
≤ 𝑟
𝑘
,

𝜇
𝑘

if 𝜂
0
≤ 𝑟
𝑘
< 𝜂
1
.

(18)

Step 6.Update 𝛼
𝑘+1

, 𝑚(𝑘+1), and the symmetric matrix 𝐵
𝑘+1

.
Let Δ

𝑘+1
= 𝜇
𝑘+1

(‖ 𝑑
𝑘
‖2/𝑑𝑇
𝑘
𝐵
𝑘+1

𝑑
𝑘
)‖𝑔
𝑘+1

‖ and set 𝑘
:
= 𝑘 + 1

and go to Step 1.

Remark 2. In Algorithm 1, we define a new reduction of 𝑓(𝑥)
which is different from the actual reduction 𝑓

𝑘
−𝑓(𝑥

𝑘
+𝑠
𝑘
) in

other methods. Instead of requiring 𝑓
𝑘+1

to be smaller than
𝑓
𝑘
, it is only required that 𝑓

𝑘+1
is either less than 𝑓

𝑘
or less

than the weightedmean of the function values at the last𝑚(𝑘)
iterates.

Remark 3. How to choose the horizontal vector 𝛼
𝑘
and the

approximate Hessian matrix 𝐵
𝑘
is one of the crucial issues of

a conic model method. More details for generating 𝛼
𝑘
and

𝐵
𝑘
can be found in [25]. If 𝛼

𝑘
= 0, Algorithm 1 reduces

to the quadratic model trust region method. If we choose
𝑚 = 1, we obtain a monotonic adaptive trust region method.
Hence, Algorithm 1 is a generalization and development of
quadratic model trust region method and monotonic trust
region method.

Remark 4. “Step 2-Step 3-Step 4” are called the internal
circulation.

3. Convergence Analysis

In this section we discuss the global convergence of
Algorithm 1. Before we address some theoretical issues, we
would like to give the following assumptions.

Assumption 5. (𝑖) The level set 𝐿(𝑥
0
) = {𝑥 ∈ 𝑅𝑛 | 𝑓(𝑥) ≤

𝑓(x
0
)} is bounded for any given 𝑥

0
∈ 𝑅𝑛 and 𝑓(𝑥) is twice

continuously differentiable in 𝐿(𝑥
0
). (𝑖𝑖) The sequences {𝐵

𝑘
}

and {𝛼
𝑘
} are uniformly bounded; that is, there exist two

positive scalars𝑀
1
,𝑀
2
such that ‖𝐵

𝑘
‖ ≤ 𝑀

1
and ‖𝛼

𝑘
‖ ≤ 𝑀

2

hold for all 𝑘. (𝑖𝑖𝑖)There exists a positive constant 𝜎 ∈ (0, 1),
such that ‖𝛼

𝑘
‖Δ
𝑘
≤ 𝜎.

It is similar to Theorem 3.1 in [28], and we can prove the
following lemma.

Lemma6. Suppose that Assumption 5 holds.Then, there exists
a scalar 𝛽 ∈ (0, 1) such that

𝑃𝑟𝑒𝑑
𝑘
≥ 𝛽

𝑔𝑘
min{Δ

𝑘
,

𝑔𝑘


𝐵𝑘

}

≥ 𝛽
𝑔𝑘

min{𝑠𝑘
 ,

𝑔𝑘


𝐵𝑘

}

(19)

holds for all 𝑘, where 𝑠
𝑘
is an inexact solution of the subproblem

(11).

Lemma 7. Suppose that Assumption 5 holds. Then,

𝑓 (𝑥
𝑘
) − 𝑓 (𝑥

𝑘
+ 𝑠
𝑘
) − 𝑃𝑟𝑒𝑑

𝑘

 ≤ 𝑂 (
𝑠𝑘


2

) , (20)

where 𝑠
𝑘
is the solution of (11) and is sufficiently close to zero.
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Proof. Since {‖𝛼
𝑘
‖} is bounded, we can have 1/(1 − 𝛼𝑇

𝑘
𝑠
𝑘
) =

1+𝑂(‖𝑠
𝑘
‖).Then, from the boundedness of {‖𝑔

𝑘
‖} and {‖𝐵

𝑘
‖},

we obtain

𝑔𝑇
𝑘
𝑠
𝑘

1 − 𝛼𝑇
𝑘
𝑠
𝑘

= 𝑔𝑇
𝑘
𝑠
𝑘
+ 𝑂 (

𝑠𝑘

2

) ,

𝑠𝑇
𝑘
𝐵
𝑘
𝑠
𝑘

(1 − 𝛼𝑇
𝑘
𝑠
𝑘
)
2
= 𝑠𝑇
𝑘
𝐵
𝑘
𝑠
𝑘
+ 𝑂 (

𝑠𝑘

2

) .

(21)

By 𝑓(𝑥) which is twice continuously differentiable in 𝐿(𝑥
0
),

there exists 𝑀
3
> 0 such that ‖𝐻(𝑥)‖ ≤ 𝑀

3
holds for all

Hessian𝐻(𝑥) and all 𝑥 ∈ 𝐿(𝑥
0
).

Therefore, we have that
𝑓 (𝑥
𝑘
) − 𝑓 (𝑥

𝑘
+ 𝑠
𝑘
) − Pred

𝑘



=



𝑓 (𝑥
𝑘
) − 𝑓 (𝑥

𝑘
+ 𝑠
𝑘
) +

𝑔𝑇
𝑘
𝑠
𝑘

1 − 𝛼𝑇
𝑘
𝑠
𝑘

+
1

2

𝑠𝑇
𝑘
𝐵
𝑘
𝑠
𝑘

(1 − 𝛼𝑇
𝑘
𝑠
𝑘
)
2



=

−𝑔𝑇
𝑘
𝑠
𝑘
−
1

2
𝑠𝑇
𝑘
𝐻(𝑥
𝑘
+ 𝜃
𝑘
𝑠
𝑘
) 𝑠
𝑘

+𝑔𝑇
𝑘
𝑠
𝑘
+
1

2
𝑠𝑇
𝑘
𝐵
𝑘
𝑠
𝑘
+ 𝑂 (

𝑠𝑘

2

)


≤
1

2
(𝑀
1
+𝑀
3
)
𝑠𝑘


2

+ 𝑂 (
𝑠𝑘


2

) = 𝑂 (
𝑠𝑘


2

) .

(22)

This completes the proof.

Lemma 8. Suppose that Assumption 5 holds. Then,
Algorithm 1 is well defined; that is, Algorithm 1 can not
cycle infinitely in the internal circulation.

Proof. Suppose that Algorithm 1 cycles infinitely many times
between Steps 2 and 4 at the current point 𝑥

𝑘
. We denote the

solution of the conicmodel (11) by 𝑠
𝑘(𝑖)

and the corresponding
predicted reduction by Pred

𝑘(𝑖)
with the cycling index 𝑖.Then,

we have

𝑟
𝑘(𝑖)

< 𝜂
0
, 𝑖 = 0, 1, 2, . . . . (23)

Δ
𝑘(𝑖)

= 𝑐𝑖
0
Δ
𝑘
→ 0, 𝑖 → ∞. (24)

From Lemmas 6 and 7, we can have


𝑓
𝑘
− 𝑓 (𝑥

𝑘
+ 𝑠
𝑘(𝑖)

)

Pred
𝑘(𝑖)

− 1


=


𝑓
𝑘
− 𝑓 (𝑥

𝑘
+ 𝑠
𝑘(𝑖)

) − Pred
𝑘(𝑖)

Pred
𝑘(𝑖)



≤
𝑂 (

𝑠𝑘(𝑖)

2

)

Pred
𝑘(𝑖)

≤
𝑂 (Δ2
𝑘(𝑖)

)

𝛽
𝑔𝑘

min {Δ
𝑘(𝑖)

,
𝑔𝑘

 /
𝐵𝑘

}
→ 0,

as 𝑖 → ∞.

(25)

Hence, the following

𝑓
𝑘
− 𝑓 (𝑥

𝑘
+ 𝑠
𝑘(𝑖)

)

Pred
𝑘(𝑖)

≥ 𝜂
0

(26)

holds for 𝑖 sufficiently large. From𝑀
𝑘
≥ 𝑓
𝑘
, we obtain that

𝑟
𝑘(𝑖)

=
𝑀
𝑘
− 𝑓 (𝑥

𝑘
+ 𝑠
𝑘(𝑖)

)

Pred
𝑘(𝑖)

≥ 𝜂
0
, (27)

holds for 𝑖 sufficiently large, which contradicts with (23). The
proof is completed.

In the next lemma, an important decrease property of the
function value 𝑓(𝑥

𝑘
) is established.

Lemma 9. Suppose that Assumption 5 holds and {𝑥
𝑘
} is

generated by Algorithm 1. Then, there exists a constant 𝜏 > 0
such that the following

𝑓 (𝑥
𝑘
) ≤ 𝑓 (𝑥

0
) − 𝜏𝜆

k−2
∑
𝑟=0

𝑔𝑟
min{Δ

𝑟
,

𝑔𝑟


𝐵𝑟

}

− 𝜏
𝑔𝑘−1

min{Δ
𝑘−1

,

𝑔𝑘−1


𝐵𝑘−1

}

(28)

holds for 𝑘 ≥ 1.

Proof. We prove it by induction. For simplicity, we denote

𝛽
𝑘
=
𝑔𝑘

min{Δ
𝑘
,

𝑔𝑘


𝐵𝑘

} . (29)

(1) If 𝑘 = 1, by 𝑟
0
≥ 𝜂
0
,𝑀
0
= 𝑓
0
, and Lemma 6, we have

𝑓 (𝑥
1
) ≤ 𝑓 (𝑥

0
) − 𝜂
0
(𝜑
0
(0) − 𝜑

0
(𝑠
0
))

≤ 𝑓 (𝑥
0
) − 𝜂
0
𝛽
𝑔0

min{Δ
0
,

𝑔0


𝐵0

}

= 𝑓 (𝑥
0
) − 𝜏

𝑔0
min{Δ

0
,

𝑔0


𝐵0

} ,

(30)

where 𝜏 = 𝜂
0
𝛽.

(2) Now, we assume that it holds for 1, 2, . . . , 𝑘, and we
consider two cases.

Case 1. If𝑀
𝑘
= 𝑓(𝑥

𝑘
), by 𝑟

𝑘+1
≥ 𝜂
0
, 0 < 𝜆 ≤ 1, and Lemma 6,

then we have

𝑓 (𝑥
𝑘+1

) = 𝑓 (𝑥
𝑘
+ 𝑠
𝑘
) ≤ 𝑓 (𝑥

𝑘
) − 𝜂
0
(𝜑
𝑘
(0) − 𝜑

𝑘
(𝑠
𝑘
))

≤ 𝑓 (𝑥
0
) − 𝜏𝜆

𝑘−2

∑
𝑟=0

𝛽
𝑟
− 𝜏𝛽
𝑘−1

− 𝜂
0
𝛽𝛽
𝑘

≤ 𝑓 (𝑥
0
) − 𝜏𝜆

𝑘−1

∑
𝑟=0

𝛽
𝑟
− 𝜏𝛽
𝑘
.

(31)
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Case 2. 𝑀
𝑘
= ∑
𝑚(𝑘)−1

𝑟=0
𝜆
𝑘𝑟
𝑓(𝑥
𝑘−𝑟

). Let 𝑞 = min[𝑘,𝑚 − 1], by
𝑟
𝑘+1

≥ 𝜂
0
, 0 < 𝜆 ≤ 1, and Lemma 6. Then, we have

𝑓 (𝑥
𝑘+1

) = 𝑓 (𝑥
𝑘
+ 𝑠
𝑘
)

≤

𝑞

∑
𝑝=0

𝜆
𝑘𝑝
𝑓 (𝑥
𝑘−𝑝

) − 𝜂
0
(𝜑
𝑘
(0) − 𝜑

𝑘
(𝑠
𝑘
))

≤

𝑞

∑
𝑝=0

𝜆
𝑘𝑝
(𝑓 (𝑥

0
) − 𝜏𝜆

𝑘−𝑝−2

∑
𝑟=0

𝛽
𝑟
− 𝜏𝛽
𝑘−𝑝−1

)

− 𝜂
0
(𝜑
𝑘
(0) − 𝜑

𝑘
(𝑠
𝑘
)) .

(32)

Using (0, 1, 2, . . . , 𝑞) × (0, 1, 2, . . . , 𝑘 − 𝑝 − 2) ⊂ {(𝑝, 𝑟); 0 ≤
𝑝 ≤ 𝑞, 0 ≤ 𝑟 ≤ 𝑘 − 𝑝 − 2}, 𝜆

𝑘𝑝
≥ 𝜆, ∑𝑞

𝑝=0
𝜆
𝑘𝑝

= 1, we have

𝑓 (𝑥
𝑘+1

)

≤ 𝑓 (𝑥
0
) − 𝜏𝜆

𝑘−𝑞−2

∑
𝑟=0

(

𝑞

∑
𝑝=0

𝜆
𝑘𝑝
)𝛽
𝑟
− 𝜏

𝑞

∑
𝑝=0

𝜆
𝑘𝑝
𝛽
𝑘−𝑝−1

− 𝜏𝛽
𝑘

≤ 𝑓 (𝑥
0
) − 𝜏𝜆

𝑘−𝑞−2

∑
𝑟=0

𝛽
𝑟
− 𝜏𝜆

𝑘−1

∑
𝑟=𝑘−𝑞−1

𝛽
𝑟
− 𝜏𝛽
𝑘

≤ 𝑓 (𝑥
0
) − 𝜏𝜆

𝑘−1

∑
𝑟=0

𝛽
𝑟
− 𝜏𝛽
𝑘
.

(33)

Lemma 10. Suppose that the conditions in Lemma 9 hold.
Then, {𝑥

𝑘
} ⊂ 𝐿(𝑥

0
).

Proof. By Lemma 9, 𝑓(𝑥
𝑘
) ≤ 𝑓(𝑥

0
) − 𝜏𝜆∑

𝑘−1

𝑟=0

‖𝑔
𝑟
‖min{Δ

𝑟
, ‖𝑔
𝑟
‖/‖𝐵
𝑟
‖} ≤ 𝑓(𝑥

0
), the conclusion holds

obviously.
Now, we prove the global convergence of Algorithm 1.

Theorem 11. Suppose that Assumption 5 holds. If 𝜀 = 0,
Algorithm 1 either terminates in finite iterations or generates
an infinite sequence {𝑥

𝑘
} which satisfies

lim inf
𝑘→∞

𝑔𝑘
 = 0. (34)

Proof. If Algorithm 1 terminates in finite iterations, the theo-
rem is obviously true. Assume that Algorithm 1 generates an
infinite sequence {𝑥

𝑘
} in the following proof.

If (34) is not true, then there exists a positive constant 𝜀
0
,

such that
𝑔𝑘

 ≥ 𝜀
0
, ∀𝑘. (35)

From Lemma 9, 0 < 𝜆 ≤ 1, and ‖𝑔
𝑘
‖ ≥ 𝜀
0
, we can have

𝑓 (𝑥
𝑘
) ≤ 𝑓 (𝑥

0
) − 𝜏𝜆𝜀

0

𝑘−1

∑
𝑟=0

min{Δ
𝑟
,

𝜀
0

𝐵𝑟

} . (36)

By Assumption 5(ii), we can obtain

𝜏𝜆𝜀
0

𝑘−1

∑
𝑟=0

min{Δ
𝑟
,
𝜀
0

𝑀
1

} ≤ 𝑓 (𝑥
0
) − 𝑓 (𝑥

𝑘
) . (37)

Therefore, by Assumption 5(i), we have

∞

∑
𝑘=0

Δ
𝑘
< ∞. (38)

Thus, we can obtain

lim
𝑘→∞

Δ
𝑘
= 0. (39)

ByAssumption 5(ii), then ‖𝐵
𝑘
‖ ≤ 2𝑀

1
+1. FromAlgorithm 1,

we know that

Δ
𝑘
= 𝜇
𝑘

𝑠𝑘−1

2

𝑠𝑇
𝑘−1

𝐵
𝑘
𝑠
𝑘−1

𝑔𝑘


≥ 𝜇
𝑘

𝑠𝑘−1

2

(2𝑀
1
+ 1)

𝑠𝑘−1

2
𝜀
0
=

𝜇
𝑘
𝜀
0

2𝑀
1
+ 1

.

(40)

By (39) and (40), we obtain

lim
𝑘→∞

𝜇
𝑘
= 0. (41)

On the other hand, we have from Lemma 6 that


𝑓
𝑘
− 𝑓 (𝑥

𝑘
+ 𝑠
𝑘
)

Pred
𝑘

− 1


=
𝑂 (

𝑠𝑘
) + 𝑂 (

𝑠𝑘

2 𝐵𝑘

)

Pred
𝑘

≤
𝑂 (

𝑠𝑘
) + 𝑂 (

𝑠𝑘

2 𝐵𝑘

)

𝛽
𝑔𝑘

min {Δ
𝑘
,
𝑔𝑘

 /
𝐵𝑘

}

≤
𝑂 (

𝑠𝑘
)

Δ
𝑘

→ 0.

(42)

The above inequality implies that

𝑟
𝑘
=

𝑀
𝑘
− 𝑓 (𝑥

𝑘
+ 𝑠
𝑘
)

Pred
𝑘

≥
𝑓
𝑘
− 𝑓 (𝑥

𝑘
+ 𝑠
𝑘
)

Pred
𝑘

≥ 𝜂
0

(43)

holds for 𝑘 sufficiently large. Hence, there exists a positive
constant 𝜇∗ such that

𝜇
𝑘
≥ 𝜇∗. (44)

holds for all sufficiently large 𝑘, which contradicts with (41).
The proof is completed.

4. Superlinear Convergence

In general, the superlinear convergence property of
Algorithm 1 requires further assumptions, we give the
assumptions and the superlinear convergence property in
the following theorem.

Theorem 12. Suppose that Assumption 5 holds and Algorithm
1 generates an infinite sequence {𝑥

𝑘
} which converges to
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𝑥∗, where 𝐻(𝑥∗) is positive definite and 𝐻(𝑥) is Lipschitz
continuous in a neighborhood of 𝑥∗. If the following condition
holds

lim
𝑘→∞

𝑔𝑘 + 𝐻 (𝑥∗) 𝑠
𝑘


𝑠𝑘


= 0, (45)

then the rate of convergence is superlinear; that is, ‖𝑥
𝑘+1

−𝑥∗‖ =
𝑜(‖𝑥
𝑘
− 𝑥∗‖).

Proof. From 𝑥
𝑘
→ 𝑥∗, we can have lim

𝑘→∞
‖𝑠
𝑘
‖ = 0. By the

Taylor expansion, we can obtain

𝑔
𝑘+1

= 𝑔
𝑘
+ ∇2𝑓 (𝑥

𝑘
+ 𝜃
𝑘
𝑠
𝑘
) 𝑠
𝑘

= 𝑔
𝑘
+ 𝐻 (𝑥∗) 𝑠

𝑘
+ (∇2𝑓 (𝑥

𝑘
+ 𝜃
𝑘
𝑠
𝑘
) − 𝐻 (𝑥∗)) 𝑠

𝑘
,

(46)

where 𝜃
𝑘
∈ (0, 1).

So,

𝑔𝑘+1


≤
𝑔𝑘 + 𝐻 (𝑥∗) 𝑠

𝑘

 +
∇
2𝑓 (𝑥
𝑘
+ 𝜃
𝑘
𝑠
𝑘
) − 𝐻 (𝑥∗)

 ⋅
𝑠𝑘

 .

(47)

Dividing both sides by ‖𝑠
𝑘
‖, we get

𝑔𝑘+1


𝑠𝑘


≤

𝑔𝑘 + 𝐻 (𝑥∗) 𝑠
𝑘


𝑠𝑘


+
∇
2𝑓 (𝑥
𝑘
+ 𝜃
𝑘
𝑠
𝑘
) − 𝐻 (𝑥∗)

 .

(48)

By (45), ‖𝑠
𝑘
‖ → 0, and Lipschitz continuous property of

𝐻(𝑥), we can have

lim
𝑘→∞

𝑔𝑘+1


𝑠𝑘


= 0. (49)

By𝐻(𝑥∗)which is positive definite, and𝑓which is a twice
continuously differentiable function, there exists 𝛽 > 0, such
that

𝛽
𝑥𝑘+1 − 𝑥∗

 ≤
𝑔𝑘+1

 (50)

for sufficiently large 𝑘.
By (49) and (50), it follows that

𝑔𝑘+1


𝑠𝑘


≥
𝛽
𝑥𝑘+1 − 𝑥∗


𝑠𝑘


≥

𝛽
𝑥𝑘+1 − 𝑥∗


𝑥𝑘+1 − 𝑥

𝑘



≥
𝛽
𝑥𝑘+1 − 𝑥∗


𝑥𝑘+1 − 𝑥∗

 +
𝑥𝑘 − 𝑥∗



= 𝛽

𝑥𝑘+1 − 𝑥∗
 /

𝑥𝑘 − 𝑥∗


1 + (
𝑥𝑘+1 − 𝑥∗

 /
𝑥𝑘 − 𝑥∗

)
,

(51)

and thus

lim
𝑘→∞

𝑥𝑘+1 − 𝑥∗


𝑥𝑘 − 𝑥∗


= 0, (52)

which implies that the sequence {𝑥
𝑘
} converges to 𝑥∗ super-

linear.

5. Numerical Results

In this section, we compare the performance of Algorithm 1,
denoted by NACTR, with NAQTR if 𝛼

𝑘
= 0 for all 𝑘 in

Algorithm 1, MACTR if 𝑚 = 1 in Algorithm 1, CTR method
which is a conic trust region algorithm without adaptive
technique, and QTR method which is the traditional trust
region method without adaptive technique. All programs are
written in MATLAB with double precision.

For these methods, the trial step 𝑠
𝑘
is computed approx-

imately by the algorithm proposed by Lu and Ni in [34]
for solving the subproblem (11). 𝐵

0
is chosen as the identity

matrix. The parameters in our algorithm are chosen as 𝜂
0
=

0.25, 𝜂
1
= 0.7, 𝑐

0
= 0.25, 𝑐

1
= 1.5, 𝜆

𝑘𝑟
= 1/𝑚(𝑘), (𝑟 =

0, 1, . . . , 𝑚(𝑘)−1),𝑚 = 4, and 𝛼
0
= 0. In our implementation,

we prefer the following choice

𝑟
𝑘
= 0.85𝑟

𝑘
+ 0.15𝑟

𝑘−1
, (53)

where 𝑟
0
= 𝑟
0
.

The stopping condition is

𝑔𝑘
 ≤ 10−4. (54)

The iteration is also terminated if the number of evalua-
tions exceeds 300.

We provide the results of our tests in Table 1. The
numerical results are given in the form of 𝑁

𝑖
, 𝑁
𝑓
, where

𝑁
𝑖
, 𝑁
𝑓
denote the numbers of iterations and function eval-

uations, respectively. We chose the test problems from [35].
From Table 1, we can see that, in most of the problems
considered, the numbers 𝑁

𝑖
and 𝑁

𝑓
for the conic model

methods are considerably smaller than those required for
the quadratic model methods, especially for those functions
with strong nonquadratic behavior.Thismeans that the conic
model methods are very effective to many unconstrained
optimization. Compared with the methods without adaptive
technique, the adaptive trust region methods are more
attractive. Hence, our new nonmonotone adaptive conic trust
region method is an improvement of the existing trust region
methods.

6. Conclusions

In this paper, we propose a new nonmonotone adaptive conic
model trust region method for unconstrained optimization.
The global and superlinear convergence properties of the new
method are proved under reasonable conditions.Ourmethod
is attractive in the following aspects. First, the subproblem
is conic model which can produce a better prediction of the
minimizer of the function than quadratic model methods
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Table 1: Numerical comparisons.

Problems QTR CTR NAQTR MACTR NACTR
𝑁
𝑖
/𝑁
𝑓

𝑁
𝑖
/𝑁
𝑓

𝑁
𝑖
/𝑁
𝑓

𝑁
𝑖
/𝑁
𝑓

𝑁
𝑖
/𝑁
𝑓

Helical Valley 62/74 43/53 56/61 32/45 29/42
Gaussian 7/12 3/8 3/5 3/5 3/5
Box 3-D 41/45 33/37 36/41 30/35 30/33
Var. Dimen. 17/26 11/11 18/27 12/18 13/21
Waston 72/78 66/73 62/81 54/98 48/86
Penalty I 18/21 16/17 18/24 15/20 15/18
Penalty II 21/26 21/24 23/31 17/26 16/25
Brown-Dennis 62/66 78/84 62/75 55/67 53/58
Gulf R.D. 88/83 96/98 66/46 38/42 46/47
Trigonometric 46/52 38/39 45/48 32/39 34/36
Ex. Ros. 91/124 Failed 48/62 33/46 35/48

when the objective function has strong nonquadratic behav-
ior. Second, at each iteration, our method generates a suitable
trust region radius automatically based on the current and
last iterative information. Last, we use a new update rule
(8) to adjust the next trust region radius. According to the
nonmonotone technique in [33], our method constructs an
iterative series {𝑥

𝑘
} such that the sequence {𝑓(𝑥

𝑘
)} is not

monotonic, which can accelerate the convergence rate of the
minimization process, especially in the narrow curved valley.
Numerical results show that the new method is efficient for
unconstrained optimization problems.
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